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We discuss a proposal for the construction of lattice QCD with gauge action, fermionic action,

θ–term, and the operators all based on the lattice Dirac operatorD with exact chiral symmetry.

The simplest regularization of this type uses the proposition that the classical limit of scalar gauge

density associated with trace ofD is (up to an additive constant) proportional to trF2, while the

corresponding operator is local. More general formulations from this class are considered with the

aim of exposing interrelations between gauge and fermionic aspects of QCD which are otherwise

hidden in generic formulations. Possible utility of these formulations for exploring QCD vacuum

structure is emphasized.
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1. Vacuum Structure Motivation

When studying QCD vacuum structure in the path integral formalism, the basic issue we face
is the apparent clash of two tendencies. On one side there israndomnessthat is inherent in the
definition of the theory, while on the other side there isspace–time orderthat we seek in order
to understand the vacuum. The root of the problem is largely related to the fact that we cannot
completely eliminate one or the other. Indeed, eliminating the randomness seems to require aban-
doning the field theory description of strong interactions – a step that is difficult to contemplate
otherwise. On the other hand, the absence of the need for the element of space–time order would
imply that vacuum cannot be understood in the language of path integrals. This means that the
analysis of some equilibrium configurationU in lattice–regularized theory should not only be able
to distinguish randomness from order, but it should also separate the randomness that is physically
necessary from one that is useless, and can thus be eliminated. This is a highly non–trivial problem.

The proper formulation of the tasks qualitatively described above requires the use of concepts
well established in the information theory and the theory of computation. A particular fusion of
these subjects known asalgorithmic information theoryseems to be particularly relevant [1]. At the
same time, once the underlying issues are properly identified, one can also attempt a “physicist’s
approach” to the problem, trying to take advantage of possible shortcuts offered by the proper phys-
ical insight. Following this path within the“Bottom-Up” approach to QCD vacuum structure [2, 1],
we will rely on two guiding points. (1) Since truly random fluctuations cannot be spatially corre-
lated, it should be possible to remove themlocally. (2) Local transformations devised for such
purposes should preserve the local physical meaning of the gauge field, thus giving a reasonable
expectation that only unphysical randomness is eliminated while physics is retained (together with
the randomness that is necessary). The first candidate transformations of this kind are thechiral
ordering transformationsof Ref. [1]. Given a chirally symmetric Dirac operatorD, the prototypical
chiral ordering transformation replaces the linkUn,µ with an SU(3) element̄Un,µ minimizing the
norm of the matrix [1]

Dn,n+µ(U) − D f
µ ×Ūn,µ where D f

µ ≡ 1
3trcDn,n+µ(I) (1.1)

In other words, the transformed gauge connection represents an effective matrix phase by which
fermionic variables get rotated under hopping fromn+ µ to n, relative to the free hopping. This
preserves the local interpretation of the gauge field as a “phase rotator” for the charged particle
interacting with it. Given the expected non–ultralocality ofD in gauge variables, the above trans-
formations are non–trivial for generic backgrounds.

Using the locality of chiral ordering transformations, one can argue that applying them re-
peatedly at the ensemble level leads to the evolution in the set of valid gauge actions [1]. The
theories reached this way are expected to generate more space–time order (lower Kolmogorov en-
tropy) in their representative configurations than the starting theory. The characteristic feature of
corresponding actions is that they become functions of the chirally symmetric Dirac kernelD on
which the transformation is based. This fact suggests a tempting possibility that, at least for the
purposes of studying the QCD vacuum structure, it would be interesting to explicitly construct lat-
tice regularizations where both gauge and fermionic parts of the theory enter in a unified manner,
namely via lattice Dirac operator with exact chiral symmetry [3]. In fact, suchcoherencecan be
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extended to all elements of the theory including the operators for relevant observables. In this talk
we discuss some aspects of this construction, given fully in Ref. [3], with the particular focus on
arriving at the formulation where gauge and fermionic parts of the full action are cast in the most
mutually symmetric form.

2. Simple Coherent Lattice QCD

The simplest version of lattice QCD (LQCD) where all parts of the action are constructed from
D (coherent LQCD), is based on the following conjecture [3] 1

Conjecture C3. Let Aµ(x) be arbitrary smoothsu(3)gauge potentials onR4. If U (a)≡{Un,µ(a)}
is the transcription of this field to the hypercubic lattice with classical lattice spacing a, andI ≡
{Un,µ → Ic} is the free field configuration then

tr
(

D0,0(U(a)) − D0,0(I)
)

= −cSa4 trFµν(0)Fµν(0) + O(a6) (2.1)

for generic chirally symmetric D. Here cS is a non–zero constant independent of Aµ(x) at fixed D,
and Fµν(x) ≡ ∂µAν(x)−∂νAµ(x)+ [Aµ(x),Aν(x) ] is the field–strength tensor.

The heuristic reason for validity of the above conjecture is that trDn,n is scalar, local, gauge invari-
ant function of the gauge field. Up to dimension four, the only possibilities for such operators in the
continuum are the constant and trFµν(x)Fµν(x). For the family of standard overlap Dirac operators
based on the Wilson-Dirac operator with mass−ρ [4], the validity of Conjecture C3 will be sup-
ported by both analytical and numerical methods in Ref. [5], where the constantscS(ρ) will also
be evaluated. Note that the conjecture analogous to C3 in the pseudoscalar case is in fact a basis
for constructing topological density from chirally symmetric Dirac operator [6] (see also Ref. [7]).
For overlap Dirac operator this was examined explicitly in Refs. [8].

Accepting the validity of Conjecture C3 allows us to define the action for simplest version of
coherent LQCD withNf flavors of quarks and the CP–violatingθ–term as [3]

S
β̄ ,θ̄ ,{mf }(U) = Tr(β̄ − iθ̄ γ5)

(
D(U)−D(I)

)
+

Nf

∑
f=1

ψ̄
f
(

D(U)+mf

)
ψ

f (2.2)

where{mf } is the set of real non–negative quark masses, and

β̄ (β ) =
β

12cS

(
β ≡ 6

g2

)
θ̄(θ) =

θ

16π2cP

(
θ ∈ (−π,π]

)
(2.3)

The constantcP appearing in pseudoscalar term is defined analogously tocS. We note that the
locality of Sdefined above follows from locality ofD, and that the free–field term in the gauge part
of the action only contributes a field–independent constant which can be discarded if desired.

1Note that we will keep both the notation and the numbering of conjectures the same as in Refs. [1, 3]. Also, the
local traces are denoted by “tr” while the global ones by “Tr” and, unless denoted explicitly by a superscript, the local
traces are taken over the full linear space appropriate for the object in question.
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The dynamics of coherent QCD (2.2) is completely encoded in the chirally symmetric lattice
Dirac operator. This becomes more explicit after fermionic variables are integrated out. In case of
degenerate quark masses the distribution density of the gauge fields is given by

P
β̄ ,θ̄ ,m(U) ∝ eTr[Nf ln(D+m)+(−β̄+iθ̄ γ5)D ] = det

[
(D+m)Nf e(−β̄+iθ̄ γ5)D

]
(2.4)

whereD≡ D(U). Thus, forθ = 0 this formulation requires simulating the probability distribution

P
β̄ ,m(U) ∝ det

[
(D+m)Nf e−β̄D

]
= det

[(
− d

dβ̄

)Nf
e−β̄ (D+m)

]
(2.5)

where the last equality emphasizes the close explicit relation between fermionic and gauge contri-
butions to the full probability distribution. Some initial ideas on simulating this theory based on
overlap Dirac kernel are presented in Ref. [9].

3. Symmetric Logarithmic LQCD

It is easy to see that the simple coherent LQCD discussed above is by no means the only
possibility for constructing lattice regularizations where the gauge and fermionic parts of the action
are tied together in an explicit manner. To obtain more general class of such formulations, we will
treat the Dirac operatorD defining fermionic action as a primary object, and discuss possibilities
for forming the gauge parts of the action from various functionsf (D). In particular, if f (D) is a
local operator and if trf (D)n,n is a scalar lattice field, then we generically expect the validity of a
statement analogous to Conjecture C3 with equation (2.1) replaced by

tr
[

f
(

D(U(a))
)

0,0
− f

(
D(I)

)
0,0

]
= −cSa4 trFµν(0)Fµν(0) + O(a6) (3.1)

wherecS is an associated constant. Proceeding in the same way also for the pseudoscalar case (i.e.
considering operatorγ5 f (D)) we obtain the definition of coherent LQCD in this case by replacing
D in the gauge part of Eq. (2.2) with f (D), while Eq. (2.3) remains unchanged. Some attractive
choices for functionsf (D) includeDk, ln(D+η), and(D+η)−1 [3].

We will now focus on constructing coherent LQCD in which the gauge and fermionic con-
tributions to the action enter in the most mutually symmetric manner. Since the fermionic part is
fixed, we can bring the two forms closer together if we mimic the effective fermionic action (after
integrating out fermions) in the construction of the gauge part, i.e. if we usef (D) = ln(D + η).
This leads to

S
β̄ ,θ̄ ,{mf }(U) = Tr(β̄ − iθ̄ γ5) ln

(
D(U)+m0

)
+

Nf

∑
f=1

ψ̄
f
(

D(U)+mf

)
ψ

f (3.2)

where we denotedη ≡ m0 > 0 to reflect its mass–like form. Note however that, unlike the lattice
quark massesmf , the parameterm0 is kept fixed as the continuum limit is approached. In effect,
different values ofm0 control the lattice locality range of the gauge action. We refer to the above
formulation aslogarithmic LQCD [3]. For θ = 0 and degenerate quark masses, the probability
distribution of gauge fields to simulate in this case is

P
β̄ ,m(U) ∝ eTr[Nf ln(D+m)− β̄ ln(D+m0) ] = det

[
(D+m)Nf (D+m0)−β̄

]
(3.3)
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Interestingly, it is possible to bring the gauge action to the form that is yet more (and com-
pletely) analogous to the effective action of a single lattice fermionic flavor. To see that, consider
the effective action of logarithmic LQCD with one flavor andθ = 0, namely

−Se f f
m,β̄

(U) = Tr [ ln(D+m)− β̄ ln(D+m0) ] β̄ ≡ 1
2g2cS(m0)

(3.4)

We can thus eliminate varyinḡβ in favor of varyingm0 (and bring the two terms into almost
identical form), if for arbitraryg > 0 from some finite vicinity ofg = 0, we can find uniquem0 ≡
m0(g) such that|cS(m0)| ≡ 1/2g2. This is indeed expected to be possible since ln(D+m0)n,n will
diverge asm0→ 0 for smooth configurations. A precise statement can be formulated as follows [3].

Conjecture C6. Let D be a chirally symmetric operator such that f(D)≡ ln(D+η) is well–defined
for arbitrary η > 0. If cS(η) is the associated classical coupling oftr f (D(U))n,n to trFµνFµν ,
then there existsη0 > 0 such that cS(η) is monotonic for0 < η ≤ η0, and limη→0 |cS(η)| = ∞.
Moreover, there exists a non–zero (possibly infinite) limit

lim
η→0

cS(η)
ln(η)

≡ lim
η→0

κ
S(η) ≡ κ

S(0) 6= 0 (3.5)

Conjecture C6 implies the existence of a one-to-one correspondence betweeng∈ (0,g0] andm0 ∈
(0,η0], such that|cS(m0)| ≡ 1/2g2. We thus have instead of (3.4)

−Se f f
m,m0

(U) = Tr [ ln(D+m) − sgn(cS(m0)) ln(D+m0) ] |cS(m0)| ≡
1

2g2 (3.6)

The full–fledged form of the lattice theory constructed according to the above arguments is [3]

SmS
0,m

P
0 ,{mf } = sgn

(
cS(mS

0)
)

Tr ln
(

D+mS
0

)
− i sgn

(
cP(|mP

0 |)
)

sgn(mP
0)Tr γ5 ln

(
D+ |mP

0 |
)

+
Nf

∑
f=1

ψ̄
f
(

D+mf

)
ψ

f (3.7)

where the “gauge” parametersmS
0, mP

0 are related tog andθ via

|cS(mS
0)| ≡

1
2g2 θ = sgn(mP

0)16π
2 |cP(|mP

0 |)| θ ∈ (−π,π] (3.8)

and the various mass–like lattice parameters of the theory vary within the ranges

mf ∈ (0,∞) mS
0 ∈ (0,mS,c

0 ] mP
0 ∈ [mP,c

0 ,∞)∪ (−∞,−mP,c
0 ) (3.9)

In the above equations,mS,c
0 is the maximalµ0 satisfying the statement of Conjecture C6. Note

that in this formulation we have allowed the pseudoscalar massmP
0 to be negative so that the lattice

action density preserves exactly the transformation property of the pseudoscalar part underθ →
−θ . Such definition assumes that|cP(η)| vanishes at infinity and is monotonically decreasing in
the rangeη ∈ [mP,c

0 ,∞), wheremP,c
0 is defined viaθ(mP,c

0 )≡ π = 16π2 |cP(mP,c
0 )|. For the family of

overlap Dirac operatorsD(ρ) this is satisfied withmP,c
0 = 2ρ

eπ−1. Lattice regularization constructed
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above is referred to assymmetric logarithmicLQCD [3]. The continuum limit withNf ≤ 16 is
taken viamS

0 ≡ mS
0(a) → 0 while decreasingmf = mf (a) ∝ am̄r

f towards zero so that some set
of renormalized masses ¯mr

f (in physical units) is held fixed, and with the pseudoscalar massmP
0

(specifyingθ ) kept unchanged in the process.
From Eq. (3.6) one can see that the gauge action in symmetric logarithmic LQCD can be

viewed as an effective action of a lattice fermion or pseudofermion, depending on the sign ofcS(η)
in the vicinity of η = 0. Preliminary calculations indicate [5] that, for overlap Dirac operator,
cS(η) < 0 sufficiently close toη = 0, and this is expected to be true in general. In this case, the
effective action of symmetric logarithmic LQCD atθ = 0 can be written as

−Se f f
{mf } = Tr

Nf

∑
f=0

ln
(

D(U) + mf

)
= Tr ln

Nf

∏
f=0

(
D(U) + mf

)
(3.10)

with the gauge contribution to the action entering at the regularized level in a completely form–
symmetric manner relative to the contribution of a single fermionic flavor. Introducing the Grass-
mann variables for this “0–th flavor” of massm0 ≡mS

0, the total action can be written in the form

S{mf } =
Nf

∑
f=0

ψ̄
f
(

D(U)+mf

)
ψ

f (3.11)

Thus, symmetric logarithmic LQCD casts the regularized dynamics of full QCD into that ofNf +1
lattice fermionic flavors interacting with SU(3) gauge field. While this might sound suspicious at
first, in fact it is not. It turns out that what distinguishes “gauge” from “fermionic” in this case
is the locality of corresponding effective operators in the continuum limit. Indeed, since for the
“0–th” flavor the corresponding effective operator is the gauge action itself, we have to insist that
its effective range in physical units shrinks to zero in the continuum limit (“weak locality” [3]). For
theory withNf asymptotically free flavors this translates into the requirement [3]

0 = lim
a→0

a
m0(a)

∝ lim
m0→0

m
|κS(0)|

β0
−1

0 or
|κS(0)|

β0
> 1 (3.12)

whereβ0 = (11− 2
3Nf )/16π2. The above condition can also be viewed as a requirement on the

number of asymptotically free flavors for which QCD can be defined via symmetric logarithmic
LQCD, namely thatNf > 33

2 − 24π2 |κS(0)|. Thus, if this condition is satisfied, then the range of
the effective action for the “0–th” (gauge) flavor is zero in the continuum limit, while the ranges
of effective actions corresponding to usual quark flavors are non–zero and inversely proportional
to the corresponding renormalized quark masses ¯mr

f . This is equivalent to saying that the “0-th”
flavor in (3.11) is infinitely heavy in the continuum limit. Indeed, from Eq. (3.12) we have that its
mass in physical units is proportional to

lim
a→0

m0(a)
a

∝ lim
m0→0

m
1− |κS(0)|

β0
0 = ∞ (3.13)

Consequently, all correlators involving the variablesψ0, ψ̄0 in theory (3.11) are expected to vanish
in the continuum limit, and the “0–th” flavor decouples from the light quark flavors.
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4. Discussion

In this talk we have argued that, for the purposes of studying QCD vacuum structure, it might
be fruitful to explore lattice regularizations of QCD where gauge and fermionic aspects of the the-
ory are both based on a lattice Dirac operatorD with exact chiral symmetry (coherent LQCD) [3].
The motivations associated with vacuum structure are mostly related to the relevance of chiral or-
dering transformations of Ref. [1]. However, it is quite clear that this novel approach to constructing
lattice regularizations might be interesting in its own right. Indeed, the explicit interrelations be-
tween gauge and fermionic aspects of the theory, present in such regularizations, potentially offer
valuable insights into the “inner workings” of QCD dynamics. After all, the properties of valid
regularizations become properties of QCD in the continuum limit. Following this route, the goal of
our discussion was to arrive at the formulation where gauge and fermionic parts of the full action
become mutually form–symmetric to a maximal possible degree. Starting from simplest coher-
ent LQCD and its generalizations, we arrived at symmetric logarithmic LQCD, where quarks and
gluons contribute to an overall dynamics in a completely form–symmetric manner [3]. This can
be most clearly seen in Eq. (3.11), where the gauge part of the dynamics is represented via an
additional fermionic flavor that becomes infinitely heavy in the continuum limit.

The existence of lattice regularizations where gauge dynamics can be viewed as inherited
from infinitely heavy fermions (in logarithmic LQCD there are in fact infinitely many of them in
the continuum limit [3]) raises a question if QCD has a “natural definition” from the point of view
of the theory beyond the Standard Model. Indeed, if the heavy decoupled particles in question can
be given physical meaning in such context, then this possibility might acquire some content.

Finally, we wish to mention that the “coherence” in definition of LQCD can be extended to
include all operators by application of chiral ordering transformations [1, 3]. Some interesting
operators can also be constructed fromD explicitly [3, 9, 5].

Acknowledgment: Numerous discussions with Andrei Alexandru and Keh-Fei Liu on the topics
related to the subject of this talk are gratefully acknowledged.
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