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This article is organized as follows: in the first part we will briefly reviewithea of using Multi-
Step stochastic correction, for more details we refer to our pglper [1jprdéde a description of
the Polynomial Hybrid Monte-Carlo algorithm with stochastic correctiomhich was successfully
applied in [R] to simulateNy = 2+ 1+ 1 quark flavors using the twisted-mass fermion action. In
the remainder we will summarize some of the results of these simulations, aganoferdetails
we refer to [R].

1. Multi-Step stochastic correction

The idea of Multi-Step stochastic correction is a natural extension of theSkej technique
well established for Multi-Boson algorithms (TSMB-alg.), di. [B, 4] anterences therein. One
uses multiple correction steps with increasing precision. Our choice to ttrnorecision in each
step is to use polynomiaf of increasing ordem; (see Sed. 1]4) to approximate the required power
in the pseudo-fermionic part of the action:

AP ~ (@) R = [PPSR @) a1

whereQ denotes the Hermitian fermion-matrix (containing either one fermion-flavor oage
of the twisted mass formulation one flavor doublet). For example, 1/> results in a one flavor
(twisted-mass: one flavor-doublet) actian—= 1 leads toNs = 2 (twisted-mass: two degenerate
flavor-doublets).

The update-sequence now consists of several nested noisy carsgctio[4] and references
therein) using the various polynomidias an example we show a sequence using three-step cor-
rection:

Start_)...ﬁ eyt — 3 Sy e — RN 3 teeseeen —_— 1_2
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Each time a configuration is rejected it will be replaced with the last acceptedypthat same
correction step.

In the following subsections, we describe applications of this technigue lii-Blson as well
as Hybrid Monte-Carlo based algorithms.

1.1 Multi-Step Multi-Boson algorithm

The update for the first (Multi-Boson) step usiRg as well as for the gauge-fields are ex-
actly the same as for the TSMB-algorithm as describedl]in [4] and applidtHR][5ve just add
more correction-steps to the procedure. This changes the numeritaxgowessed in units of
matrix-vector-multiplications (MVMsjiven for TSMB in [4] (for unexplained notation confer that
publication) to

cost
MVM

= 6(NNy+Ny) + IcFe + Zz(nk—i-ﬁk)NCka (1.3)
k=

1For the noisy correction step we also need polynonﬁ%(hs) ~ F’I(x)*l/2 of ordern;j to generate the noise vector
from a Gaussian distribution.
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Nck is the number of times the correction step involviags called. In [1] we gave an example
how calling the most expensive correction step less often actually worksumarical simulation.

1.2 HMC and PHM C with stochastic correction

The first update-step does not necessarily have to rely on a Multi-Bgstate. It can for in-
stance be replaced by a standBlybrid Monte-Carlo(HMCjupdate. The advantage of combining
stochastic corrections with HMC algorithms is that one may use a mass-pitwoad fermion-
matrix @? + py in the basic update step, and account for this in the stochastic correctjm ste
using there subsequently decreasintp achieve the “target actionlify = 0) in the last N™") step
(i €R, > ... > [ > ... > iy = 0).

A severe limitation of the traditional HMC algorithm is, that only an even numbégraifionic
fields can be simulated. To overcome this drawback one has to take a fehqimmer of the
squared fermion matrix, which can be done by using an approximation ofittetidnx—9, e.g.

a = 1. Commonly, either @olynomialor arational approximation is used, leading to a so-called
PHMC or RHMC algorithm, respectively. The PHMC was suggestef] irff [§-vif2ile a descrip-
tion of the RHMC can be found irf [1L3]. The original proposal of the PH&@brithm had to face
the problem, that large orders in the polynomial approximation forbid anesffi@pplication to
the region of light quark masses. In the remainder of this section we wilkibesour approach
to introduce a stochastic correction step to make this algorithm competitive to agueithms
currently used. For results on a successful application sed]Sec. alteknative to the stochas-
tic correction would be to reweight the generated configurations, this isrtly investigated by
Chiarappaet al., see [1}4].

The HMC algorithm and its variants all start by introducing a fictitious time-scaled evolve
the gauge and conjugate momenta fields according to Hamilton’s equations ohmidioe we
will only describe the details concerning the polynomial approximation angction step in the
fermionic part of the action. Again, we use a polynomial approxima®ig@?) ~ (Q?)~9 of order
Ny, whereP, may be evaluated in a recursive scheme (which will be convenient in thepdis
step) or by using the root-representation

Ny ny 1

Q) = CO_I_!(QZ—ri) = CO'l_l(Q—Pi) T(Q-p) (1.4)

i= i= i=ny
The last rearrangement is possible becausafaven (to which we restrict ourselves) the roots
always appear in complex conjugate pairs. Note the ordering in the twaigs(first increas-
ing index, last decreasing index): this assures a better numerical stathifityootsr; itself are
also ordered to a scheme to minimize the numerical efrdr [15]) and allowsefficeent way of
calculating the fermionic force, as needed in the HMC-step. By introducegukiliary fields

o = Voo(@-p)-(Q-p), k=1...n-1 (1.5)
¢ = Vop(@—p1)- (G—pn)(Q—p5) - (Q—pi2) (1.6)
and settingpl(o) = /Co®, the fermionic force can be written as

n-1 . - n-1 ~
P @0 = Y [0 (D40 @ + & (D4 Q] = 2Re<kz o <Dme><p§k”) .
=0

k=0
(1.7)
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Here @ always denotes the pseudo-fermionic fields from the “bosonization” detineion matrix
andD is the derivative with respect to the given indices. Observe, that it is affisient to first
calculate all thepfk) and store the results. In the actual computation one than has to combine the
actualrpz(k) (which is obtained recursively from the previous one) with one of thpamij(pl(k)—
fields. Using a better conditioned fermion matrix by apply@gen-odd-preconditioning also
possible, in that case a similar scheme can be written down.

After a PHMC-step, which starts with generating the pseudo-fermionic fatderding to
@ = P(Q?) n from a Gaussian-distributed vectgrusing a polynomiaPy(x) ~ Py(x)~Y/2 of or-
dern; and the real conjugate momenta fi€lg; (in the adjoint representation) according to the
contribution dPexp(—P?/2), a trajectory of lengtidT is performed using the Sexton-Weingarten
integration schemé [L6] with multiple time-scales for the gauge and fermionic partise end of
every trajectory a global accept-reject step is performed, using the@gmigl P; in its recursive
form to calculate the fermionic part of the energy. The reason for this isrteat for numerical
errors originating from the finite step size in the integrator. Allgy; such trajectories a stochastic
correction step is carried out as described in fec. 1, using polynoRaiatsd P, in the recursive
representation. In this way we are able to correct for the (intentionally) aproximation in the
PHMC-step, which allows us to prepare trajectories at moderate numeoatalAn approximate
formula for the cost in number of matrix-vector-multiplicatiodYMs) can be given as follows:

cost
MVM

~ 2nB(n2 + ﬁz) + Ntraj |:2n|3(n1 + ﬁl) + nB(3+ 2NQ)(4n1 — 1) , (18)

whereng is the number of determinant-breakup used (see belowNgndenotes the number of
time-steps for the fermionic integration.

1.3 Determinant-breakup, mass preconditioning

An important improvement of the Multi-Boson algorithms and the PHMC- as wethas
RHMC-algorithms is so-called “determinant-breakup” [17]. The fractiguavers in the approxi-
mation allow to useg sets of pseudo-fermion fields withreplaced byx /ng. This technique was
proven to improve the simulations for the TSMB} [§— 8] and the PHMC- [2] @lsd recently for
the RHMC-algorithm [13].

Other techniques to speed up the simulation rely on preconditioning of the fenmatrix,
we already mentioned mass-preconditioning briefly in $e¢. 1.2. Details ontdaise this in
conjunction with multiple correction steps are given([in [1].

1.4 Polynomial approximation

There are several different methods available for the required sippaitions in the MSMB
and HMC-variant algorithms. Most commonly used amynomialor rational approximations
of some orden. Usually for a given precision the rational approximation requires a loneer
[L3], but here we want to stress the fact that while the order of a poljaiaetermines the cost in
matrix-vector-multiplications directly, for the rational function one has to intver fermion matrix

2Here we neglected the cost from calculating the force from the gaugeaajagate moment parts and made the
assumption that the tensor-like multiplication in (1.7) counts as one MVM.
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Figure 1: Example for polynomials with increasing order to approxiena /2 in the interval[5- 105, 4.0]
asusedina MSMB-updatE [1], shown is the relative deviation

at least once, which is the main contribution to the cost and is itself a polynonged>amation,
too. Therefore we prefer to take a direct polynomial an3atz.

Another question arises, namely in which way the error of the approximatiomisized. In
principle, defining any norm and calculate the deviation according to it isitniege procedure.
Commonly used are either the- or theL,-norm. The first minimizes the quadratic deviation,
while the latter minimizes the maximal deviation. It has been shown that the firgs dredter
suited for dynamical fermion simulatior{sJ18], since it leads to smaller deviaitithe bulk of the
approximation-interval at the cost of a higher deviation at the boundared_..-norm leads to an
uniformly distributed deviation, which is disadvantageous because most eigbnvalues of the
fermion matrix are in the bulk and only a few ones are close to the lower bourBgamples of
the L,-optimized polynomial approximations as used in a three-step multi-bosorctorrepdate
[[] are shown in Fig[]1. For the generation of the coefficients we reff@@d19,[2p].

2. Twisted mass-simulationswith Ny =2+1+1

As part of the efforts of th&uropean Twisted Mass-Collaboration (ETM-Cqlthe PHMC-
algorithm with one stochastic correction step as introduced above haajeiad to simulate two
doublets of twisted mass quark$ [2]. In the twisted mass adfign [21] an addititass term is
added, which results in a lower bound for the eigenvalue spectrum athé, standard mass term
is properly tuned, in an automatically(a)-improved fermion action. The first doublet contains
two mass-degenerate light quark flavors (up and down), whereas setund doublet a mass-
splitting term as introduced by Frezzotti and Ro§sj [22] has been addedefore, the quarks of
the second doublet can be identified as the charm and strange flaawirsy Hifferent masses. In
the mass-split case we have to use an algorithm which is capable of simulatirgjeafeimion
flavor. In principle it would have been possible to use the HMC af in [23}He first doublet and
the PHMC only for the second one. For simplicity we have chosen to use theCPiigorithm for
both doublets and the results showed that the PHMC with stochastic correctike fine for light
quarks, too.

3Note, that although the polynomial degrees of the first approximatiors stepfixed, the degree of the last (and
most expensive) step can be adaptive because of the recuraluatan.
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Figure 2: Squared pion- and kaon-masses and their ratio frofn2% and 168 x 32 lattices, for details see
text and [B]

We performed simulations at two lattice spacings on a fixed physical volurak sf2.4fm
(a~ 0.20fm atL3 x T = 128 x 24 anda ~ 0.15fm at 16 x 32) using the Symanzik tree-level
improved gauge actiofi [P4]. In both cases the twisted mass parameteeskepefixed in physical
units and the untwisted mass parameter was varied. On the coarse lattice thecalucost to
generate a new configuration varied betwee2 28d 465 (in thousands of MVMs) for the heaviest
and lightest pion mass. On the finer lattice we observed similar numbers bet®&esnd 442.
For more details sed][2]. That allowed us to study the phase structuresterthéhe the critical
value for the untwisted mass parameter, which is important to obtaif tagimprovement.

The volume scaling of the algorithm is very good: keeping the action paressnatestant,
for instance, between $ 24 and 24 x 48 lattices, one can keep the polynomial degrees,
constant and increaga; + n) only by about 10% for the same lower bound of the approximation
intervall. Even this moderate increase can be compensated by increasiogehéound which is
possible due to the diminished fluctuations of the smallest eigenvalues.

2.1 Results

Here we summarize the results, details can be found in [2]. The most impfinging con-
cerns the phase structure: at the coarser lattice spacing a strong miiastadurs (as was already
found for Nt = 2 Wilson fermions, cf. [[8[ 35, 26] and references therein), leadingrtorémal
pion mass of approx. 670MeV. At the finer lattice spacing the metastability awatldbe ob-
served. Actually, since the lattice volume was fixed, we were not able to disimthere between
a phase-transition or a cross-over scenario. Anyway, without a migitéigta lightest pion mass
of 450MeV has been achieved. This implies that on %248 lattice witha ~ 0.1fm a pion mass
of about 300MeV can probably be simulated. F|g. 2 shows the squaredad kaon-masses and
the ratio(my;/mg)? as functions of the untwisted quark mass. The latter plot also contains chiral
perturbation theory guided fits to the data. Remarkably, the minimum value effitess close to
the physical poinfmy/mg)? ~ 0.08.

To conclude, dynamical, d, ¢, ands quarks can be simulated in the Frezzotti-Rossi twisted
mass formulation with a moderate tuning effort. The PHMC algorithm is working ffan both
light (u, d) and heavierq, s) quarks.

4To compare these numbers with those from other groups: 1MYA688- Qflop, whereQ = L3 x T is the lattice-
volume.
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