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Monte Carlo studies of pure glue SU(3) gauge theory using the overlap-based topological charge
operator have revealed a laminar structure in the QCD vacuum consisting of extended, thin, co-
herent, locally 3-dimensional sheets of topological charge embedded in 4D space, with opposite
sign sheets interleaved. Studies of localization properties of Dirac eigenmodes have also shown
evidence for the delocalization of low-lying modes on effectively 3-dimensional surfaces. In this
talk, I review some theoretical ideas which suggest the possibility of 3-dimensionally coherent
topological charge structure in 4-dimensional gauge theory and provide a possible interpretation
of the observed structure. I begin with Luscher’s “Wilson bag” integral over the 3-index Chern-
Simons tensor. The analogy with a Wilson loop as a charged world line in 2-dimensional CPN−1

sigma models suggests that the Wilson bag surface represents the world volume of a physical
membrane. The large-N chiral Lagrangian arguments of Witten also indicate the existence of
multiple “k-vacuum” states with discontinuous transitions between k-vacua at θ = odd multi-
ples of π . The domain walls between these vacua have the properties of a Wilson bag surface.
Finally, I review the AdS/CFT duality view of θ dependence in QCD. The dual realtionship be-
tween topological charge in gauge theory and Ramond-Ramond charge in type IIA string theory
suggests that the coherent topological charge sheets observed on the lattice are the holographic
image of wrapped D6 branes.
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1. Introduction

One of the most important byproducts of the chiral lattice fermion revolution of the late 1990’s
was a new definition of gauge field topological charge density q(x) = (g2/16π2)TrFF̃ on the
lattice. This definition is constructed from an exactly chiral Dirac operator D satisfying Ginsparg-
Wilson relations. The local pseudoscalar operator given by [1]

qo(x) =
1
2

Trγ5D(x,x) (1.1)

(here the trace is over both color and spin) reduces to q(x) in the continuum limit, and is in many
respects a superior definition of topological charge density compared to any ultralocal operator
constructed directly from gauge links. Recent studies of topological charge using the overlap-
based [2] topological charge density have revealed a type of long-range structure that is profoundly
different from what might have been expected in an instanton-based model of the QCD vacuum.
The first such study [3] produced the surprising result that the q(x) distribution in a typical Monte
Carlo gauge configuration is dominated by extended, coherent, thin 3-dimensional sheets of topo-
logical charge. In each configuration, sheets of opposite sign are juxtaposed and are everywhere
close together in what can roughly be described as a dipole layer which is spread throughout the
4-dimensional Euclidean space (with various folds and wrinkles). The vacuum is thus permeated
with what is locally a laminar structure consisting of alternating sign sheets or membranes of topo-
logical charge. The thickness of these membranes is typically a few lattice spacings, independent
of the physical mass scale, and thus the membranes apparently become infinitely thin in the con-
tinuum limit. This kind of “subdimensional” ordering, where coherence takes place on manifolds
of lower dimensionality than spacetime itself, is closely related to the appearance of contact terms
in the two-point topological charge correlator. In the continuum, the correlator G(x) = 〈q(x)q(0)〉

is required by spectral considerations to be negative for any nonzero separation |x| > 0. In prac-
tice (i.e. in Monte Carlo calculations), this requirement places severe restrictions on what type of
topological charge fluctuations can be dominant. For example, the negativity of the correlator rules
out the dominance of bulk-coherent lumps of topological charge (e.g. finite size instantons), since
this would lead to a positive correlator over distances smaller than the instanton size. Since the
topological susceptibility can be obtained by integrating the 2-point correlator over all x, a posi-
tive susceptibility can only arise from a delta-function contact term at the origin. The observed
arrangement of thin, nearby layers of q(x) with opposite sign builds up a positive contact term at
x = 0 while maintaining the required negativity of the correlator for finite separation. In recent
overlap-based studies, the only models that have been found to be dominated by instantons are the
CP1 and CP2 sigma models [4]. But those models are dominated by small instantons with a radius
of order lattice spacing, which goes to zero in the continuum limit. Because of this, the instantons
contribute to the positive delta-function contact term, but do not contribute at all to the finite x
correlator.

The presence of coherent sheets of topological charge is responsible for the positive contact
term in the correlator at x = 0. The range of this contact term on the lattice is associated with the
thickness of the sheets, both being a few lattice spacings and approaching zero in physical units.
Fig. 1 shows the topological charge correlator for pure glue SU(3) gauge theory at several values
of lattice spacing [5]. In addition to the large positive contact term appearing for r ≡ |x| ≤ 2, the
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Figure 1: 2-point functions of the overlap based topological charge correlator in pure glue QCD.

other prominent feature is a clear negative dip at a few sites separation. At a calculational level,
this negative dip arises from the nearby juxtaposition of positive and negative topological charge
layers.

Recent calculations have provided further evidence for the existence of these extended 3-
dimensional sheets of topological charge [6]. The study of localization properties of low Dirac
eigenmodes in Monte Carlo configurations has also shown that low-lying modes are delocalized
along effectively 3-dimensional surfaces in 4D space.[7] This is just what one would expect for
low Dirac eigenmodes in the presence of 3-dimensional coherent topological charge sheets. Long
ago, Diakonov and Petrov [8] pointed out that topological charge fluctuations could lead to a chiral
condensate. In the context of the instanton liquid model, the finite density of near-zero eigenmodes
required to produce a condensate is generated by approximate ’tHooft zero modes associated with
the instantons. But, more generally, coherent regions of positive (negative) topological charge will
attract left (right) chiral Dirac modes, and produce low-lying states in which the Dirac mode is
bound to the topological charge fluctuation. A rather natural picture for Goldstone boson propaga-
tion emerges, in which quarks in a pion “skate” along the surface of a coherent topological charge
membrane via Dirac modes which are delocalized along this surface. Further studies of low Dirac
eigenmodes and their relationship to the topological charge distribution should help to clarify this
picture.

Since the initial discovery of coherent topological charge sheets in QCD, similar methods have
been applied to the study of 2-dimensional CPN−1 sigma models [9, 4]. For N > 3, the topological
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Figure 2: Positive and negative regions of topological charge for a typical CP3 configuration.

charge distribution was found to be dominated by thin 1-dimensionally coherent membrane-like
structures with interleaved membranes of opposite sign. Fig. 2 shows a typical overlap-based topo-
logical charge distribution for CP3, where sign(q(x)) is plotted. As I will discuss, this interleaved
arrangement of approximately 1-dimensional coherent regions is exactly what one would expect as
the analog of the 3-dimensional structures in 4D gauge theory. In both cases, the coherent structure
has codimension 1, i.e. the dimensionality of a domain wall.

2. Wilson loops, Wilson bags, and Chern-Simons tensors

Though there is now considerable numerical evidence for the existence of 3-dimensionally co-
herent structure in 4D gauge configurations, the theoretical significance of this structure is far from
clear. In this talk I will review a number of related theoretical developments which lead to a plausi-
ble interpretation of the observed structure. In fact, I will argue that the Monte Carlo observations
essentially support and clarify a view of topological charge in QCD which was suggested long ago
by work of Luscher [10] and Witten [11, 12] and has re-emerged more recently in the context of
AdS/CFT string/gauge duality.

Luscher’s discussion begins with the fact that nonzero topological susceptibility implies the
presence of a massless pole in the two-point correlator of the Chern-Simons current. Let us define
the abelian 3-index Chern-Simons tensor

Aµνρ = −Tr

(

BµBνBρ +
3
2

B[µ∂νBρ ]

)

(2.1)
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where Bµ is the Yang-Mills gauge potential. We consider the Chern-Simons current that is dual to
this tensor,

jCS
µ =

1
32π2 εµνρσ Aνρσ . (2.2)

Although jCS
µ is not gauge invariant, its divergence is the gauge invariant topological charge density

∂µ jCS
µ =

1
16π2 TrFF̃ = q(x) . (2.3)

Choosing a covariant gauge, ∂µ Aµνρ = 0, the correlator of two Chern-Simons currents has the form

〈 jCS
µ (x) jCS

ν (0)〉 =
∫

d4q
(2π)4 e−iq·x qµ qν

q2 G(q2) . (2.4)

From (2.3) we see that G(q2) must have a q2 = 0 pole whose residue is the topological susceptibil-
ity,

G(q2) ∼
χt

q2 . (2.5)

This long-range correlation constitutes a “secret long-range order” of gauge fields associated with
their topological charge fluctuations. Since the CS current is not gauge invariant, the presence of
a q2 = 0 pole does not imply the existence of a massless particle (and pure-glue QCD certainly
doesn’t have one). On the other hand, the pole has a gauge invariant residue (∝ χt ) and cannot be
transformed away. So it characterizes a physically significant long range coherence in the gauge
field associated with topological charge fluctuations.

Luscher’s analysis of QCD topological structure in terms of Wilson bags can be understood
as a generalization of the analysis of similar properties in the 2-dimensional CPN−1 sigma models.
These models provide a quite detailed 2D analog of the coherent structure observe in 4D QCD. The
CPN−1 models have a U(1) gauge invariance and have classical instanton solutions which come in
all sizes. (Just like pure-glue QCD these models are classically scale invariant and acquire a mass
scale via a conformal anomaly.) In the continuum, the Euclidean action is

L = (Dµzi)
∗(Dµzi) (2.6)

where Dµ = ∂µ + iAµ , and zi, i = 1, . . . ,N is an N-component complex vector constrained to z∗i zi =

1. In 2D U(1) gauge theories like CPN−1, the topological charge density in the continuum is just
(1/2π)εµν ∂µ Aν and the Chern-Simons current is just the dual of the gauge potential,

jCS
µ =

1
2π

εµνAν (2.7)

Just as in 4D QCD, nonzero topological susceptibility implies the presence of a q2 = 0 pole in the
CS current correlator. But in the two-dimensional case, this same pole appears in the Aµ correlator
and is responsible for confinement of U(1) charge via a linear coulomb potential. In the CPN−1

models, the gauge field Aµ is an auxiliary field which has no kinetic term in the action. It’s equation
of motion sets it equal to the U(1) current of the matter fields,

Aµ = i
(

z∗i ∂µ zi − (∂µzi)
∗zi

)

(2.8)
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However, as can be shown explicitly in the large-N approximation, the quantum effect of closed
z-loops produces a dynamically generated kinetic term ∝ F 2

µν in the low-energy effective action
of the gauge field. This produces a q2 = 0 pole in the gauge field correlator which gives rise to
a linear, confining coulomb potential between test charges, an area law for fractionally charged
Wilson loops, and nonzero topological susceptibility.

Thus in 2-dimensional U(1) gauge theories, topological susceptibility and confinement of
U(1) charge are equivalent phenomena. An instructive way to illustrate this is to introduce a
nonzero θ term in the action over a two-volume V enclosed by a boundary C = ∂V with θ = 0
outside the boundary. After integration by parts, the theta term is equivalent to a Wilson loop
around the boundary carrying a charge θ/2π:

exp
[

i
2π

∫

d2xθ(x)εµν F µν
]

= exp
[

iθ
2π

∮

C
A ·dx

]

(2.9)

If the topological susceptibility is nonzero

χt =
∂ 2E(θ)

∂θ 2 |θ=0 > 0 (2.10)

then for small nonzero θ , the vacuum energy density E(θ) inside the loop will be greater than that
outside the loop, so the Wilson loop will obey an area law,

〈W (C)〉 ∝ exp [−(E(θ)−E(0))V ] (2.11)

In a Hamiltonian framework, the Wilson loop around the boundary corresponds to applying a
background electric field θ by putting opposite charges at either end of the 1-dimensional spatial
box. The topological susceptibility is just the vacuum polarizability with respect to this field. This
is essentially Coleman’s original interpretation of θ -dependence in the massive Schwinger model
[13]. This general picture carries over to the CPN−1 models (except for CP1 and CP2 [4]). The
physics is somewhat different in the CPN−1 models than it is in the massive Schwinger model
because of the fact that Aµ is an auxiliary field without a kinetic term. The confining electric flux
tube in the CPN−1 case actually represents the polarization of z pairs in the vacuum between the
test charges.

On general principles, we expect the energy density E(θ) of the true vacuum to be periodic in
θ → θ +2π . However, this periodicity can arise in two very distinct ways: analytically or nonana-
lytically. Dilute instanton calculations produce an E(θ) which is smooth and periodic (polynomial
in cosθ ). On the other hand, the mechanism described by Coleman in the massive Schwinger
model for periodicity as a function of θ involves a discontinuous “string breaking” at θ = π . For
θ = π , the original vacuum, with 1

2 a unit of background flux to the right, becomes degenerate
with the one with 1

2 unit of flux to the left. For θ > π it becomes energetically favorable to pop
a charged pair out of the vacuum and screen off one unit of flux. The true ground state shifts to
the “k-vacuum” with k = −1 (where the local value of θ differs from the applied field by minus
one unit of flux.). In two dimensions, a charged particle world line can be regarded as a domain
wall between two different vacuum states. As θ goes from π to 2π , the vacuum energy inside the
bag decreases. At θ = 2π , the energy inside and outside are equal, the area law vanishes, and the
Wilson loop around C is completely screened by the polarization of the vacuum inside C. By Eq.
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(2.8) the screened unit-charged Wilson loop around C is a filamentary thread of current, similar to
an edge current in a 2-dimensional superconductor. (In Lorentz gauge, ∂µ Aµ = 0, this current is
conserved.) Since the q(x) distribution is just the curl of the Aµ field, the topological charge dis-
tribution associated with a Wilson line excitation is a dipole layer consisting of two opposite sign
layers of one-dimensionally coherent topological charge membranes on either side of the Wilson
line. This is just the type of structure that is seen in the Monte Carlo configurations.

In specifying the analogy between 2D U(1) theories and 4D SU(N) gauge theories, we take
the Chern-Simons currents (2.2) and (2.7) to be directly analogous. This means that the gauge
field Aµ in the 2D theory should be identified not with the 4-dimensional gauge field, but with the
abelian 3-index Chern-Simons tensor (2.1). Like the gauge field Aµ in 2 dimensions, this is dual to
the Chern-Simons current (2.2). Similarly, the Wilson loop or line excitations in the 2-dimensional
U(1) models correspond not to Wilson loops in 4D, but to “Wilson bags,” i.e. integrals of the
Chern-Simons tensor over a 3-surface Σ.

B(Σ) = exp
[

i(θ/2π)

∫

Σ
Aµνλ dxµ dxν dxλ

]

(2.12)

This is the analog of a Wilson loop in 2D U(1) in the sense that, if Σ is a closed 3-surface that
forms the boundary of a 4-dimensional volume V , inserting the Wilson bag factor (2.12) in the
gauge field path integral is equivalent to including a θ -term in the gauge action over the 4-volume
V . The discussion of what happens as we vary θ from 0 to 2π is also completely analogous to the
screening of the 2D Wilson loop. For a fractional bag charge θ/2π , with 0 < θ < 2π , the vacuum
inside the bag will have a higher energy than the θ = 0 vacuum outside. The expectation of the
Wilson bag integral thus satisfies a 4-volume law analogous to the area law for the Wilson loop in
2D,

〈B(Σ)〉 ∼ exp [−(E(θ)−E(0))V ] (2.13)

There will thus be “bag confinement,” a confining force between the walls of a fractionally charged
bag. At θ = π , the vacuum inside the bag will undergo a nonanalytic shift corresponding to the
transition between two adjacent k-vacua, with parameters θ and θ − 2π respectively. Finally, as
we increase θ from π to 2π , the force between the bag walls decreases. For a unit-charged bag,
θ = 2π inside the bag, and the confining force between bag walls disappears. The topological
charge is the curl of the Chern-Simons tensor, so for a uniform Aµνλ which is nonzero on a flat bag
surface, the topological charge distribution is a dipole layer consisting of thin, coherent positive and
negative 3-dimensional layers on either side of the bag surface. Like the Wilson line excitations in
the CPN−1 models, screened unit-charged Wilson bags provide a reasonable model for interpreting
the topological charge structure observed in lattice configurations.

3. Large N chiral Lagrangians

As first emphasized by Witten [11], considerations of large N chiral symmetry also point to
a picture of the vacuum in SU(N) gauge theories consisting of discrete quasi-vacua separated by
domain walls. For large N the size of the chiral U(1) anomaly shrinks like 1/N, which justifies
treating the flavor singlet η ′ meson as a would-be Goldstone boson and including it in the chiral
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Lagrangian. The effect of the anomaly is incorporated in the chiral Lagrangian in the form of an
η ′ mass term constructed from the U(1) phase of the chiral field,

Lanom =
const.

N
(−i ln Det U)2 (3.1)

where U is the U(3)×U(3) chiral field. The η ′ mass term arising from the anomaly has a different
structure than a meson mass term coming from explicit chiral symmetry breaking by quark masses,
which has the form

Lqm ∝ Tr
(

χ†U +h.c
)

(3.2)

where χ is the quark mass matrix. In terms of the U(1) phase,

Det U = eiη (3.3)

the anomaly term (3.1) is a purely quadratic mass term ∝ η 2, unlike the quark mass term (3.2)
which includes higher order multi-pion interactions and is a single valued function of U . The form
(3.1) for the anomaly term is dictated by large-N arguments and/or OZI phenomenology, in which
multiple-hairpin vertices are suppressed.

In fact, it is the multivaluedness of the logarithm in (3.1) which leads to the appearance of
multple k-vacua and domain walls. To illustrate the point in it’s simplest form, consider the case
of 1-flavor QCD, where the chiral field U reduces to a single U(1) phase, the would-be Goldstone
field,

U → eiη (3.4)

Now we consider the effective potential for the phase field η , including both the quark mass term
and the anomaly term. The potential is of the form

V = V0(cos η)+
m2

0
N

η2 (3.5)

where m2
0 is of order ΛQCD. We assume that the potential term V0 has a minimum at η = 0 and

is periodic in η → η + 2π . In the large N limit the anomaly term can be treated as small, and the
potential V has many nearly-degenerate minima, where the field η differs by integer multiples of
2π . But the chiral anomaly allows us to equate a chiral U(1) phase rotation with a shift of the θ
parameter. This leads to the conclusion that the quasi-vacua identified from the potential (3.5) are
k-vacua with θ parameters differing by integer multiples of 2π . Thus large-N chiral Lagrangian
considerations lead us to a picture of θ -dependence with Wilson bags separating multiple, nearly
degenerate k-vacuum states characterized by effective local values of θ which differ by integer
multiples of 2π . Although a chiral Lagrangian framework was invoked to arrive at this picture, it is
reasonable to conclude that the picture applies even to pure-glue QCD without quarks. The quark
only serves as a probe of the topological structure of the gauge field via it’s chiral phase.

4. Theta dependence in Yang-Mills theory from string/gauge holography

A profound new source of intuition into the long rang structure of 4-dimensional gauge the-
ories has emerged over the last decade in the framework of AdS/CFT string/gauge duality. As
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Witten showed [14], the string/gauge correspondence has particularly interesting implications for
the structure of topological charge fluctuations in QCD. It nicely confirms the k-vacuum/domain
wall scenario arrived at in the earlier work that I discussed in the last two sections. In fact QCD
topological charge provides a particularly direct window on the stringy aspects of gauge theory.
This is mainly due to the fact that, in the string/gauge correspondence, topological charge in gauge
theory is dual to Ramond-Ramond (RR) charge in type IIA string theory. RR charge is of funda-
mental importance in string theory. It is similar to magnetic charge in electromagnetism, in that it
is a solitonic charge which is not carried by ordinary string states. The fundamental discovery by
Polchinski [15] that D-branes carry Ramond-Ramond charge ushered in a new era in string theory
where D-branes assumed a central role in the theoretical infrastructure. D-branes were originally
conceived for reasons associated with T-duality, which suggested considering open strings with
their ends attached to subdimensional hyperplanes with Dirichlet boundary conditions. But it was
soon realized that the hyperplanes so defined were actual physical objects that carried energy den-
sity, were flexible, and could support local oscillations. The low energy world-volume theory which
describes the small oscillations of a D-brane is typically a supersymmetric gauge theory. Much of
the technology for studying the connections between string theory and gauge theory is based on
various “brane constructions” obtained by considering string theory in the presence of one or more
branes (usually, but not always, flat, parallel or superimposed, and filling some (D+1)-dimensional
subspace of 10-dimensional space.). By superimposing N D-branes in the same subspace, we ob-
tain a world volume theory with a U(N) gauge group, where the gauge bosons correspond to short
pieces of string connecting pairs of D-branes. With the interpretation of the N of the gauge group as
the number of branes, an interesting thing typically happens in the large N limit. The gravitational
mass of the N D-branes becomes large enough to form a black hole in the dimensions transverse
to the branes. From studies of string theory near the horizon of a black hole, Maldacena [16] was
led to his famous conjecture that 4-dimensional N = 4 supersymmetric SU(N) gauge theory is not
simply the low energy limit of a string theory, but is in fact “holographically” equivalent to type IIB
string theory in the space AdS5 × S5. The idea that gauge theory in 4 dimensions is a holographic
representation of a higher-dimensional string theory is not only intriguing but has already gone a
long way toward illuminating some of the partial understandings of QCD that have been around for
many years. In the gravitational context, the idea of holography has its origin in the observation by
Beckenstein and Hawking that the entropy of a black hole is proportional not to it’s volume but to
the surface area of it’s horizon. It is as if everything that went on inside the black hole was uniquely
encoded on it’s horizon. In the AdS/CFT correspondence, the behavior of weakly coupled string
theory in the 5-dimensional AdS space maps holographically to a strongly coupled supersymmetric
gauge theory on the 4-dimensional boundary of that space.

In the equivalence conjectured by Maldacena, the 4-dimensional gauge theory that is equiva-
lent to IIB string theory in AdS5 ×S5 is a conformally invariant field theory, N = 4 supersymmet-
ric Yang Mills. In Anti-deSitter space, conformal symmetry of the corresponding gauge theory is
generic. However, Witten showed that, with an appropriate arrangement of D-branes and boundary
conditions, it is possible to establish a similar holographic equivalence between string theory and
ordinary, nonsupersymmetric, asymptotically free gauge theory in 4 dimensions. Gravitationally
speaking, Witten’s construction replaces the pure AdS space of Maldacena with a Schwarzchild
black hole metric, (which arises naturally in the large-N brane construction). It is possible to
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view Witten’s construction as an AdS/CFT correspondence, but only by going to 11 dimensional
M-theory. An equivalent but somewhat more direct path to 4-dimensional QCD is a brane con-
struction [17, 14] which begins with a stack of N 4-branes in 10-dimensional IIA string theory
on the spacetime manifold R4 × S1 ×R5. The 4-branes (which have 5 spacetime dimensions) fill
the subspace R4 × S1, i.e. they are wrapped around the compact dimension, with supersymmetry
breaking boundary conditions imposed on the S1. In the dimensions transverse to the 4-branes, this
induces a 5-dimensional black hole metric, and the global geometry changes from R4 ×S1 ×R5 to
R4 ×D× S4, where D is a 2-dimensional disk with a Schwarzchild singularity at its center. The
R4 is interpreted as 4D spacetime. For our purposes, the S4 plays an essentially passive role ex-
cept as a place to wrap 6-branes. In the discussion of holography and QCD topological charge,
the crucial concept provided by Witten’s brane construction is the disk D attached to each point
in 4-dimensional spacetime. To understand how θ -dependence of QCD arises in the string the-
ory context, we note that the world-volume theory on the 4-branes is actually a 5-dimensional
gauge theory on R4 ×S1. Being odd-dimensional, this world volume theory generically includes a
5-dimensional Chern-Simons term which has the form

LCS5 =
1

8π2 a∧Tr(F ∧F) (4.1)

where Tr(F∧F) is the topological charge density in the 4-dimensional theory, and a is the Ramond-
Ramond U(1) field around the compact S1. In the limit of small compactification radius, the 5D
Chern-Simons term reduces (at least locally) to a 4D theta term

LCS5 →
θ

16π2 F ∧F (4.2)

where the value of θ is given by the line integral of the RR U(1) field around the compact dimen-
sion,

θ =
∮

S1
a5dx5 (4.3)

Here S1 is around the perimeter of the disk D. Thus θ is proportional to the amount of Ramond-
Ramond flux threaded through the singularity at the center of the disk:

θ =
∫

D
fµνdxµ dxν (4.4)

where
fµν = ∂µ aν −∂νaµ (4.5)

In the holographic framework, the radius of the compact S1 serves as an ultraviolet cutoff,
rather analogous to the lattice spacing in a lattice formulation. In the limit of small radius, the
value of θ defined by the line integral (4.3) will approach a spacetime constant θ parameter, but
only mod 2π . Different regions of space may be in different k-vacua, i.e. have values of θ which
differ by multiples of 2π and thus are separated by domain walls. The string theory interpretation
of θ as the Wilson loop of the RR field around the compact dimension thus leads naturally to
the existence of k-vacua. It also points to the correct candidate for the string theory analog of a
gauge theory Wilson bag. In IIA string theory, a special role is played by D6-branes and I will
now argue that the topological charge membranes seen on the lattice can be interpreted as the
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Figure 3: Holographic view of a domain wall between k-vacua in QCD. Plot is at a fixed time, with the long
axis of the cylinder representing the spatial coordinate transverse to the domain wall at a fixed time. w is the
coordinate on the circle around the compact dimension.

holographic image of D6-branes which are wrapped around the compact S4 and therefore appear
as 2-branes or membranes in 3+1 dimensions. I will show that the defining property of the Wilson
bag, namely that the value of θ jumps by ±2π when crossing the surface, is in fact nothing but
the statement of quantization of Ramond-Ramond charge on a D6-brane. A basic property of
the D6-brane is that it carries a quantized amount of RR charge, where this quantization can be
demonstrated by a generalization of Dirac’s magnetic monopole construction. In general, Dirac’s
argument involves integrating the magnetic flux over a 2-surface which surrounds or “links with”
the object that carries the magnetic charge. Two objects of dimensionality d1 and d2 which link
with each other in D spatial dimensions satisfy d1 + d2 = D− 1. So in D = 9 spatial dimensions,
the spatial dimensionality of an object which can be surrounded by a 2-surface is d = 6, i.e. a
D6-brane.

A pictorial representation of this situation is shown in Fig. 3. Here the solid cylinder represents
the disk D at every point along a spatial axis transverse to the domain wall, (e.g. we put the domain
wall in the y-z plane, and the long axis of the cylinder is the x-axis.) This dimensionally reduced
picture makes it obvious that the quantized step in θ across a domain wall comes about in the string
theory by a Dirac-type quantization of RR charge. The surface surrounding the 6-brane consists
of two disks located on opposite sides of the domain wall (slightly distorted and joined around the
outer edge to form a closed surface). The difference between the amount of RR flux going through
the two disks, i.e. the step in θ , is quantized.

The picture in Fig. 3 serves equally well to represent a domain wall in the 2D CPn−1 models.
At a fixed time, a domain wall is located at a point on the spatial x-axis. Again, the domain wall is
analogous to a magnetic monopole with a quantized Dirac string coming out of it.

5. Small N, large N, and melting instantons

As Witten convincingly argued [11], a picture of the QCD vacuum based on instantons is in
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fundamental conflict with expected properties of the large N limit. In fact, in any simple instanton
model, the mass of the η ′ meson is exponentially suppressed, ∝ exp(−const.×N). But if chiral
symmetry breaking occurs as expected in the large N limit, arguments associated with the Witten-
Veneziano relation imply that the η ′ mass2 is ∝ 1/N. This and other problems with the instanton
picture led Witten to suggest that, at sufficiently large N, instantons would “melt” due to large
field fluctuations associated with the confining vacuum. As we have seen, the idea that topological
charge comes in the form of codimension 1 membranes is in a sense the large-N alternative to the
instanton picture. The question of whether N = 3 is large enough for large N arguments to apply
to 4-dimensional gauge theory is clearly a central issue. A recent study of N-dependence of topo-
logical structure in the CPN−1 models [4] provides an interesting perspective on the phenomenon
of melting instantons. It turns out that in these models there is a fairly precise instanton melting
point N = Nc below which instantons dominate the topological charge distribution on the lattice,
and topological susceptibility is reasonably well-described by a dilute instanton gas calculation.
Above the melting point, instantons disappear and the TC distribution is dominated by coherent
codimension 1 surfaces.

For CPN−1 with the lattice action used in [4] the instanton melting point is Nc ≈ 3.7. Thus
CP1 and CP2 are below the melting point, and CP3 (N = 4) is slightly above it. Using the overlap-
based q(x), the small instantons which dominate CP1 and CP2 are quite easily seen, and, at larger
values of β , integer changes of the global charge Q are invariably accompanied by the appearance
or disappearance of an identifiable instanton. (Interestingly, the instantons are not visible if the
ultralocal plaquette-based definition of q(x) is used.) For reasons first discussed by Luscher [18]
the instantons in these models have radii of order lattice spacing. They have zero radius in the
continuum limit and result in anomalous scaling of the topological susceptibility. The instanton
melting point can be estimated in the dilute gas approximation by measuring the action ε of a
single small instanton on the lattice. Numerically, this is found to be approximately

ε ≈
N
2 ×6.74 . . . (5.1)

For N = 1 and 2, the instanton contribution falls more slowly than µ 2 in the large β limit (µ =

mass gap). This results in a divergent topological susceptibility in the continuum limit. On the
other hand, if ε > 4π the instanton contribution to χt falls off more rapidly than µ 2 and becomes
negligible compared to scaling contributions which are ∝ µ 2 Thus there is a sharp transition at
N = Nc = 8π/6.74 ≈ 3.7. For N < Nc, instantons dominate and for N > Nc they disappear. The
instanton melting point Nc ≈ 3.7, estimated from the dilute gas calculation, agrees very nicely with
the direct results of the Monte Carlo calculations, which give a divergent χt for CP1 and CP2 but a
χt which scales properly for CP3 and higher [4].

Using the CPN−1 analogy, it is possible to at least crudely estimate the instanton melting
point in 4D SU(N) gauge theory. First we note that the action of a small instanton, and hence the
estimated value of Nc will change with different lattice actions. So it may be possible to improve
the action in a way that would increase the value of ε and thereby lower the value of Nc. But
Luscher has argued [18] that the lattice effect will always lower the action of a small instanton
relative to its continuum value of εc = N

2 × 4π So there is a lower bound on the instanton melting
point of Nc > 2. (In particular, this means that small instantons cannot be eliminated from CP1
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by improving the action.) The lower-bound estimate of Nc = 2 can be obtained without reference
to any particular lattice action. Nc = 2 corresponds to the “tipping point” of the integration over
instanton size in a semiclassical instanton calculation. For N < Nc the integral diverges at the small
instanton end, while for N > Nc, it diverges for large instantons. For 4-dimensional SU(N) gauge
theory, the integral over instanton size behaves (to lowest order in the renormalization group beta
function) like

∫

dρ
ρ5 ρ11N/3 (5.2)

which has it’s tipping point at
Nc =

12
11 (5.3)

Real QCD at N = 3 is well above this estimate of the instanton melting point, but (5.3) is only a
lower bound. For CPN−1, the actual melting point (for the simplest action) is nearly twice as large
as the lower bound (3.7 vs. 2). In any case, the direct Monte Carlo evidence from SU(3) gauge
theory clearly favors the large N scenario of codimension 1 membranes rather than an instanton
dominated vacuum.

The phenomenon of melting instantons in the CPN−1 models has an amusing interpretation
in the framework of string/gauge holography. By analogy with Witten’s 4-brane construction, we
can imagine that the θ term in 2D CPN−1 arises from a compactified 3-dimensional Chern-Simons
term of the form

LCS = iεabcAa∂bAc (5.4)

Here, a,b,c run from 1 to 3. Let us denote the original spacetime dimensions by 1 and 2, and the
compactified dimension by 3. Then in the limit of small radius of compactification, the Chern-
Simons term reduces to a theta term,

LCS → i
θ
2π

ε µν∂µAν = iθq(x) (5.5)

where µ ,ν = 1,2, and
θ =

∮

A3dx3 (5.6)

From this 3-dimensional framework, a small instanton in CP1 or CP2 can be interpreted as a charged
particle coupled to the gauge field A3 which has a world line which is wrapped around the compact
direction in a closed loop, and is pointlike in the 1-2 plane. On the other hand, we may integrate
by parts and write,

LCS = −
i

2π
εµν(∂µ θ)Aν ≡ JνAν (5.7)

where
Jν ≡

1
2π

εµν∂µ θ (5.8)

In this way of writing the CS term, the current Jµ couples to the gauge field in the 1-2 plane. In
the limit of small compactification radius, the quantity θ defined by (5.6) reduces to the constant
theta parameter of the 2D theory mod 2πk. Different k-vacua are separated by domain walls, and
the current Jµ is an “edge current” which is nonvanishing along these domain walls.

From this perspective, we could interpret the melting of an instanton as an unwinding of its
world line from the compact dimension, with the domain walls of the large N models being the
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remnants of melted or unwound instantons. The basic instability that causes instanton melting is
that, for sufficiently large N, they are unstable toward expanding in size. However, they cannot just
become large instantons, because that would violate the negativity of the correlator. Instead they
expand like a smoke ring and become Wilson line excitations. Most of the time this ring of positive
q will be screened by an antiinstanton emerging from the lattice and becoming a concentric ring
of negative q. forming a dipole layer. This visualization of a melting instanton has the obvious
generalization to 4-dimensional QCD, with a small instanton expanding to form a hollow bubble
whose surface is a Wilson bag.

6. conclusions

The Monte Carlo results showing the presence of extended, coherent 3-dimensional topolog-
ical charge membranes in lattice QCD configurations could have far-reaching implications. De-
tailed studies of low Dirac eigenmodes and their relation to the topological charge membranes
should clarify the role of these membranes in spontaneous chiral symmetry breaking. It is likely
that the chiral condensate arises from low eigenmodes associated with these membranes. The
chiral anomaly and η’ mass insertion suggest a central role of the membranes in inducing quark-
antiquark pair creation and annihilation processes in the QCD vacuum. The D-brane picture of the
QCD vacuum could provide a better understanding of the OZI rule, in particular the fact that qq̄
annihilation within a meson is highly suppressed except in the scalar and pseudoscalar channels.
The interpretation of the coherent topological charge sheets as Dbranes also suggests a possible
underlying role of supersymmetry in the dynamics of light quarks. Such a connection has already
been found in the “supersymmetry relics” discussed recently by Armoni, et al [19]. These predic-
tions are based on a large-N equivalence between N = 1 SUSY gauge theory and an orientifold
projected theory which, for the case N = 3 is ordinary non-SUSY 1-flavor QCD. As shown in the
poster of Patrick Keith-Hynes at this Conference,[20] the SUSY relic prediction of approximate
degeneracy between scalar and pseudoscalar flavor-singlet mesons depends crucially on the mass
shifts induced by qq̄ annihilation (hairpin) diagrams in the scalar and pseudoscalar channels. The
interplay between light quark dynamics and topological charge membranes in QCD is an interest-
ing area for both theoretical and numerical studies. Finally, the interesting question arises whether
the D-brane vacuum I have suggested in this talk can explain confinement. This is at least a reason-
able possibility, since the presence of topological charge membranes should disorder the vacuum
at long distances. A large Wilson loop would have to go through many membranes, which would
disorder the color phases around the loop and lead to an area law. Intuition from the string theory
side should be useful in addressing these issues.

This work was supported in part by the Department of Energy under grant DE-FG02-97ER41027.
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