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1. Introduction

A way to understand lattice QCD at nonzero chemical potential, and the physics behind it, is
to analyze the statistical properties of the Dirac eigenvalues. Twenty years, &y jvas realized
that this approach apparently leads to a contradiction: At zero temperature a small (in units of the
nucleon mass) chemical potential is expected to have a small effect on the chiral conderGate,
the contrary the scatter plots of the Dirac spectrum obtained in lattice simulatiosidd¢ads one
to conclude thak will vanish in the chiral limit forany nonzero value of the chemical potential.

This conclusion was reached by means of an electrostatic andlpgygre the chiral condensate

is regarded as the electric field created by charges located at the position of the eigenvalues in the
complex plane. The quark mass serves as a test charge inserted at tHenp@jirib the complex

plane where the electric field is measured. At zero chemical potential this analogy correctly leads
to the Banks-Casher relatiod][ For a nonzero chemical potential the Dirac operator loses it anti-
hermeticity and, consequently, the eigenvalues spread out into the complex eigenvalue plane. In the
chiral limit the test charge (quark mass) moves to the center of this charge distribution and the chiral
condensate hence vanishes for any nonzero chemical potential. The only way out seemed to be that
a finite fraction of the eigenvalues would remain in a singular distribution (delta-function) on the
imaginary axis at nonzero chemical potential. However, in unquenched QCD the sign problem
creates a loophole in the electrostatic analogy. The unquenched spectral density of the QCD Dirac
operator (the charge distribution) is a complex function which fonfos m; /2 depends strongly

on the quark mass (the test charge). Analytic calculations ie-tliegime p] show that the complex

valued spectral density has oscillations with a period inversely proportional to the volume and an
amplitude that grows exponentially with the volung [These oscillations lead to the discontinuity

of the chiral condensate at zero quark mas$pontaneous chiral symmetry breaking is therefore
intimately related to the sign problem. Because the oscillations of the eigenvalue density take place
on a scale inversely proportional to the volume, the microscopic scaling efrtbgime is required

to resolve the individual oscillations and hence the way in which the discontinuity of the chiral
condensate is built up form the eigenvalue density.

In quenched QCD there is of course no sign problem and the electrostatic analogy is in fact
valid. By solving a random matrix model for QCD at the mean field level it was argues] ihdt
quenched QCD at nonzero chemical potential is the zero flavor limit of QCD with nonzero isospin
chemical potential. Indeed, the chiral condensate vanishes in the chiral limit for any nonzero isospin
chemical potentialg, 10, 11]. Lattice simulations 12, 13, 14] have already been successfully
compared to the quenched microscopic eigenvalue density computEg.in [

The complex oscillations of the unquenched eigenvalue density is a manifestation of the sign
problem. The oscillations appear for> m; /2. In thee-regime it is also possible to compute the
unquenched average of the phase factor of the fermion determinants and thereby to measure the
strength of the sign problem directl{§]. It is shown that the average phase factor goes to zero
atu = my/2 and remains at zero far > m; /2. The sign problem is therefore particularly acute
for u > mg/2. It is not surprising that the sign problem sets iruat m;/2. Suppose we had
neglected the sign problem, that is, replaced the fermion determinant in the partition function by
its absolute value. Since conjugating a fermion determinant corresponds to changing the sign of
the chemical potentiall[/] the free energy would have a second order discontinuity atm; /2
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signaling the formation of a Bose condensate of pidijs Reinserting the phase factor of the
fermion determinant must wipe out this Bose condensate completely and hence the complex nature
of the fermion determinant must be particularly important fior- m;/2. Since we know the
physical origin of the scal@ = m;/2 we can understand the behavior of the sign problem at
nonzero temperature and chemical potential. This allows us to make contact to lattice simulations
[18, 19, 20, 21, 22] at nonzero temperature and chemical potential.

This review is organized as follows. We first define heegime and briefly discuss two
independent ways to compute the microscopic spectral correlation functions. Then we analyze
the unquenched eigenvalue density in detail. In sectiave show how the oscillations of the
eigenvalue density lead to the discontinuity of the chiral condensate. Finally we discuss the strength
of the sign problem and the consequences for lattice simulations.

2. Thee-regime at nonzero chemical potential

In order to extend the Banks-Casher relation to nonzero chemical potential it would be helpful
to know the eigenvalue density of the Dirac operator near the origin, in the phase where chiral
symmetry is spontaneously broken, for smakndm. Remarkably, in the-regime it is possible
to get all this. By definition 23] the e-regime deals with the phase where chiral symmetry is
spontaneously broken. The quark mass and chemical potential are taken sudh ithétg 4-
volume and-; is the pion decay constant)

1 1
ms ~ = 2F2 =, 2.1
y and p'Fr~ o (2.1)

The correlations of the Dirac eigenvalugsare considered on the microscopic scal fjvhere

1
o~ 2.2
- 22)

The original work on thee-regime R3] focused on the quark mass dependence of the finite
volume patrtition function and shows how the chiral condensate goes to zero if the quark mass is
taken to zero in a finite but large volume. The effect of the chemical potential on the finite volume
partition function is determined by the flavor symmetries and the scaling of the chemical potential
with the volume. Using the GOR relation an2l ) it follows that the chemical potential, in the
e-regime, is of the same order as the pion mass. With this scaling the Compton wavelength of the
pion is much larger than the linear size of the volume and the effective partition function reduces to
a group integral over the static modes of the pion field uniquely determined by the pattern of chiral
symmetry breakingZ5|

Zn, ({me Y1) :/ dU defU)¥ e ¥FAR*TIVBIU 8] + JVTIMULUY), 2.3)
UeU(Ny)
Both M andB are diagonal matriceM is the quark mass matrix ar®lcontains the quark baryon
charges. Since here all quarks have the same baryon char@entlagrix is proportional to the

unit matrix and the dependence on the chemical potential automatically drops out of the partition
function 2.3). This is exactly as expected, since the pions have baryon charge zero, the chemical
potential is inert.
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2.1 The eigenvalue density

The zero temperature effective partition function does not depend on the chemical potential
even though the eigenvalues of the Dirac operatdr dthe chemical potential adds a hermitian
part to the Dirac operator and the eigenvalue spectrum,

(D+un)vi =z, (2.4)

is no longer purely imaginary. The support of the eigenvalue density

pr(Zaz*v{mf};.u) = <Z62(Z_Zj)> ) (25)
J

Nt
is therefore two dimensional domain in the complex eigenvalue plane. Here we have used the
notation
 JdA G i, det(D+ o+ my) e S

Oy, =
( >Nf fdAﬂ'P'f:ldet(Der’oerf)e—S«M

(2.6)

The eigenvalue density is the function which allows us to turn the average of a sum over eigenval-
ues, €.9{3 1/(z; +m)), into an integral,/ d?z p/(z; + m). However, due to the presence of the
complex fermion determinant in the measure (the sign problem) the unquenched eigenvalue density
is not expected to be real and positive.

The eigenvalue density in theregime, also known as the microscopic eigenvalue density,
describes the eigenvalues in a range of ordge@V1from the origin. At present there exist two
independent ways to compute the microscopic correlation functions of the QCD Dirac operator
at nonzero baryon chemical potential. One can obtain them directly from the effective partition
functions [L5, 6] writing the 6-functions in .5) by means of the replica tricl8[ 27]

. Nt
one (22, {me i) = Zi lim 18282*/ dA|det D+ uy +2)|" ﬂ detD+ uyp+me) e S (2.7)
N¢ N—0N Y
Note that the integral is a partition function withadditional quarks and conjugate quarks. The
conjugate quarks corresponds to quarks with the opposite baryon ch@lgad this is why these
partition functions and hence the eigenvalue density depend.oliVe refer to these partition
functions as the generating functionals for the eigenvalue density.

Alternatively one can start from a chiral random matrix theory and use biorthogonal polyno-
mials in the complex plan&p, 29, 30, 5]. For an up-to-date review of the random matrix approach
to QCD at nonzero chemical potential, s&&][ (In principle, one can also make use of the super-
symmetric methodd?2].)

The microscopic eigenvalue density of the Dirac operator in quenched QCD was first obtained
from effective partition functions like2(3) in [15] and subsequently reproduced from the random
matrix methods%]. The expression for the quenched eigenvalue density is

2175252
ZPEV3 o epay —EEEY (2252
e r'e wFr Ko | ——5=
4uPFz

) /0 " dtte 2PV (25 lo(Z°3V),
2.8)

pr:o(Z,Zk;,LL) = 27[/42[:2
T

1To understand how this is possible is frequently referred thasilver blaze problem [26].
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The unquenched eigenvalue density, on the other hand, was derived first by means of the random
matrix techniquesi] and subsequently derived using the replica trigk Here we give the result
for one flavor in the topologically trivial sector (se€& p] for the general expressions)

lo(Z2V) [ dtte 2 FVE o (msV)lo(2 5V
pra(2Z M) = pyo(z i) (1 EDRANE ZE M2V g
lo(M2V) [ dtte 2 FVE|o(Z5V)lo(ZZV)
Note that the unquenched density is the sum of the quenched density and a term from unquenching

pne=1(Z2,Z,m 1) = pny=0(Z,Z; 1) + pu(z,Z°,m; 1) and that the density is zero for=z

3. A complex and oscillating eigenvalue density

The eigenvalue and its complex conjugat& do not enter symmetrically in the unquenching
part of the eigenvalue densitg.0). This suggests that the unquenched eigenvalue density is in
general a complex function. Here we take a closer look at the unquenched eigenvalue density of
the QCD Dirac operator and identify the scale at which it becomes complex.

For infinitely large quark mass the unquenching term2m®)(is suppressed and the eigen-
value density is constant and nonzero in a strip along the imaginary axis of widf¢2>. The
quark mass enters the strip of eigenvalues wimen 2u?F2 /3 or, equivalently, whemn, < 2.

After the quark mass has entered this strip the unquenched eigenvalue density is dramatically dif4
ferent from the quenched eigenvalue density. Startirg=at-m and extending to the support of

the eigenvalue density are two regions in which the unquenched eigenvalue density is complex
and oscillating. Figure& and? illustrate the appearance of the oscillating regions for-2m;.

The oscillations have an amplitude which grows exponentially with the volume and have a period
inversely proportional to the volume. This structure has a physical origin: The generating func-
tionals for the eigenvalue density i8.7) are partition functions with additional pairs of conjugate
fermions (for explicit evaluation of these partition functions in theegime see 15, 33]). The

three regions of the unquenched eigenvalue density correspond to three phases of the generating
functionals [, 34, 35]. The uniform part of the density corresponds to the phase with a conden-
sate of pions made op of the quarks with massasdz*. This pion condensate forms whep 2
exceeds the mass of these piof)? > 2RdZz|3/F2. This why the with of the strip of eigenval-

ues isR€z < 2u?F2/3. The oscillating region corresponds to a phase with Bose condensation of
pions of squared magsn+z*)Z/F2. This condensate dominates for< z since in this case the
squared mas$m+-z*)Z/F2, of these pions is smaller than the squared massz*)%/F2, of the

pions made up of the quarks with masgemdz‘. Finally, the region outside the support of the
eigenvalue density corresponds to the normal phase, without Bose condensates, of the generating
functionals.

To see how the structure emerges frab) let us look at the limit where the width of the
eigenvalue support is largeu2F2V > 1, and where the quark mass and eigenvalue is inside
the support and well away from the origim¥V > 1, |2V > 1). In this case the unquenched
eigenvalue density simplifies ta £ x—+iy)

$y2im?) 5 xm _ i _2(x+m)
(l_evz{ 8u2rZ 2u2F7%+4u2F,%+X m elVZy 1 w2z )

przl(Xaya muu) ~ (31)

1
4u°F2V
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Figure 1: The real part of the microscopic eigenvalue density of the QCD Dirac operator for fixed quark
massnzV = 100. The chemical potential increases from the top and down such that the wid&i\2= 50,

100, 150. To the left of the plots the chemical potential is expressed in terms of the pion mass. Note that the
support of the eigenvalue distribution reaches the quark mass whkem, /2. As i exceeds this value two

oscillating regions starts at= +mand extend towards the edge of the support.
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Figure 2: The unquenched eigenvalue density for fixed chemical potenti&F 2/ = 100 and decreasing

quark massnzV = 150, 100, 50. The pion mass in units of the chemical potential is given to the left of the
plots. Inside the oscillating regions the imaginary part of the eigenvalue density is nonzero and oscillates out
of phase with the real part shown. Note that the oscillations by far exceeds the scale of the plot.
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The term independent afandy (the’1’) gives the plateau of the quenched part (since we assumed
that the eigenvalue was inside the strip we do not see the boundary 2u°F2 /). The second
term gives the effect of unquenching, it is exponentially suppressed or enhanced with the volume
depending on the sign in the square bracket. This gives the boundary of the oscillating region.
Finally, from the oscillating exponential it is clear that the period of the oscillations is of order
1/V. Forx andm well inside the support the oscillations are predominantly along the imaginary
axis.

The oscillations are of course a manifestation of the sign problem so we should expect that the
sign problem is acute fqu > m, /2. We will confirm this expectation in sectiéh

4. The Banks-Casher relation at nonzerqu

At zero chemical potential the accumulation of eigenvalues at the origin on the imaginary
axis is responsible for chiral symmetry breakidg. [ As we discuss now the oscillations of the
eigenvalue density are responsible for chiral symmetry breakipnga0 [7].

Using the definition of the eigenvalue densig/5) the chiral condensate can be expressed as
an integral over the complex eigenvalue plane

(z,Z',m;u)

oy [ 42, PN
ZNf(m,,u)_/dz e 4.1)

As noted below eq.2.9) is it natural to write the unquenched eigenvalue density as a sum of two
terms

PN (22, M i) = pne=0(Z,Z5 1) + pu (2,2, M ), (4.2)

wherepy (z,Z°,m; i) is what is left after subtracting the quenched density. See the left hand column
of figure 3. The quenched density is by definition real and positive so, in agreement with our
asymptotic analysis above, the complex oscillations reside entirety (@ z*,m; ). Inserting

PN; = PNy=0 + pu in (4.1) shows that the chiral condensate is built up from two terms

ZNf = ZQ—|—ZU (43)

The individual contributions to the chiral condensate are shown the right hand column of figure
3. As expected from lattice simulations and the electrostatic analogy the quenched contribution
drops to zero in the chiral limit. The entire discontinuity of the chiral condensate thus comes
from the oscillating part, cf. the lower row of figufe To see analytically how the oscillations

of the eigenvalue density build up the discontinuity, insert the asymptotic f8rihi( (4.1) and

first perform the integral ovey for fixed x by going to the compley = a+ib plane [/]. In

this plane the roles of the two exponentials 811§ are mixed: Since there is an explicit factor

of V in both arguments, the second exponential now also affects the boundary of the oscillating
region (this is why it is essential that the oscillations have a period of ofdéahd an amplitude
which is exponentially large in the volume). Due to the mixing the contour can be deformed into
a region where the integrand is exponentially suppressed.y-itegral through the oscillating

part is therefore given by the residue at the pole alone. The residue follows automatically from the
observation that the unquenched eigenvalue density vanishesrat] 7].



The sign problem in the-regime of QCD K. Splittorff

RN —1 (XY, M)
S2\/2 yzv

= o3
0.00 [,§ 0
E\T -03 |
0.001 | _06 [
-0.9 |
0 -1.2 : - ; - ’ ’ -
XZV -160 -120 -80 -40 0 40 80 120 160
10 -100
prZO(X7y;/~l’)
322

0.002

0.001

v

Repy (x yém;u)]

2 (mEV,uFV*™)

12 I I I I I I I
-160 -120 -80 -40 0 40 80 120 160

100 0 -100

pxayj

0.002

£ (mEV,uF V")

12 I I I I I I
-160 -120 -80 -40 40 80 120 160

Figure 3: Left column: The unquenched eigenvalue density (top) split into the quenched part (middle) and
the oscillating part (bottom)Right column: The chiral condensate as a function of the quark mass. The
top panel shows the full chiral condensate and the two plots below give the individual contributions from
the quenched eigenvalue density and the oscillating region respectively. Note that it is the oscillations of the
eigenvalue density which are responsible for the discontinuity of the chiral condensate at zero quark mass.

5. Lattice simulations in thee-regime atu # 0

The sign problem in QCD occurs since the baryon chemical potential introduces a mismatch
between quarks and anti-quarks. If we instead consider a chemical potential for the third compo-
nent of isospin then the anti-particle is a part of the measure which therefore remainkrteal [
Quenched QCD withu # 0 is the zero flavor limit of QCD at nonzero isospin chemical potential
[8]. The microscopic eigenvalue densi) in the quenched case has been compared successfully
to staggered lattice simulationsd, 13] as well as to simulations of a Ginsparg-Wilson Dirac oper-
ator at nonzero chemical potentidk]. The measure of 2 color QCD at nonzero baryon chemical
potential is also real and this has allowed to test the predictions for the microscopic spectral density
[38] in the quenched cas&)] as well as the unquenched(].



The sign problem in the-regime of QCD K. Splittorff

If the baryon chemical potential is purely imaginary the Dirac operator remains anti-hermitian.
The correlations between two such Dirac operators separated by a microscopic difference between
the values of the imaginary chemical potential is extremely sensitive to the vakye @he cor-
relation function thus provides a way to extract the pion decay constant from simulations in the
e-regime @1].

6. The strength of the sign problem

The analysis of the spectra of the QCD Dirac operator has shown that the sign problem mani-
fest itself in the eigenvalue density whgn> m, /2. This is precisely the value of for which the
eigenvalue density reaches the quark mass and thus where eigerzdhrashich (z—m) ~ 1/%V
become frequent. In order to quantify the strength of the sign problem let us write

detD+ uy+m) = |detD + uyo+m)|e’ (6.1)

and consider the expectation value of the (squared) phase factor of the fermion determinant

, Z .
<e2'9> _ < detD+uyp+m) > _ AN 6.2)
N¢ det D+ uy+m)* N VAN

For u = 0 the phase®, is zero ande??) = 1. If the fluctuations drivege?®) to zero the sign
problem is very strong.

The expectation value of the phase factor is equal to the partition fundjgn(;-) with
an additional fermionic flavor and an additional conjugate bosonic flavor divided by the standard
dynamical partition functionZy,). In the e-regime these partition functions can be evaluated
explicitly [42, 16]. The thermodynamic limitm=V — o andu?F2V — oo, of the result is extremely
simple. The sign problem has two distinct phases (see fiurgor u < m;/2 the sign problem
saturates at a nonzero value

] 2
<e2|(9>Nf _ (1_%)Nf+levo for u<mg/2. (6.3)

In the other phase the sign problem is exponentially bad in the volume

(M —4u?)2

) 2
<e2'9>N ~e e for > myg/2. (6.4)
f

The behavior of the phase follows directly from leading order chiral perturbation th&gryAt
leading order the low energy effective partition function is given by a saddle point approximation

\%
70 L3 rlfinﬁ’fe*VQMF7 (6.5)
ﬂbvnﬁ,b

wherem; , (M ) are the masses of the Goldstone bosons (fermions). (The Goldstone fermions
are made up of a fermionic quark and a bosonic conjugate quark.) The free energy Ggisity

is given by the Lagrangian at the mean field value of the fields. Finki$/the Jacobian from the
measure.

10
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Figure 4: The expectation value of the phase factor of the fermion determinant in QCD with two dynamical
flavors. Shown is the curve farF,+/V > 1. In this limit of thee-regime (exp(2i0)) only depends on the

ratio 2u /my.

For u < m;/2 the additional fermionic and bosonic quark in the numerato6dj (has no
effect on the mean field free energy. The factors of expQur) hence cancel between the numer-
ator and denominator ir6(2). Foru > m;/2 the partition function in the numerator is in a Bose
condensed phase and, consequently, the mean field free energy in the numerator does not match
that in the denominator. This leads to an expectation value of the phase which is exponentially
small in the volume.

The saddle point approximatior.g), also allow us to understand the preexponential factor
in (6.3. The masses of the charged pions do depend even foru < m;/2 [43, 44, 9]. The
charged pions are the ones made up from a fermionic quark and a bosonic conjugate quark. There
are ZNs + 1) such Goldstone fermions, half of which have mams- 2 while the other half have
massm; +2u. The resulting overall factofm? — 4u?)Nt+1 is divided bym2 M which is left
after canceling out the neutral Goldstone bosons from the partition function in the denominator.
This explains the resuls(3) for (€?9)n, whenu < my /2.

Since (€?9)y, is a ratio of two partition functions it is real. The same is true f@r??)y,
implying that (sin(26)), is purely imaginary. To see thdsin(26))y, is nonzero we need to
compute(e~??)y, and show that it is different frone??)y, . The expectation value of the inverse
phase factor also has a very simple form in the thermodynamic limit

<efzie> :(1_4L2)7Nf+1eV0 for u<mg/2. (6.6)
Ny m72r

The expectation value of the inverse phasedsequal to the expectation of the phase. They are

11
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only equal in quenched and phase quenched QCD where the weight function is real.
Note that lattice tests of the predictions f@'?) are possible fo < m;/2 even in un-
guenched QCD. Related observables has been measured on the3éttie 19).

7. Nonzero temperature

Unguenched lattice simulations at nonzero chemical potential must deal with the sign problem.
At present three major approaches have been explored, the multi parameter reweighting method
[18], the Taylor expansion method 9, 20], and analytic continuation from imaginary chemical
potential 1, 22]. See also the plenary review at this lattice conference by C. Schaiidt [

Above we computed the strength of the sign problem and found that it changes drastically
whenu =m; /2. The fact that the change takes place atm; /2 has a physical originiexp(2i6))
is a ratio of two partition functions, c.f.6(2), and since the partition function in the numerator
includes a conjugate quark it experiences a phase transition into a Bose condensed phase at this
value ofu. The Bose condensate changes the functional form of the free energy and causes an
exponential suppression ¢&xp(2i0)) for u > m,/2. The region in thet, T-plane for which this
Bose condensate is present is therefore identical to the region WqiRi6)) is exponentially
suppressed. As we have argued above the chemical potential above which the quark mass is inside
the support of the eigenvalue density is also determined by Bose condensation of weakly interacting
pions. The region of thg, T-plane where the sign problem is exponentially suppressed is therefore
identical to the region where the quark mass is inside the support of the eigenvalue density. This
region is below the thick line indicated in figute As the temperature is increased the line bends
to the right since for a sufficiently high temperature the Bose condensate will melt. The curve
gives the melting temperature of the Bose condensate as calculaiél it {s consistent with the
melting temperature computed in phase quenched lattice Q@D |

The lattice computations oflP] suggests that the strength of the sign problem scales with the
critical chemical potential: In the left panel of figusewe show contour lines fromilp] of the
variance of the two flavor staggered fermion determinant, in our notgfigi26)?) — (26)2. The
lines give the contours up to the valug i steps ofr/4. The contours are parallel to the thick
line indicating the expected critical chemical potential for which the quark mass hits the support of
the eigenvalue density and the sign problem becomes very séére [

Almost all of the lattice simulationslB, 19, 20, 21, 22] address the region of the, T-plane
where the sign problem is less severe. One exceptiohs [These two studies of the critical
endpoint used two sets of quark masses. The endpoint was found to depend strongly on the quark
mass. In fact, as observed 1], the value of the chemical potential at the endpoint scales like pion
mass in these studies. In the right hand part of figunee give the location of the endpoints found
in [18] together with the line where the quark mass is expected to hit the support of the eigenvalue
density. Surprisingly both endpoints points are located very close to thedléhe To the right
of the line the sign problem is exponentially strong and this has been argugtb [invalidate
the Yang-Lee analysis used ihd]. Moreover, when the quark mass is inside the support of the
eigenvalue density the 4th root trick used 18 may be illdefined 47]. For these reasons one may
fear that the signals interpreted as a signature of the endpoihgjims[rather a breakdown of the
method used.

12
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Figure 5: Left: Contour lines of the variancg/(62) — (6)? = n1/4,2r/4,...2x of the phase of the fermion
determinant from719]. Note that the variance depends on the distance from the line where the quark mass
hits the support of the eigenvalue spectrum (indicated by the thick [Right: The measured endpoints
from [18] and the line where the quark mass hits the eigenvalue density. To the right of this line the Yang-Lee
analysis B7] and the 4th root trick47] used in [L8] are troublesome.

8. Summary

The study of thee-regime of QCD at nonzero chemical potential has provided new insights
in QCD which go beyond the microscopic scale. Here we have reviewed those aspects which
have direct relevance for the sign problem in lattice QCD. The non-hermitian nature of the Dirac
operator ap # 0 also have a very nontrivial effect on the analytical methods which where used to
derive the results discussed here. For a review focused on these aspe@#], see [

Here we have discussed how the analysis of the spectrum of the QCD Dirac operator allows us
to understand the sign problem in lattice QCD at nonzero chemical potential. From the perspective
of the Dirac operator the sign problem plays an all important role for spontaneous chiral symmetry
breaking. The sign problem induces violent complex oscillations in the spectral density of the
Dirac operator and these in turn build up the entire discontinuity of the chiral condensate in the
chiral limit. Therefore, to address spontaneous chiral symmetry breaking in the chiral limit on the
lattice atu = 0, one must deal with the sign problem.

The strength of the sign problem can be measured by the average of the phaséfag@inf )).

In generalexp(2i6)) depends on quark mass, the chemical potential, the volume, the temperature
as well as the lattice cutoff. In theregime we can quantify the dependencéefp(2i6)) onu and

the quark mass(exp(2i6)) is nonzero fou < m;/2 while foru > m; /2 it is exponentially small

in the volume. The separation between these two scales is linked to the onset of Bose condensation
and this physical insight allows us to extrapolate the results beyonettbgime. Foru > m;/2

we expect that there is a critical temperature at which the sign problem changes its nature. Care
should be taken not to misinterpret manifestations of this change in lattice QCD.

13
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