
P
o
S
(
L
A
T
2
0
0
6
)
0
0
2

The search for the fundamental QCD string
in anti de Sitter space

Richard C. Brower∗
Physics Department, 590 Commonwealth Ave, Boston University, Boston, MA 02215,USA
E-mail: brower@bu.edu

The (original) flat space “hadronic” string discovered prior to QCD had both dramatic successes
and equally dramatic failures. This talk will show how Maldacena’s string/gauge duality conjec-
ture offers a way out of the major failures. New QCD-like duals exhibit confinement and decon-
finement at finite temperature, a qualitatively reasonable glueball and extended flux tube spectra
as well as a domain wall mechanism for chiral symmetry breaking at strong coupling. Recently
the hard components responsible for power behavior at wide angles and a unified treatment of soft
(Regge)/hard(BFKL) Pomeron in high energy diffractive scattering has been identified at strong
coupling. Lattice computations promise to provide more and more stringent “experimental” data
to guide and test constructions of the fundamental QCD string.

XXIV International Symposium on Lattice Field Theory
July 23-28 2006
Tucson Arizona, US

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:brower@bu.edu


P
o
S
(
L
A
T
2
0
0
6
)
0
0
2
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1. Introduction

I wish to address the conjecture that

QCD is exactly equivalent to a fundamental string theory.

Paradoxically this old conjecture, with a somewhat checkered past, predates even the discovery
of QCD itself (see Fig. 1 below). In the late 60’s strong interaction scattering (or the hadronic S
matrix) exhibited striking new features not observed in the best know quantum field theories of the
day. The result was a systematic attempt to replace local quantum field theory with a new theory
for a self-consistent relativistic quantum S matrix. This is the so called bootstrap program, which
led to the discovery of string theory.

Figure 1: Long march through the desert landscape in search of the QCD string.

Consequently with the benefit of hindsight, it is appropriate to regard the discovery of pertur-
bative string theory in the late 60’s as the first attempt at constructing the fundamental QCD string.
Subsequently the idea of a fundamental QCD string was largely ignored because the dynamics of
this first attempt failed to reproduce the short distance physics, which was critical to the identifica-
tion of SU(3) Yang Mills theory as the correct theory of the strong interactions in the first place.
Instead the appearance of the graviton in flat space string theory led to the consensus that funda-
mental strings apply, if at all, to near Planckian scales where quantum gravity becomes important.
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In this view the Yang-Mills field theories of the standard model are the low energy effective theories
of a fundamental string theory at short distances.

Progress on the rigorous construction of string perturbation theory began with the proof of no
ghosts, removal of tachyons, the identification of the critical dimension and anomaly cancellations.
The result was the identification of 5 perturbative vacua of the superstring in 10-d Minkowski space.
Gradually a study of non-perturbative effects such as solitonic objects called D branes revealed a
web of dualities connecting these vacua. All these developments tended to demonstrate the self-
consistency of superstring theory in the critical dimension and more support to the assumption
that Yang Mills theories were simply a low energy effective theory of a fundamental string. These
fundamental strings had no more direct connection to the electric flux tube in the confining phase
of QCD than to magnetic vortices in a super conducting material. A useful phenomenology but not
a alternative to Yang Mills theory.

However in mid 90’s the picture began to change. A better understanding of non-perturbative
string theory led Maldacena [1] to conjecture an exact AdS/CFT dualities between superstring in
Anti de Sitter space and N = 4 SUSY Yang Mills. Here Yang-Mills and the string dual co-exist as
equivalent description at the same energy scale. This not only made it very likely that many string
theories are exactly dual (i.e. equivalent) to 4-d Yang Mills theory but gave for confining duals a
reasonable explanation of the earlier failures of the QCD string based on flat space string dynamics.

This lecture will begin by a brief description of success and failure of the QCD string from the
late 60’s to extract lessons and then consider these issues in the light of the Maldacena’s AdS/CFT
constructions. The purpose is to make it at least plausible that there are no longer any obvious
obstructions prohibiting an exact duality between QCD and a fundamental string field theory. Of
course to move beyond plausibility, one needs to find the specific world sheet sigma model for
the perturbative (i.e. large Nc) QCD string and make quantitative comparisons with experimental
or lattice data. Even without an explicit formulation of the QCD string, it is still possible with
care to abstract a few universal features from QCD like confining Yang Mills duals that give new
non-perturbative results for QCD. Also it is worth noting that there are now two approaches to
the search for the QCD string. A “top down” approach that begins with a specific AdS/CFT for
superstring and its SUSY duals Yang-Mills theory and then modifies them to break all unwanted
symmetries until they hopefully “flow” down to a pure QCD fixed point. This is highly technical
approach but it has the advantage of a relatively rigorous starting point. So far this program has
lead to several examples of QCD like confining duals but not QCD itself. The other approach is the
more traditional “bottom up” strategy. Here one tries to find an effective low energy sigma model
description or even a local AdS field theory that has more and more of the phenomenology of QCD,
hoping to find the correct action by a series of small steps. Perhaps with the help of experimental
and lattice data, this may ultimately be the best way to proceed to discover the action for the QCD
string.

Before proceeding let me make clear what is meant by an equivalence to a fundamental
string. No one disputes the fact that QCD in the confining phase has flux tubes so that a phe-
nomenologically stringy phase exists. This can account for some of the long distance physics but
by itself is not sufficient to the present task. An equivalence between two theories implies that
there are two different classical Lagrangians whose quantum path integral leads to identical S ma-
trix elements. The prototypical example of such an identity (often referred to as duality) is the
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equivalence between the quantum sine-Gordon theory and the massive Thirring model [2, 3].

V (φ) = cos(βφ/2π) V (ψ) = g
2(ψγµψ)2

⇒

ψ ∼ exp[iβ−1 ∫ x
−∞

dxφ̇(x, t)]g = 1
β 2 −π

Figure 2: The classical sine-Gordon kink (lump) is represented by a point defect or local fermion field,
ψ(x), in the massive Thirring theory.

What lessons do we learn from this (and similar) examples? A semi-classical solitonic object
can be a guide to this duality. In one theory the solitons with finite width (e.g. sine-Gordon
kink) roughly correspond in the other theory to an exactly local objects (e.g. fermions fields in
the Thirring model). In general one can identifies the degrees of freedom of the dual by taking an
extreme (strong coupling) limit. However this correspondence is not simply a change of integration
variables in the functional integral for the partition function. Both theories are treated quantum
mechanically. This particular 2-d example of an exact duality between two quantum field theories
has now become a familiar story for many 4-d Yang Mills theories as well. However the present
search for a dual to QCD has some unusual features. We are not seeking an alternative local
field theory by looking at strong coupling. Instead the extreme limit needed to identify the non-
interacting solitonic objects for the dual theory is ’tHooft’s large Nc limit for the SU(Nc) Yang-Mills
theory at fixed ”tHooft coupling g2Nc. Also the dual variables are not zero dimensional (particle
like) solitons but extended one dimensional strings. The combined large Nc and strong coupling
limit is the low energy limit of string theory or classical gravity does not have the full content of
the dual theory.

2. Lessons from the Past

In this short talk it is impossible to trace even roughly the history of the search for the QCD
string as depicted in Fig. 1 by paths wandering in the parched desert landscape of theory space.
However one should appreciate two broad trends. The discovery of strings was based on empirical
data on the hadronic scattering matrix. This was followed soon by the discovery of the Yang-Mills
theory for QCD and by strings theory becoming an independent, not necessarily related, discipline.
Consequently QCD physics (left side of figure) occasionally tried to justify (or derive) the string
picture while string theory (right side of figure) became less and less to resemble hadronic physics.
We begin with a few observations on this early period.

2.1 Phenomenological Origins

The discovery of string theory in the late 1960’s followed from a detail study of the phe-
nomenology of hadronic scattering, specifically finite energy sum rules constrained by Regge the-
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ory at high energies. For example the Regge limit for pion elastic scattering amplitude (π+π−→
π+π−) was traditionally parameterized as

Aπ+π−→π+π−(s, t)' g2
o Γ[1−αρ(t)] (−α

′s)αρ (t) , (2.1)

in Mandelstam variable s = (p1 + p2)2 and t = (p1 + p3)2. Physical scattering takes place for
t ≤ 0. At positive t, the Regge form factor,expressed as a Gamma function, incorporates the t-
channel poles for the cross channel ρ exchange at J=1 and higher spins recurrences for J > 1.
Since the ratio for the ρ’s width to its mass is a small parameter (Γρ/mρ ' 0.1), one sought a
new perturbative expansions starting with a zero width approximation. Since Regge trajectories,
α(t), were observed to be almost linear function of t, this zero width approximation was enforced
for all resonant states by using an exactly linear rho trajectory, α(t) = α ′t + α0, so that resonance
poles at integer J = α(m2) had real masses [4]. In 1968 Veneziano [5] made a disarmingly simple
observation that exact s, t crossing symmetry could be imposed by assuming an amplitude of the
form,

Aπ+π−→π+π−(s, t) = g2
o

Γ[1−αρ(t)]Γ[1−αρ(s)]
Γ[1−αρ(s)−αρ(t)]

, (2.2)

the so called dual resonance model. Here “dual” referred to Dolan-Horn-Schmid duality [6] which
states that the sum over s-channel resonances poles interpolates the power behavior of the leading
Regge pole exchange,

∑
r

g2
r (t)

s− (Mr− iΓr)2 ' β (t)(−α
′s)α(t) , (2.3)

which is easily derived for the dual pion scattering amplitude (2.2). The Regge limit follows from
the Sterling’s approximation as s→∞ and the resonance expansion from the integral representation
for the Beta function,

Aπ+π−→π+π−(s, t) =−g2
oαρ(t)

∫ 1

0
dx x−αρ (s)(1− x)−1−αρ (t) . (2.4)

Expanding at small x we get,

Aπ+π−→π+π−(s, t) = −g2
o

∞

∑
J=1

(αρ(t))(αρ(t)+1) · · ·(αρ(t)+ J−1)
(J−1)!

∫ 1

0
dx x−1−α(s)+J

⇒ g2
o

∞

∑
J=1

AJ(α ′t)
αρ(s)− J

' g2
oΓ(−1−αρ(t))(−α

′s)αρ (t) , (2.5)

where AJ is a polynomial of order J.
Moreover the initial enthusiasm for this model included a striking feature of chiral symmetry.

In the soft pion limit p1→ 0, the Adler zero,

Aπ+π−→π+π−(s, t) = g2
o(1−αρ(s)−αρ(t))

Γ[1−αρ(t)]Γ[1−αρ(s)]
Γ[2−αρ(s)−αρ(t)]

∼ α
′(s+ t)→ 0 , (2.6)

is realized if we take the phenomenologically reasonable values for the rho trajectory intercept,
αρ(0) = 0.5. Further work led to the N-point generalization in Neveu and Schwarz’s seminal
paper [7] entitled “Factorizable Dual Model of Pions”. So Veneziano’s amplitude turns out to

5



P
o
S
(
L
A
T
2
0
0
6
)
0
0
2

QCD string Richard C. Brower

be the 4-point function of the NS superstring —ignoring the conformal constraint on the Regge
intercept (α(0) = 1) and the dimension of space time (D = 10) which were not understood at the
time. Within a very short time, it was realized that amplitudes with arbitrary numbers of external
lines could be easily written down and perturbative unitarization carried out be imposing cutting
rules. Unfortunately as we will explain this initial enthusiasm was largely a mirage as a starting
point for the QCD string.

2.2 Large Nc Topology

In a sense the modern era of the QCD string begins almost immediately after the discovery of
QCD itself with ’tHooft analysis [8] of the large Nc limit in 1974. The problem one faced was to
understand how the picture of valence quarks attached to the strings of the dual resonance model
might arise in QCD. Even assuming some non-perturbative mechanism for electric confinement,
one must find a small parameter to explain the zero resonance width approximation.

Guided by the basic premise that the string theory for QCD might be identified as an extreme
(or strong coupling) limit of Yang-Mills theory, one is left with a quandary. In fact the full quantum
theory for QCD has no independent coupling constant because by dimensional transmutation (or
breaking of conformal symmetry at zero mass for the quarks) this coupling is replaced by a fun-
damental mass scale, Λqcd . For SU(3) QCD the only free dimensionless parameters are the scaled
quark masses,mq/Λqcd , and the θ parameter. The weak coupling expansion for QCD, is really a
shorthand for the loop expansion in h̄, which is of course of great use in the UV for large “energies”,
E/Λqcd , due to “asymptotic freedom”.

’tHooft asked whether the inverse of the rank of the group for SU(Nc) Yang-Mills theory
could be used as a formal expansion parameter. Indeed he noticed that by fixing g2Nc the large Nc

expansion did act to decouple the quarks form the theory at order 1/Nc. To the extend that decay
widths required the production of quark anti-quark pairs, one might view this a natural explanation
for the zero width expansion.

Consequently he reorganized the loop expansion in h̄, as an expansion in powers of 1/Nc

holding fixed the ’tHooft coupling g2
Y MNc (or more precisely fixed Λqcd). The result was the famous

topological restructuring of the loop expansion as sum over Riemann surfaces. Starting from the
action,

S =
1

g2
Y M

Tr[(∂µAν −∂νAµ + i[Aµ ,Aν ])2]+
1

g2
Y M

Ψ̄(γµ∂µ − iAµ)Ψ , (2.7)

and writing down Feynman diagrams in the “double line” form, we count factors of 1/Nc:

Gluon Loops : δ
r
r = Nc ⇒ O(NF

c )

Gluon & Quark Prop : g2
Y M = g2

Y MNc×
1

Nc
⇒ O(N−E

c ) ,

Vertices :
1

g2
Y M

=
1

g2
Y MNc

×Nc⇒ O(NV
c ) . (2.8)

Using Euler’s theorem we see that the factors of Nc for color loops (faces F), gluon/quark propaga-
tors (edges E), interactions (vertices V) and quark flavor loops (boundaries B) combine,

NF−E+V−B
c = Nχ

c = N2−2H−B
c , (2.9)
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to classify the topology of the graph as function of the number of glueballs propagators (i.e. handles
H) and the quark loops ( i.e. boundaries B).

Remarkably the zero width expansion has now revealed one of the salient features of string
theory, the topological expansion of string space time histories in terms of the genus of the world
sheet. On the other hand, this is still perturbation theory so the connection to confining flux tubes
in space-time is not obvious. However the same topology expansion can be shown to hold on the
lattice at strong coupling in the confining phase as well. Since the lattice strong coupling expansion
is actually a sum over surfaces of electric flux , the physical mechanism for confinement is clearly
string-like flux tubes, in spite of the breaking of Lorenz invariance due the lattice artifacts. The
argument is analogous to weak coupling. For illustration consider the Wilson form of the pure
gauge action,

S =
1

g2
Y M

∑
P

Tr[2−UP−U†
P] , UP = Uµ(x)Uν(x+ µ)U†

µ(x+ν)U†
ν (x) , Uµ = exp[iaAµ ] .

as a sum over plaquettes. In strong coupling the action is expanded in a power series and each
link variable (Uµ(x)) is integrated over its Haar measure. To get a non-zero result every link in the
expansion must be paired with (at least) one anti-link (U →U†). This leads immediately to the
rule:

Plaquettes :
1

g2
Y M

=
1

g2
Y MNc

×Nc ⇒ O(NF
c ) ,

Links :
∫

dU U l1
r1

U†r2
l2 =

1
Nc

δ
l1
l2 δ

r2
r1
⇒ O(N−E

c ) ,

Sites : δ
r
r = Nc ⇒ O(NV

c ) . (2.10)

Treating quark loops boundaries as before, Euler’s theorem yields exactly the same topological
result as in weak coupling (ignoring self-intersections of surfaces). However it should be realized
that the meaning is quite different. The vertices give the index sums, the faces are now field
strengths and edges are not propagators. Apparently the topology of large Nc Yang Mills is a robust
feature in need of a deeper explanation.

In a real sense the large Nc limit if it exists can be considered as the definition the QCD string
perturbative expansion order by order in the string coupling gs ∼ 1/Nc. But to go beyond this the-
oretical assertion by explicitly take the large Nc limit to give a mathematical tractable definition of
the perturbative QCD string (even for the leading term at Nc = ∞) has proven frustrating, except for
two dimensional QCD. For 2-d QCD, in pure glounic (closed string) sector, Gross and Taylor [9]
have identified the underlying topological expansion in great detail. However in spite of many in-
teresting efforts, much work remains to fully understand the ’tHooft’s equation for the (open string)
meson propagator as world sheet string theory. This will be discussed briefly in the conclusion.

Also it is interesting to note that there is more than one large Nc limit [10]. One can choose to
treat quark field as an anti-symmetric tensor, Ψi j = ε i jkψk in color. If one now takes the large Nc

limit of 1 flavor QCD with this tensor representation for quark fields, the fermion loop is no longer
subdominant. In fact the leading term in the bosonic sector can be shown to be precisely the same
as the large Nc limit of N = 1 SUSY Yang Mills theory! Should we be alarmed at this in view
of the glib statement that the large Nc limit defines string perturbation theory. I think not. In fact
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the full non-perturbative QCD string theory might well have more than one weak coupling string
expansion, analogous to the now conventional view of superstrings in 10-d.

2.3 Failures of flat space-time strings

We should now take a break from this discourse, following the wandering paths on the right
side of Fig. 1, and learn all of rules of superstring perturbations theory [11]. With the help of
anomaly cancellation, we would discover 5 consistent perturbation expansions — free of tachyons
and negative norm (i.e. ghost) states. But the resulting phenomenology for perturbative super-
strings (in flat space-time) has 4 major disasters from the view point of a QCD string:

1. Zero mass states (i.e 1− gauge/ 2++ graviton)

2. Supersymmetry

3. Extra dimension: 4+6 = 10

4. No Hard Scattering Processes

One can easily imagine that the first 3 difficulties could be remedied by “forcing” some form
of compactification of the extra 6 dimensions, breaking all unwanted symmetries. Indeed in view
of the fact that superstrings include gravity, it is even natural to suppose that solutions should
include non-trivial space-time geometries. However the 4th problem of no hard scattering reveals
a fundamental mismatch between soft strings and hard partonic QCD. All in all an abject failure
for QCD strings but an interesting framework for a theory of quantum gravity interacting with
matter. A Theory Of Everything (TOE) perhaps. There are two possible consequence, either the
fundamental QCD string has nothing to do with a fundamental superstring or there are dramatic
new effects when non-trivial background metrics are considered.

3. Lesson from AdS/CFT

String theory has undergone a tremendous transformation in the last 35 years. In the “First
String Revolution” the perturbative string vacua were restricted to five alternatives (IIA, IIB, I, H0,
HE) by the requirement to cancel tachyons, ghosts and anomalies. This appeared to restrict dra-
matically the space of possible string theory. In the “Second String Revolution”, non-perturbative
dualities went on to relate these 5 cases (and M theory) into a single connected manifold. However,
that is not the end of the story. Solitonic objects called D-branes have given rise to a tremendous ex-
plosion of possible vacua in non-trivial (warped) target spaces. The infrared the physics of strings
in these non-trivial backgrounds were seen to mimic a plethora of effective fields theories.

3.1 AdS/CFT correspondence for Superstrings

In 1998 Maldacena [1] realized that at least under certain circumstances string theories in
curved space might be exactly equivalent (i.e dual) to Yang Mills theory. The first examples en-
volved a duality between string propagating in an Anti de Sitter (AdS) space and a conformal field
theory (CFT). As a consequence this class of String/Gauge dualities has come to be know by the
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D3-branes

Dynamics of N D3 branes at low
energies is (Super) SU(N) YM.

Their mass curves the  space (near horizon)
into AdS5 and emits closed string (graviton)

gµν   gravitons

Aµ gluons

Figure 3: Open/closed string duality for Nc D3 branes leading to the conjecture duality of IIB strings in
AdS5×S5 and N = 4 Super SU(Nc) Yang Mills theory.

phase “AdS/CFT” dualities. While technically all such AdS/CFT dualities are still unproven con-
jectures, the consistency relations are now so extensive that the existence of exact String/Gauge
dualities in many special circumstances is hard to doubt.

Maldacena’s first example consisted of IIB superstrings propagating in an AdS5 × S5 10-d
manifold,

ds2 =
r2

R2

3

∑
µ=0

ηµνdxµdxν +
R2

r2 (dr2 + r2d2
Ω5) , (3.1)

which is dual to 4-d N = 4 Super SU(Nc) Yang Mills theory. The (xµ ,r) co-ordinates form the
AdS5 manifold with negative curvature with radius R fibered by a S5 sphere of (positive) radius R
and metric d2Ω5. The motivation for this duality is based on the background metric for a set of Nc

parallel massive D3 sources (see Fig. 3). Evidence had accumulated that there are two equivalent
ways to model the dynamics of D3 branes. First by considering short open strings attached to the
branes which at low energies is SUSY Yang Mills (SYM) theory and second by the near horizon
fluctuations of closed IIB superstrings or at low energy IIB supergravity. The leap of faith was to
conjecture that in the near horizon limit these two formulations are equivalent. In some sense this
is a more refined version of the old open/closed duality found in the one loop unitarization of the
open string scattering amplitude in flat space time.
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In this dual correspondence, the string (or gravity) correlation functions as you approach the
boundary of AdS5 (r→∞) are mapped into gauge invariant correlators in SYM theory. The discrete
“Kaluza-Klein” modes in S5 give the multiplets under SYM R symmetry SU(5). By combining the
subtle new idea of holography in r and the more mundane Kaluza-Klein mechanism on S5, we see
how a 10-d string can be dual to a 4-d field theory. There is no loss of degrees of freedom. The
’tHooft gauge coupling is g2

Y MNc = R4/α ′2, where the intrinsic string length scale is
√

α ′ = ls.
Consequently strong ’tHooft coupling gauge theory is dual to weak coupling gravity (ls ∼ lPlanck)
and the 1/Nc expansion parameter is identified with the closed string coupling constant gs = g2

Y M ∼
1/Nc as one would expect from the large Nc topological expansion. The isometries of the back
ground are the conformal group O(4,2) so that translations in log(r) act to remove the scale from
the corresponding CFT. The ’tHooft coupling constant, g2

Y MNc is a free parameter of the CFT.
Although the Maldacena string/gauge duality is believed to hold for general coupling and

general Nc, it is difficult to quantize even free strings (Nc = ∞) in this background which includes
a non-zero Ramond-Ramond flux. In the strong coupling limit (gs ∼ g2

Y M → ∞), the string tension
diverges leaving only the center of mass motion of closed strings, which is equivalent to IIB gravity
in the tree approximation. The weak coupling limit of classical gravity is easily solved. (Other
special cases, such as the pp-wave limit, are tractable as well.)

One may view the correspondence in holographic terms. The Yang Mills UV (short distance)
degrees of freedom are dual to excitations near to the AdS boundary at r→ ∞, while the IR (long
distance physics) is represented by modes at small r→ 0. This mapping is referred to as IR/UV cor-
respondence. A graphic illustration of this IR/UV correspondence is afforded by the scale breaking
instanton solution to Yang-Mills located at xµ with size ρ . This corresponds exactly to 0-brane
located at five dimensional co-ordinate (xµ ,r = R2/ρ) in the AdS5 manifold (see Fig. 4).

3.2 Confinement

Ironically this first example of Yang-Mills/String duality does not confine because the quantum
field theory is exactly conformal. Wilson loops have pure Coulomb (rather than area law) behavior.
When a large Wilson test loop is introduced on the boundary of AdS, the red shift factor r2/R2 of
the metric allows the minimal surface area spanning the loop to remain finite by moving into the
interior nearer and nearer to r = 0. Hence the most well studies example of String/Gauge duality
is not based on the narrow flux tubes and a linear interaction potential in the IR,V (L) ∼ α ′L, at
large distances) , but strings that with a conformal interaction engery,V (L) ∼ 1/L, for all length
scale). This is a major departure from earlier attempts at constructing string theory equivalent to
large Nc Yang Mills theory. Now we are starting from the opposite end of the problem with a
string theory in AdS space that gives a good approximation to the Coulombic behavior of the
gauge interaction of QCD at short distance! To look for models closer to QCD we must break
conformal and supersymmetries and see how to obtain a linear potential with confinement at long
distances.

These models invariably modify the metric in the IR, cutting it off at a finite value r = rmin.
This IR cut-off plays the role of Λqcd . Two simple examples were suggested by Witten [12] by
introducing a Euclidean AdS black hole background with a compact dimension (called τ) whose
radius set by the Hawking temperature:
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• AdS5×S5 Black Hole for 10-d IIB string theory

• AdS7×S4 Black Hole for 10-d IIA string theory

Both metrics have the general form,

ds2 =
r2

R2 ηµνdxµdxν +
R2

r2[1− (rmin/r)d ]
dr2 +

r2

R2 [1− (rmin/r)d ] dτ
2 +ds2

X . (3.2)

asymptotically AdSd+1 in the UV. The horizon of the black hole introduces a scale breaking cut-off,
which we can identify roughly with Λqcd = 1/rmin or as we will see subsequently the scale of the
glueball mass in strong coupling.

-

r = rmin (IR) r = ∞ (UV)

0

∗←−←−←− point defect in AdS at (x,r = 1/ρ)
⇔ Instanton at x radius =ρ

X

Figure 4: Deformed AdS5 manifold with IR cut-off at r = rmin to give confinement for the dual Yang Mills
theory.

In these black hole metrics, the minimal area surface spanning a Wilson loop of increasing
size eventually must approach r = rmin. At this point the area of the surface no longer has a red
shift factor and it grows proportional to the physical area of the Wilson loop itself. For example in
the AdS5 black hole the proper areas grows proportional to r2

min/R2 giving a QCD tension Tqcd =
1/2πα ′qcd or Regge slope,

α
′
qcd ∼ α

′R2/r2
min ∼ Λ

2
qcd/

√
g2

Y MNc . (3.3)

4. Spectral Results from Confining Duals

Based on the conformally broken backgrounds using Maldacena string/gauge duality, we can
begin to do some calculation in QCD like theories, at least in the strong coupling limit. This is
still far from the hoped for discovery of the QCD string. We are in the position somewhat similar
to a lattice cut-off theory. The strong coupling limit brings along non-universal cut-off dependent
effects. However unlike the lattice, we have (as yet) no algorithm (theoretical or numerical) to
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in principle send the cut-off to infinity. String/gauge duality presents a coupled problem, even in
the large Nc. The world sheet sigma model for the string theory emits gravitons that perturb the
background which in turn has a back reaction on the sigma model. Even finding the sigma model
beta function perturbatively to the next order in 1/α ′ is difficult. Still it is worth while to see if
there is a reasonable spectrum in strong coupling approximation.

On the lattice side, where one can numerically take the weak coupling (continuum) limit, the
spectra for glueballs [13] and the quantum states of a stretch string are becoming quit accurately
determined [14]. Even extrapolating this spectra to the large Nc limit has met with some success.
In short the lattice has given and is capable of giving more accurate spectral data for the quantum
QCD string. If it exists, there can be only one answer. This is a unique opportunity: A concrete
string theory problem with copious “experimental” data to constrain its construction!
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Figure 5: The AdS glueball spectrum from Brower,Mathur and Tan [15] for QCD4 in strong coupling (left)
compared with the lattice spectrum of Morningstar and Peardon [13] for pure SU(3) QCD (right). The AdS
cut-off scale is adjusted to set the lowest 2++ tensor state to the lattice results in units of the hadronic scale
1/r0 = 410 Mev.

4.1 Glueball Spectra

The first such lattice AdS/CFT comparison was the computation of the strong coupling glue-
ball spectrum in the AdS7 M-theory black hole. The correspondence for the quantum numbers for
the gravity modes in terms of the Yang-Mill fields are read off from the effective Born-Infeld action

12
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on the brane,

S =
∫

d5xdet[Gµν + e−φ/2(Bµν +Fµν)]+
∫

d4x(C1F ∧F +C3∧F +C5) . (4.1)

The entire spectrum for all states in the QCD super selection sector are now known and can be
compared with lattice data for SU(3). The comparison is rather encouraging considered as a first
approximation (see Fig. 5). All the states are in the correct relative order and the missing states at
higher J are a direct consequence of strong coupling which pushes the string tension to infinity. It
appears plausible that the AdS7 black hole phase at strong coupling is rather smoothly connected to
the weak coupling (confined) fixed point of QCD. However it must be stated that there is no general
understanding of how the metric will be deformed so that all the unwanted charged Kaluza-Klein
states in the extra compact directions decouple. All attempts to find better background solutions to
supergravity as a starting point for QCD have failed in this regard.

5. Stretched String Spectra

An even more direct probe of the 5-th dimension is provided by the spectrum of the string
stretched between infinitely heavy sources (see Fig 6). From the AdS/CFT viewpoint, starting
with the ends of the string separated by a small distance L, we are probing the short distance
Coulomb regime. Then as we increase L, the minimal surface moves into the interior probing more
and more IR physics. Finally at very large L we see only the lowest mass transverse “Goldstone
modes” of the string leading to the classic string oscillator spectrum,

En = T0L+
π

L
[∑

i
a⊥†

i a⊥i −
(D−2)

24
]+ · · · (5.1)

Indeed at large separation L the lattice data for the stretched string spectrum appears to be ap-
proaching this form with 2 transverse oscillators, D-2 = 2. (See Fig. 6). Also using a very clever
lattice simulation method, Lüscher and Weisz [16] were apparently able to determine the one loop
contribution ( i.e.the so called “Lüscher term”) to the ground state,

E1−loop
0 (L) =− π

12
(1+0.12 f m/L) , (5.2)

for L in the range 0.5 to 1.0fm . The agreement with theory for D− 2 = 2 is remarkable (if not
paradoxical) in view of large non-universal features in the spectrum for L ' 0.5− 1.0 f m clearly
visible in the lattice data (Fig 6).

It should also be emphasized, contrary to the phrase “string limit?” on Fig. 6, for a funda-
mental string at large Nc all distances scales must be described by quantized string. Moreover it is
evident from the lattice data in Fig. 6 that a major challenge for the AdS/CFT approach to the QCD
string is to understand the highly non-trivial interpolation between IR (large L) and UV (small L)
physics of the string. As a first attempt, one may quantizing the string with Dirichlet boundary
conditions in the confining AdS5 black hole metric of Eq. 3.2 above and solve (numerically) for the
minimal surface getting a classical potential energy, Eclass

0 (L) for the ground state of the stretched
string. This function obeys the following limits,

Eclass
0 (L→ ∞)' r2

min

2πα ′sR2 L+O(Le−cL) and Eclass
0 (L→ 0)'− π2

√
2

α ′sΓ(1/4)4
R2

L
(5.3)
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Figure 6: Quantum excitation spectrum of a stretch QCD flux tube calculated on the lattice by Juge, Kuti
and Morningstar [14].

The exact function, Eclass
0 (L), fits almost perfectly the lattice data for all L, after adjusting the mass

scale R2/rmin = ΛIR and the Regge slope α ′qcd = R2α ′s/r2
min. This is reassuring but also highlights

the present weakness of our AdS model. Pure Yang-Mills (quarkless QCD) predicts a definite
number for the string tension, Tqcd = 1/(2πα ′qcd) relative to the single Yang-Mills scale, Λqcd .
However at present all AdS/CFT strong coupling models for confining theory have an extra IR
cutoff parameter that can be adjusted independent of the Regge slope (or QCD string tension).
This extra mass scale is similar to strong coupling lattice QCD, except that on the lattice the new
scale is the UV cutoff of the lattice spacing whereas here it is a phenomenological IR scale more
similar to the MIT bag constant.

Any confining 5-d warped background (such as the AdS Black hole metric consider above) can
be parameterized by d2s = R2[dx2 + G2(z)dz2]/z2 where r = R2/z. In this background a general
wave equation for the transverse oscillations can be found in the semi-classical limit and solved
for excitation energies, En = Eclass

0 + ∆En, above the ground state, Eclass
0 (L). In a temporal gauge

X (0) = t with σ = X (3), the linearized or semi-classical equation for the transverse fluctuations of
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a string stretched is

[ ∂
2
t − v2(σ)∂ 2

σ ] X⊥(t,σ) = 0 . (5.4)

The local velocity, v(σ) = z2(σ)/z2
c , of propagation along the string is bounded by the speed of

light. Here z(σ) is the classical solution of the stretched string and zc is the maximum value of
z(σ) at the turning point in the middle of the string. At large L, the velocity approaches a constant,
exponentially close to the speed of light, except near the quarks at z = 0. Thus, it is not surprising
that at large L this confining background reproduces flat string results,

∆En =
nπ

L
,

and in one loop, it reproduces the universal Lüscher term (or Casimire energy), ∆E1−loop
n =−(D−

2)π/24L. Moreover a numerical solution to our equation in Fig. 7 shows deviations from the large
L asymptotic value in qualitative agreement with that measured in the Lattice simulations of Juge,
Kuti and Morningstar [14]. However there is another contribution to this deviation with the same

Q-Q̄ separation: L

L
∆

E
n
/n

π
−

1

876543210

0

-0.1

-0.2

-0.3

-0.4

-0.5

1

Figure 7: Deviations of transverse energy levels, L∆En/(nπ)−1, in confining AdS5 black hole model for n
= 1 (+), 2 (×), 3 (∗) and 4 (�).

sign observed in the exact spectrum of the (flat space) Nambu-Goto

ENambu−Goto
n = T0L

√
1+

2π

L
[∑

i
a⊥†

i a⊥i −
(D−2)

24
] (5.5)

when quantized in the light-cone gauge [17]. An effort is underway to combine these two effects
in a self-consistent light-cone quantization of the string in a confining AdS space.
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As you approach zero separation L→ 0, the discrete spectrum of the stretched string is deter-
mined by the pure AdS5 metric [18]. The exact spectrum is know in closed form through the sum
rule,

zc∆En

√
(zc∆En)4−1

∫ 1

0

ds

[1+(zc∆En)2]
√

(1− s2)
=

nπ

2
, (5.6)

give by Callan and Guijosa [19] where n = 1,2, · · · and zc = (2π)−3/2Γ(1
4)L. In the conformal limit

the energies must of course be proportional 1/L.
In addition to transverse Goldstone modes, there are quantum modes for fluctuations in the

extra “radial” direction r,

[ ∂
2
t − v2(σ)∂ 2

σ ] ρ(t,σ) = M2(σ)ρ(t,σ) . (5.7)

Unlike the transverse Goldstone modes X⊥, now there is a σ -dependent “rest mass”,

M2(σ) =− 1
z4

c
[z3 d

dz
1

G2 +
2z2

G2 ]z=z(σ) , (5.8)

where z(σ) is the minimal surface for the classical solution in the background metric. The mass
scale is set by the glueball mass: MGB ∼ 1/zc. These modes correspond via the String/Gauge
duality to longitudinal (breathing) modes for a fat chromodynamic flux tube [18]. It would be
interesting to find these modes in lattice gauge theory simulations and trace their dependence on L.

Still our toy QCD string in an AdS5 black hole is at best just a first step in understanding how
a QCD string in warped space might behave. Much work remains even to identify the microscopic
degrees of freedom of the QCD string let alone to the discovery of an effective string action capable
of reproducing the lattice spectrum from long distance into the short distance region governed by
asymptotically free gauge theory at large Nc. However a reasonable near term goal is to find
accurate interpolation formulae for all L for the low energy spectrum of the stretched sting in a
legitimate confining super gravity background. On the basis of the comparison of this spectrum
with lattice data one might narrow the search for the QCD background geometry itself.

6. High Energy Scattering

We know that QCD, even in leading order of large Nc, exhibit asymptotic freedom and hard
parton scattering properties. Consequently for the QCD string, one of the most baffling features
in flat space is the complete absence of hard scattering. One the other hand for the application of
string theory to quantum gravity, this softening of the short distance physics is a virtue, which is
responsible for a finite weak coupling limit. Here we explain a surprisingly simple mechanism to
reconcile this apparent conflict for strings duals to Yang-Mills theory.

6.1 Hard Scattering at Wide Angles

Let us begin with a description of the fundamental “Rutherford experiment” for the scattering
two hadrons at wide angles. It is well known that up to logarithmic corrections due the running
coupling, QCD exhibits power law fall off at wide angles precisely due to hard (UV) processes

Aqcd(s, t)∼ (
1√

α ′qcds
)n−4 , (6.1)
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where n = ∑i τi = ∑i(di− si) is the sum over twists τi for external states. In stark contrast the
fundamental strings (in flat space) exhibits exponentially damped wide angle scattering,

Aclosed(s, t)→ exp
[
− 1

2
α
′(s lns+ t ln t +u lnu)

]
. (6.2)

Polchinski and Strassler [20] made the essential observation on how string scattering in a con-
fining background AdS background avoids this conflict with QCD. Suppose you have a background
that is cut-off for small r < rmin and approximated by AdS5×W for large r,

ds2 =
r2

R2 ηµνdxµdxν +
R2

r2 dr2 +ds2
W . (6.3)

A plane wave external glueball, φ(r)exp[ixp], at strong coupling scatters locally in r through a
string amplitude with a red shifted proper distance or equivalently an effective momenta,

p̂s(r) =
R
r

p .

Relative to the string scale, ls =
√

α ′, the exponential cut-off at high momenta (ls ps > 1), suppresses
string scattering in the IR region (r < rscatt), leaving a residual amplitude in a decreasingly small
window in the UV (ls ps < 1),

r > rscat ≡
√

α ′Rp .

Since the tail of the glueball wave function, φi(r) ∼ (r/rmin)−∆
(i)
4 , is entirely determined in the

String/Gauge dictionary by the conformal weight ∆
(i)
4 of the corresponding gauge operator dual to

the string state, one is led back to the standard parton or naive dimensional analysis result used in
the wide angle power counting rule,

φi(rscat)∼
(rscat

rmin

)−∆
(i)
4 ∼ (

√
α ′qcd p)−∆

(i)
4 , (6.4)

where we have converted to the hadronic scale,

α
′
qcd ∼ (R/rmin)2

α
′ . (6.5)

In the corresponding M-theory construction (sometime referred to as M-QCD), all of this appears to
be upset because the scaling of the wave function in AdS7 changes. For example the scalar glueball
with interpolating field Tr[FµνFµν ] in AdS5 has ∆4 = 4 as expected but in AdS7 the wave function
scales with ∆6 = 6 at large r. As pointed out by Brower and Tan [21], this apparent conflict with
partonic expectations is avoided when one realizes that from an M-theory perspective, strings are
a consequence of membranes wrapping the 11th dimension and that in AdS7 this 11th dimension
is warped just like another spatial coordinate (xµ ) with the proper size: R̂11(r) = (r/R)R11. To
account for this effect, one can introduce local values for the effective string length and coupling
constant,

l̂2
s (r) =

R
r
(l3

p/R11) , and ĝ2
s (r) =

r3

R3 (R3
11/l3

p) .

as a function of the local scattering position in r. This additional deformation is precisely what is
required. The new definition of the scattering region at wide angles,

r > rscat = l̂s(rscat)R p =
√

α ′ R
2
3 r−

1
2

scat p ,
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leads to

φi(rscat)∼
(rscat

rmin

)−∆
(i)
6 ∼

(√
α ′qcd p

)− 2
3 ∆

(i)
6

(6.6)

for each external line. For example, for the 0++ scalar glueball corresponding to interpolating YM
operator Tr[F2], the factor of 2/3 exactly compensates for the the shift in the conformal dimension
from ∆4 = 4 for AdS5 to ∆6 = 6 for AdS7 to give the parton results, ni = 2

3 ∆
(i)
6 . This time, in

converting to the hadronic scale in Eq. 6.6, we must realize the relationship of α ′qcd to the string
scale is

α
′
qcd ∼ (R/rmin)3

α
′ , (6.7)

which differs from the AdS5 string relation (6.5). The 3rd power is a consequence of the fact that
in M-theory the area law for the Wilson loop really comes from a minimal volume for a wrapped
membrane world volume stabilized at r' rmin rather than a minimal world surface area for a string
which gave quadratic behavior in Eq. 6.5 .

Putting all factors together, the result for M-theory can be expressed as,

∆σ2→m '
1
s

f (
pi · p j

s
)

1
N2m

c
∏

i

( 1
α ′qcds

)ni−1
,

in agreement with the weak-coupling QCD results.

6.2 Near-Forward Scattering and Regge Behavior

The importance of scattering at large r also suggests the presence of a hard component in the
near-Regge limit, t/s→ 0 as s→ ∞. In Ref. [21] a heuristic argument was made as follows. The
approximation of a single local scattering leads to T (s, t) =

∫
∞

rh
dr K (r)A(s, t,r), where A is a local

4-point amplitude, K (r)∼ φ1(r)φ2(r)φ3(r)φ4(r) and rh is a high energy cut-off, rh >> rmin. After
converting to local string parameters as discussed above, the amplitude A(s, t,r) depends only on
α ′ŝ and α ′t̂, where ŝ = (R/r)2s and t̂ = (R/r)2t for the hardwall AdS5 metric. In the Regge limit
the amplitude becomes

T (s, t) =
∫

∞

rh

dr K (r)β (t̂)(α ′ŝ)α0+α ′t̂ . (6.8)

For small t ' 0, this corresponds to an exchange of a BFKL-like Pomeron, with a small effective
Regge slope,

α
′
BFKL(0)∼ (rmin/rh)2

α
′
qcd << α

′
qcd . (6.9)

Such an exchange naturally leads to an elastic diffraction peak with little shrinkage. In the coordi-
nate space, one finds, for a hard process, the transverse size is given by

〈~X2〉 ∼ (rmin/rh)2
α
′
qcd logs+ constant . (6.10)

If the cutoff, rh, which characterizes a hard process, increases mildly with s, e.g. r2
h ∼ logs, there

will be no transverse spread. In the language of a recent study by Polchinski and Susskind, [22],
this corresponds to “thin" string fluctuation.
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In spite of this progress in seeing some hard scattering effects in the string picture, there is
much more to understand. For instance, we note that, consistent with the known spectrum of glue-
balls at strong coupling, the IR-region must in addition give a factorizable Regge pole contribution,

T (s, t)∼ A(s, t,rmin)∼ (α ′qcds)αP(0)+α ′qcdt . (6.11)

where αP(0) = 2−0(1/
√

g2Nc). Of course, this “soft" Pomeron must mix with the corresponding
hard component, leading to a single Pomeron singularity in the large Nc limit. As emphasized
by Polchinski and Strassler in a recent paper [23], this is also what is required for treating deep
inelastic scattering in the string/gauge duality picture. This more careful analysis, which has been
carried out recently by Brower, Tan, Polchinski and Strassler [24], will be presented next.

7. BFKL Pomeron at Strong Coupling

One of the most striking aspects of high-energy hadronic scattering is the continued increased
of the total cross section, σT , with the energy. In a Regge language, this requires a leading j-plane
singularity 1 with vacuum quantum numbers having an intercept above j = 1, in the forward limit,
t = 0. It has been a long held belief that QCD in the large Nc limit, should be described by a string-
like theory. In such a framework, this leading singularity, a.k.a., Pomeron, should correspond to the
leading closed string excitations in the crossed channel. There are currently two seemingly con-
flicting interpretations of high energy near-forward collisions in QCD: One based on perturbative
leading log approximation (LLA), i.e., the BFKL Pomeron, and another based on nonperturbative
(large-Nc and/or phenomenological) considerations, i.e. the Soft Pomeron. Whereas the leading
BFKL Pomeron represents LLA of gluon ladder graphs in the conformal limit, the dynamics of a
soft Pomeron should be tied to confinement dynamics, e.g. glueball spectrum.

Recent development in AdS/CFT duality has provided new theoretical impetus for re-examining
this issue. The Maldacena conjecture [1] and its further extensions [12, 25] state that Yang-Mills
theory is exactly dual to a critical string theory in a non-trivial gravitational background. The
particular target Yang-Mills theory depends on the geometry and symmetries of the string/gravity
dual. By an appropriate choice, one is led to a specific suggestion as to how quarkless QCD (or
SU(Nc) Yang Mills theory) may be represented by a theory of closed strings. To regain approxi-
mate conformal invariance at short distances, the target space geometry should be asymptotically
approximated by AdS5 in the UV.

Rather than treating perturbative and non-perturbative frameworks separately, I will describe
how the AdS/CFT duality provides a natural synthesis of both approaches by considering Regge
behavior for bosonic string interaction in warped space time. The resulting j-plane structure is
robust, which can be schematically represented as in Fig. 8. Under a Gaussian approximation,
we identify Regge behavior as simultaneous random walk in transverse space, both the flat impact
space and the AdS space, with confinement deformation. In particular, conformal invariance allows
us to compute the BFKL intercept in the strong coupling limit. We begin in the next section by
briefly reviewing key features of the perturbative Pomeron (BFKL) and the non-perturbative (soft)

1Of course to obey the Froissart bound, this j-plane singularity at leading order in the 1/Nc perturbation expansion
must eventually be hidden by unitarity corrections which dominate at even higher energies.
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Figure 8: Soft Pomeron Regge pole at J = αP(t) terminates at the BFKL cut with intercept at J = αBFKL(0)

Pomeron, emphasizing both their differences and similarities. We next show how these key features
can be unified in a curved-space string theory in a light-cone description.

7.1 Diffusion in Impact Space and Virtuality

Due to a linear confining potential, QCD spectrum in the large Nc limit contains states with
arbitrarily high spin and masses, lying on nearly parallel Regge trajectories. It is also expected
that, in the near forward limit at high energy, scattering amplitudes exhibit Regge behavior, e.g. for
2→ 2 scattering amplitudes, A (s, t)∼ β (t)sα(t), where α(t) and β (t) are the Regge trajectory and
residue respectively. It is well-known that these features can best be illustrated by string amplitudes
in flat space.

However, by summing certain set of perturbative diagrams in QCD, for scattering with s�
−t � ΛQCD (small fixed angles and ultra-high energies), Balitsky and Lipatov [27] and of Fadin
and Kuraev [26] have obtained a different result, referred to as “BFKL” . Extending their analysis
to the forward limit, an elastic amplitude takes on the form

∫ dk⊥
k⊥

∫ dk′⊥
k′⊥

Φ1(k⊥)K(s;k⊥,k′⊥)Φ2(k′⊥).
Each of the two functions Φi, called an “impact factor”, describes the transverse structure of the
corresponding hadronic state. These impact factors are convoluted together with the BFKL ker-
nel, which can be computed exactly [27, 26] (in the BFKL leading-log approximation). A good
approximation to this kernel leads to

K(s,k⊥,k′⊥)≈ sω0

√
π lns

e−[(lnk′⊥−lnk⊥)2/4D lns] (7.1)

where ω0 = 4ln2λ/π , and D = 14ζ (3)λ/π . We may recognize K, in this approximation, as a
diffusion kernel, with the diffusion occurring in the variable lnk⊥ over a diffusion time ∼ lns. In
this context, k⊥ is often referred to as "virtuality". Note that the kernel is invariant under scale
transformations, k⊥→ λk⊥.

Classic Regge behavior, A ∼ sα(t), is also known to be related to diffusion in transverse impact
space. For a linear trajectory near t = 0, α(t) ' α0 + α ′t; a Regge amplitude, after transforming
into impact space, also takes a diffusive form,

∫
d2k⊥eik⊥·x⊥sα(t) = sα0

∫
d2k⊥eik⊥·x⊥e−α ′k2

⊥ lns ∼ sα0e−x2
⊥/4α ′ lns

α ′ lns
. (7.2)
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Representing this by a Regge kernel in transverse impact space, it satisfies a diffusion equation:

[ ∂y−α0−α
′
∂

2
x⊥ ] K(y;x⊥,x′⊥) = δ

2(x⊥− x′⊥) δ (y) , (7.3)

where the evolution parameter is again the rapidity, y∼ log(α ′s).
The similarity between these two types of diffusion is not accidental. As we will show, the

kernel of BFKL, in the quadratic diffusive approximation Eq. (7.1) and in the appropriate kine-
matic regime, is reproduced in structure by the Regge behavior of string theory on a space of the
form AdS5×W , where AdS5 is five-dimensional anti-de Sitter space, and W is a five-dimensional
compact manifold that will play no role in the computation. In other words, the classical Regge
behavior and the BFKL’s result both emerge as features of Regge physics of a string theory com-
pactified to AdS5, in the form of simultaneous diffusion along the flat impact space and the curved
fifth dimension.

To illustrate the key feature, consider scattering of hadrons of small size, i.e. hadrons built
from constituents with mass much larger than the confinement scale Λ, correspond to modes of
fields in the string theory with wave functions that have support only for r� rmin, that is, in the
asymptotically AdS5 regime. For a pure AdS5 background, the scattering of these objects for t < 0
can be shown to be given by a Regge amplitude, in which the two wave functions are convoluted
with a kernel that implements the Regge diffusion, but with the coordinate x⊥ replaced with a
function of the AdS5 radial coordinate. As we will show, this function is lnr. The resulting kernel
is

K(s;r,r′) =
sω0

√
π lns

e−[(lnr′−lnr)2/4D lns] (7.4)

where ω0 = 2− 2/
√

λ , and D = 1/2
√

λ . Comparing this with Eq. (7.1), one sees that the fifth
coordinate r of the string theory should be identified in this context with k⊥ of the gauge theory.
The identification of r and k⊥ has its source in the UV/IR correspondence and has been suggested
in numerous contexts. In the next section, we will derive these results using string in curved
background using light-cone gauge.

7.2 Regge Behavior in light-cone gauge

The light-cone has proven to be a natural formalism for studying the high energy limits of
quantum field theories, leading to a vivid physical picture in Feynman’s parton language. The light-
cone gauge for a superstring [28] in AdS5×W eliminates all spurious degrees of freedom in favor
of the 8 transverse bosonic fields X⊥(σ ,τ) = (X1,X2),Y (σ ,τ) and the center of mass coordinates
x− and p+, plus the corresponding Fermionic modes for the superstring. The light-cone gauge
fixes X+(σ ,τ) ≡ (X0 + X3)/

√
2 = τ , P+(σ ,τ) = const, and the first derivatives of X−(σ ,τ) =

(X0−X3)/
√

2 as quadratic functions of the transverse fields via the Virasoro constraints. (See
Polchinski [11] and Zwiebach [29] for details.) Scattering amplitudes can now be defined in terms
of light-cone path integrals. As an example, an elastic scattering amplitude (p1, p3→−p2,−p4),
is given by

A (s, t)δ 2(p⊥1 + p⊥2 + p⊥3 + p⊥4 ) = N
∫

dT
∫

DX⊥DY G1/2[Z] V1V2V3V4 e−
∫

dτ
∫ p+

0 dσL [X⊥,Z]

(7.5)
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where for the AdS direction we have set Z(σ ,τ) = 1/R(σ ,τ) and ignored the bosonic modes in
W as well as all fermions. Scattering takes place on the world sheet illustrated in Fig. 9, with
Neumann (open) or periodic (closed) boundary condition on the edges. The modulus T is the time
τ in the interaction region. (Closed strings have an additional modulus to enforce level matching.)

p+
3 −p+

4

τ = 0 ↔ T

p+
1 −p+

2

6
σ

-
τ

Figure 9: The light-cone world sheet domain, X+ = τ ∈ [−∞,∞], σ ∈ [0, p+],with p+ = p+
1 + p+

3 for elastic
scattering in the brick wall frame.

7.3 Open string scattering in flat-spacetime

The physical picture of Regge scattering in the light-cone frame can be appreciated with the
simple example of open string elastic tachyon scattering,

A (s, t) =
∫ 1

0
dw (1−w)−2−α ′s w−2−α ′t ' Γ(−1−α

′t)(e−iπ
α
′s)1+α ′t . (7.6)

The Regge limit is dominated by the integration region where w = O(1/α ′s).
Let us begin with a qualitative description of how this Regge limit translates into light-cone

language. Since in the light-cone gauge the density of P+(σ) is conserved, it is traditional for
scattering processes to label each string segment (or bit) ∆σ by equal quanta ∆p+ by choosing the
string length to be ls = p+. Also this gauge is not manifestly Lorentz invariant so it is helpful to
pick a definite frame. As illustrated in Fig. 9, we have chosen the brick wall frame in the center
of momentum, where the transverse momenta are reflected by the collision: p⊥r = ±k⊥/2. In this
frame strings join and split at exactly 2 the same string bit (σ = σint). The Regge limit represents
the collision of a boosted “long” string that grow in length (p+

3 = −p+
4 ∼ O(

√
s)) with a “short”

string of decreasing length (p+
1 = p+

2 = O(1/
√

s)). As a consequence the essential contribution
involves a small area centered at the interaction region with T ∼ ∆τ ∼ 1/p+

3 ∼ 1/
√

s and ∆σ ∼
p+

1 ∼ 1/
√

s. So one should be able to identify the Regge mechanism with a“local” conformal world
sheet transformation near the interaction points.

With T = 0(1/
√

s), we may visualizing cutting the world sheet through the interaction region
into two parallel horizontal strips. The sole impact of this brief interaction is for the ends of the

2To be precise, we define the brick wall frame with transverse momenta, p⊥1 = p⊥2 = 2k⊥ and rapidities, exp[±yi] =√
2p±i /

√
(M2

i + k2
⊥/4) so that the invariants are, t = −k2

⊥ , s = M2
1 + M2

3 +
√

M2
1 + k2

⊥/4
√

M2
3 + k2

⊥/4 cosh(y1−
y3). Boosting to the center of longitudinal momentum frame sets y1 = −y3. In the brick wall frame the t-channel
worldsheet diagram (T < 0) vanishes identically leaving only the s-channel contribution (T ≤ 0).
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B3 B4

τ = 0 ↔ T

B1 B2
σint

6
σ

-
τ

Figure 10: The light-cone world sheet domain split into two parallel sheets at the dotted lines with τ ∈ [0,T ]
and σ = σint . Solid/dotted lines have Neumann/Dirichlet boundary respectively.

strings to be constrained to coincide for τ ∼ 0. This can be imposed by replacing the Neumann
boundary condition by a Dirichlet boundary condition implemented with a delta-functional con-
straint for τ ∈ [0,T ]: δ (X long

⊥ (σint ,τ)−X short
⊥ (σint ,τ)) . As we show below the Regge behavior

comes entirely from the growth of the long string. To evaluate the light-cone path integral in
Eq. 7.5 for flat space, we drop the Z coordinate and introduce the light-cone Lagrangian density,
L = 1

2 Ẋ2
⊥+ 1

2
1

(2πα ′)2 X́2
⊥ . Next we introduce the vertex functions for ground state tachyons on

vertical boundaries Br, in Fig. 10

Vr[pr,X ] = e(1/p+
r )

∫
Br

dσ [ip⊥r X⊥(σ ,τr)+ p−r X+(σ ,τr)] ,

with center of mass coordinates, τr = (1/p+
r )

∫
Br

dσX+ and x⊥r = (1/p+
r )

∫
Br

dσX⊥. The limits
τr→∓∞ for in/out states put the scattering amplitude on shell. Since both p+ and the Hamiltonian
P− are conserved, there is no need for a longitudinal delta-functions, δ 2(p±1 + p±2 + p±3 + p±4 ). We
are primarily interested in understanding diffusion in the transverse (“impact parameter”) space.
To this end we recognize that transverse momenta p⊥r are conjugate to center of mass xr

⊥ in impact
space, and we integrate the path integral for the external states up to the interaction region, τ ∈
[0,T ], indicated by dotted lines in Fig. 9. The external states are “dressed” by Gaussian fluctuations,
Vr→Φr(X

(r)
⊥ ) = exp[ip⊥r x(r)

⊥ −
1
2 ∑

∞
n=1 ωnX (r)

n X (r)
n ] , where we have adopted a plane wave expansion

for X⊥(σ ,τ),

X⊥(σ ,τ) = x⊥+ i
p⊥
p+ τ +

√
2

p+

∞

∑
n=1

Xn(τ)cos(ωnσ/c) , Xn(τ) =
a†

ne−ωnτ +aneωnτ

√
2ωn

, (7.7)

with frequencies ωn = n/(2α ′p+). The fact that frequencies decrease under a boost has the conse-
quence that strings with large/small p+ appear to be more weakly/strongly bound.

The analogous expansion for Regge limit now takes the form of an expansion in the interaction
time T. To zeroth order, string-1 and string-2 coincide and so do string-3 and string-4, and the two
separate strings momentarily join at a point with Dirichlet boundary condition, enforced by delta
functions, δ 2(X (1)

⊥ (0,0)−X (3)
⊥ (0,0)), where we have re-labeled the interaction point by σ = 0,τ =

0. This allows the Regge limit of the amplitude to be written,

A (s, t)δ 2(p⊥1 + p⊥2 + p⊥3 + p⊥4 )'
∫ d2k⊥

(2π)2 V12(k⊥) F34(−k⊥) , (7.8)
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in terms of “short” and “long” string factors V12 and F34. The expression is non-symmetric as a
natural consequence of the “infinite momentum” frame.

For the “short” string, the excitation frequencies in the wave function grow forcing it to interact
like a rigid point-like object, so that its center of mass and the interaction point effectively coincide.
Consequently its vertex is local, V12(k) ∼ (2π)2δ 2(p⊥1 + p⊥2 − k⊥) . On the the other hand, for

the “long” string, to first order in T, the interaction reduces to T
2

∫ p+
3

0 dσ [Ẋ2
⊥+ 1

(2πα ′)2 X ′⊥
2]. By

expanding in normal modes, one finds

F34(−k⊥)' 2(2π)2
δ

2(p⊥3 + p⊥4 + k⊥)
∫

dT T−2 p+e−p−T exp[−∑
n

α ′k2
⊥

n+n2T/2α ′p+
3

], (7.9)

where we have normalized the form factor by identifying with the "photon" pole contribution at
k⊥ = 0. The sum in the exponent, at large p+

3 ' p+ ' s/2p−, after integrating over ζ = p−T , leads
to the final result,

A (s, t)' Γ[−1−α
′t] (−α

′s)[1−α ′k2
⊥] . (7.10)

where t =−k2
⊥.

We re-iterate the key advantage of the light-cone approach that allows one to interpret Regge
behavior as a diffusion process in transverse (impact parameter) space. To do this consider the ker-
nel in impact parameter space, K(y;x⊥1 ,x⊥3 ), which is just the Fourier transform of the s-dependent
factor in Eq. 7.10. This satisfies the diffusions equation,

[ ∂y−1−α
′
∂

2
x⊥1

] K(y;x⊥1 ,x⊥3 ) = δ (x⊥1 − x⊥3 ) δ (y) , (7.11)

where evolution parameter is the rapidity, y∼ log(α ′s). Indeed we could just as well have derived
this diffusion equation directly from the path integral by working with transverse coordinates, tak-
ing the derivative with respect to rapidity. Not only does this give a physical picture of the Regge
limit, this approach often has technical advantages in more complex target space geometries such
as our example leading to the BFKL singularity. We see in flat space that the diffusive growth
in impact parameter 〈(x⊥3 − x⊥1 )2〉 ∼ log(α ′s) causes what is known as “Regge shrinkage” of the
Regge “form factor”, exp[α ′t log(α ′s)] with t = −k2

⊥ < 0. The amplitude decreases more rapidly
in |t| at large values of the energy. Solution to the diffusion equation determines the leading Regge
singularity.

7.4 Regge behavior in warped spacetime

The light-cone Lagrangian in AdS space [28] is

L =
1
2

∫ p+

0
dσ [Ẋ2

⊥+ Ż2 +
1

(2πα ′R−2
adsZ

2)2
(X ′⊥

2 +Z′2)] .

In the light-cone frame the conformal group O(4,2) is restricted to the subgroup SL(2,C), which
includes Z→ λZ,X⊥→ λX⊥,τ→ λτ,σ→ σ/λ . To exploit this we change variables to U(σ ,τ) =
− log(Z(σ ,τ)/Rads and make a semi-classical expansions around the zero modes U = u, X⊥ =
x⊥. The essential new feature is an effective string slope, α ′e f f (u) = α ′e−2u, which leads to local
dependences on u. The (Gaussian) dressed wave functions become

Vr→Φr[X ,U ] = eip(r)
⊥ x(r)
⊥ e−

1
2 ∑n ωn[e2uX (r)

n X (r)
n +R2

adsU
(r)
n U (r)

n ]
ψr(ur) .
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Again we make a first order approximation to the interaction term: ip+T
∫ p+

0 dσ Ẋ+(σ ,0).
Factorization of the Dirichlet constraint on U in the interaction region requires a new delta

function,

δ (U (1)
⊥ (0,0)−U (3)

⊥ (0,0)) =
∫ dν

2π
exp[iν(U (1)(0,0)−U (3)(0,0))] .

Again diffusion takes place only for the “long” boosted string. The details are analogous to the
flat space example, except that at Eq. 7.9 α ′ is replaced by α ′e f f (u) and a new term ν2 is added
to α ′e f f (u)k2

⊥. For k2
⊥ = 0, the ν2 factor clearly corresponds to diffusion in the u-direction. For

non-zero k2
⊥ 6= 0, we must be represented ν = i∂u as an operator conjugate to u.

However, to obtain the correct diffusion equation one must go to one loop order beyond the
Gaussian approximation to the world sheet in the sigma model to find an anomalous shift ν2 →
ν2 +2iν . Here we choose to fixed this shift by matching with the on-mass- shell condition (L0 = 1
at j = 1) for the vector field in AdS space. The result in any case is a Hermitian differential equation
which specifies the leading j-plane singularity,

[∂y−1−α
′ e−2u

∂
2
x −

1√
λ

(∂ 2
u −1)] K (y;x,u,x′,u′) = δ

2(x− x′)δ (u−u′)δ (y) . (7.12)

to leading order in α ′. We note that diffusion in u suppresses the corresponding diffusion in im-
pact parameter space, giving rise to the BFKL cut. In fact this effect could have been anticipated
qualitatively in terms of the boosted incoming wave function. The Un modes enter like ordinary
transverse modes in flat space so diffusion naturally drives the incoming hadron into the UV (large
u), which then acts to increase the effective energies (ωne2u) of X⊥n modes suppressing diffusion in
impact parameter (see Fig. 11). This effect is counter to the flat space effect reducing ωn ∼ n/p+

which leads to Regge shrinkage. The result is a BFKL-like cut for t < 0 for the open string Regge
exchange starting at j = 1−1/

√
λ .

!x1, u1

!b3

!x3, u3
!b

!b1

Figure 11: At the interaction the impact parameter is given by ~b =~b3−~b1 where ~bi is the vector from
the center of mass of each string to its end point. In AdS space the strings are separated by an additional
transverse co-ordinate u = u1−u3 = ln(z3/z1) in the radial direction.
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Lastly, we can generalize this to the closed string by introducing periodic boundary condition
on the strings and an additional modulus θ that rotates the Riemann surface around a cut on the
s-channel intermediate closed string. Again the Gaussian approximation gives the Regge amplitude
up to an anomalous correction. The integral over θ forces level matching between holomorphic and
anti-holomorphic modes. This has the sole effect of replacing α ′ → 1

2 α ′. The final result, when
transformed back to a j− t representation, is

[ j−2− α ′

2
t e−2u− 1

2
√

λ
(∂ 2

u −4))] K (J, t;u,u′) = δ (u−u′) . (7.13)

For closed strings, we can also match in the strong coupling limit, at j = 2, with the equation for
tensor glueballs. Again we have corrected the Gaussian approximation by a comparison with the
on-shell linearized graviton equation in the AdS5 background by shifting ν → ν2 +4iν . Note that,
in principle the anomalous shift mentioned above, noted by Gubser, Klebanov and Polyakov [25],
could be computed by going to one loop order using the methods of Callan and Gan, [30]. It
is interesting to note that Polchinski and Susskind [22] argue that this correction is essential to
defining a finite graviton form factor at non zero k2

⊥. Apparently the BFKL singularity, power
behavior at wide angles [20, 21] and finite power behaved form factors all have a common origin,
at least in strong coupling conformal theories.

7.5 Unified Soft and Hard Pomeron Model

Strictly speaking the above derivation of the BFKL Pomeron in strong coupling is a result
of pure conformal theory, so we are confident of the result for N = 4 super Yang Mills theory.
However it is easy to modify the background metric to include qualitative effects of confinement
in the IR and asymptotic scaling in the UV. The generic features are expected to apply to QCD.
Spectrum in the j-plane (at strong coupling) is found by solving the Schrödinger equation,

[−∂
2
u +V (t,u)] ψ j(u, t) = 2

√
λ (2− j)ψ j(u, t) , (7.14)

with the appropriately modified potential. For the hardwall model the conformal potential, V (t,u)=
4− tα ′

√
λe−2u, is modified by an appropriate boundary condition at the wall that restricting the

wave function to u > 0 (see Fig. 12 ). The result is the spectrum drawn in Fig. 13. Note that we
now have a unified model for the hard (BFKL) and soft(Regge) Pomeron. For t < 0 the continuum
spectrum, namely the flat BFKL cut, gives the leading high energy contribution but at positive t > 0
the potential develops bound state solution for Regge poles that account for the glueball spectrum
at integer spin. If we modify the background in the UV to account for the running coupling, the
BKFL continuum breaks up into a series of closely space Regge poles as illustrated in our strong
coupling solution in Fig. 14. This effect has been suggested in the weak coupling limit as well.
Two rather model independent observation can be make. (1) For large positive t, we have approx-
imately linear trajectory j ' α ′t. Only the rate of approach to linearity depends on the details of
the confinement deformation. (2) For |t| large and negative, the kernel is insensitive to confinement
deformation and one finds a fixed BFKL singularity at j = 2− 2/

√
λ . Finally in Ref. [24], it is

noted that in a conformal theory the BFKL singularity appears to be determined by a single func-
tion in the conformal dimension/angular momentum plane (∆− j in Fig. 15 ). The BFKL intercept
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u

t > 0

t = 0

V (u)

0

4

t < 0

Figure 12: The potential for the effective Schrödinger problem in the hard-wall model, for t = 0 (solid),
t > 0 (short dash), and t < 0 (long dash).

j ! 2

t

Figure 13: The analytic behavior of Regge trajectories in the hard-wall model, showing the location of the
bound-state poles at j = 2 and the t-independent continuum cut (shaded) at j = j0 = 2−2/

√
λ into which

the Regge trajectories disappear. The lowest Regge trajectory intersects the cut at a small positive value of
t. At sufficiently large t each trajectory attains a fixed slope, corresponding to the tension of the model’s
confining flux tubes.

is the minimum value of j as a function of ∆, whereas the anomalous dimensions for moments of
the deep inelastic structure functions (DGLAP) are given by values of ∆ at integer j. Understanding
this connection in greater detail and applying it to QCD is an important task.

8. Future Directions

The construction of the QCD string theory remains a tantalizing but unrealized goal. Recent
progress has certainly begun to show how such an exact string/gauge duality might arise. Indeed
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j ! 2

t

Figure 14: The analytic behavior of Regge trajectories with a running coupling in the UV and a hard-wall
cut-off in IR.

−1 1 2 3 4 5

0.5

1

1.5

2

2.5

3

∆

λ ! 1

λ " 1

j

Figure 15: Schematic form of the ∆− j relation for λ � 1 and λ � 1. The dashed lines show the λ = 0
DGLAP branch (slope 1), BFKL branch (slope 0), and inverted DGLAP branch (slope −1). Note that the
curves pass through the points (4,2) and (0,2) where the anomalous dimension must vanish. This curve is
often plotted in terms of ∆− j instead of ∆, but this obscures the inversion symmetry ∆→ 4−∆.

the intimate relations between Yang-Mills theory and string theory is a dramatic change in our un-
derstanding, which may aptly designated the “First String Counter Revolution” – bring the subject
back to its earliest roots.

However I should also emphasize that in this short lecture, I was not able to include many
interesting developments based on the AdS/CFT conjecture. From the perspective of lattice QCD,
the two worst omissions concern (1) very interesting progress in understanding the open string
sector (or probe quarks) in the context of the AdS/CFT and (2) qualitative insight into the quark
gluon plasma being pursued experimentally in heavy ion collision. For the first problem the low
energy limit of open strings gives a new insight into chiral symmetry breaking and the spectrum
of low mass mesons π,ρ, ... The realization of chiral symmetry in the 5th dimension is amazingly
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similar to use of domain wall Fermions to implement exact chiral symmetry in lattice field theory.
The dual to the Fermion fields are flavor “condensate” gauge fields on probe brains with right
and left boundary in UV that carry the global SUL(n f ) and SUR(n f ) symmetries respectively. At
present there is a quite successful bottom up construction of this sector as presented for example
in Ref. [31]. The second problem has lead to a series of remarkable results such as the conjecture
KSS entropy bound [32]. In addition the approach to high energy scattering discussed above is
an active areas of research. Many questions remain such as unitarization and the mechanism for
saturation of the Froissart bound at strong coupling as well as other non-perturbative effects in the
coupling gs ∼ 1/Nc such as the giant graviton connection for the baryon and the role of instantons
in the finite Nc QCD vacuum.

At a fundamental level there is still much confusion on each of these topics with new ideas
streaming forth. The most definitive mathematical progress is the top down approach based on
tractable “toy models” of QCD with some residual supersymmetry or special limits where semi-
classical methods can be applied. It must also be admitted that formidable challenges remain. Even
for the simplest case of pure AdS5× S5, it has not been possible to analytically quantize the free
superstring. A basic problem remains to find a mechanism to really separate the charged Kaluza-
Klein state outside the QCD sector from the physical states that should survive at a QCD fixed
point. Perhaps the framework of starting from a critical string is flawed. At present there is no
a direct constructive method for defining the QCD string, ignoring the subsequent difficulty in
solving it. This is in contrast with lattice gauge theory which is well defined in spite of the need
to resort to numerical methods for its solution. Finally let me emphasize the opportunity of lattice
gauge theory to contribute to narrowing the search for the QCD string and in the end giving definite
tests of any conjectured solution. As an example in closing the gap between lattice methods and the
QCD string is the numerical solution to Nc = ∞ QCD based on the Euguchi-Kawai matrix reduction
being developed by Narayanan and Neuberger [33]. This gives a precise numerical method for
computing important properties of the QCD string at Nc = ∞, which may provide invaluable data
to discovering the relevant degrees of freedom of the QCD world sheet, traditionally the first step
toward the discover of the quantum action. Once the world sheet fields are identified, one should
proceed to effective world sheet theories to compare with the lattice data and in time hopefully to
discover the correct action for the QCD string. We’ll see.
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