
P
o
S
(
L
A
T
2
0
0
6
)
0
6
3

Dual superconductivity in G2 group

Guido Cossu∗
Scuola Normale Superiore & INFN, Pisa, Italy
E-mail: g.cossu@sns.it

Massimo D’Elia
Dipartimento di Fisica & INFN, Genova, Italy
E-mail: delia@ge.infn.it

Adriano Di Giacomo and Claudio Pica
Dipartimento di Fisica & INFN, Pisa, Italy
E-mail: digiacomo@df.unipi.it, pica@df.unipi.it

Biagio Lucini
Department of Physics, University of Wales, Swansea, UK
E-mail: b.lucini@swansea.ac.uk

We investigate the dual superconductivity mechanism in the exceptional group G2. This is a cen-
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1. Introduction and Motivation

Understanding confinement is one of the main issues in non perturbative QCD. In this respect
identifying the degrees of freedom responsible of quark confinement is essential. Many choices
are investigated in literature, between them center vortices and monopoles (both proposed by ’t
Hooft) are the most popular. The deconfinement transition in pure SU(3) gauge theory is triggered
by the spontaneous breaking of center symmetry, this could suggest the direct relation between
confinement and presence of a non trivial center. It’s therefore an interesting question whether
centerless groups have a confinement-deconfinement phae transition. In fact the SO(3) = SU(2)/Z2

has been extensively studied on the lattice (see for example [1, 2, 3]). Moreover the exceptional
group G2 is without ’t Hooft center vortices and is the simplest one, that’s why we focused on it.

Another point of view concerning the confinement mechanism is the so called dual super-
conductor picture, the subject of this work. As in an ordinary superconductor magnetic fields are
squeezed in flux tubes (Abrikosov filaments) connecting magnetic charges due to condensation of
Cooper pairs, quarks could be kept together by strings of (chromo)electric flux tubes due to con-
densation of magnetic objects. According to this picture, the QCD vacuum, is a condensate of
magnetically charged fields confining (chromo)electrically charged particles.

The presence of strings connecting static quarks has been proved in several papers. A way of
probing the vacuum state looking for the Abelian magnetic fields has been proposed and studied by
the Pisa group in a series of papers [4, 5, 6, 7]. Abelian monopoles are exposed after a gauge fixing
and a “monopole probe” is inserted in the lattice: the expectation value of such an observable,
usually called µ , should be exactly zero if magnetic symmetry is respected, a value different from
zero is instead a clear signature of the presence of an Abelian monopole condensate in the vacuum
of the theory. In practice simulations are done by inserting a monopole field in a time slice and
measuring a related quantity, the so called ρ parameter defined by

ρ ≡ ∂

∂β
ln〈µ〉= 〈S〉S−〈SM〉SM (1.1)

in which SM is the action with the “monopole probe” insertion. So ρ is the difference of the action
minus the monopole action weighted with the monopole action in the path integral. For details we
refer to the cited articles.

The aim of this work is to give a criterion of confinement in G2 group by mean of the disorder
parameter µ . Strictly speaking there are no strings in G2, a situation similar to full QCD where
string breaking occours. Anyway in full QCD with N f = 2 [7] the operator µ is nonetheless a good
order parameter. So, in the working hypothesis that this is a good observable for confinement, we
look for dual superconductivity in the exceptional group G2.

1.1 G2 group

We are now going to state some basic facts about the Lie Group G2. Being defined in mathe-
matics as the group of automorphisms of the octonions it can be naturally constructed as a subgroup
of the real group SO(7) which has 21 generators and rank 3. To the usual properties of SO(7) ma-
trices

detΩ = 1 Ω
−1 = Ω

T (1.2)
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we have in addition another constraint

Tabc = Tde f ΩdaΩebΩ f c (1.3)

where Tabc is a totally antisymmetric tensor whose nonzero elements are (using the octonion basis
given by [8])

T123 = T176 = T145 = T257 = T246 = T347 = T365 = 1. (1.4)

Equations 1.3 are 7 relations reducing the numbers of generators to 14. This is clearly seen also in
this form which is actually used as a check during simulations:

v = Ωv vk = Ω jiTi jk k = 1 . . .7 (1.5)

The fundamental representation of G2 is 7 dimensional and by using the algebra representation
of [8] we can clearly identify an SU(3) subgroup and several SU(2) subgroups, with 6 of them
we can cover the whole group, an important property for MC simulations. The first three SU(2)
subgroups are the 4× 4 real representation of the group while the remaining three are extremely
difficult to simulate with standard techniques. See next section for details on simulations.

The Lie group G2 has rank 2 as SU(3), this implies that its Cartan subgroup, that is the maximal
residual abelian subgroup after an abelian gauge fixing, is U(1)×U(1). Stable monopole solutions
are classified according to the homotopy group1:

π2(G2/U(1)2) = π1(U(1)×U(1)) = Z×Z (1.6)

i.e. we have two distinct species of monopoles as for SU(3).
Another interesting homotopy group shows that center vortices are absent in the theory:

π1(G2/C (G2)) = π1(G2) = 0 (1.7)

while for SU(3) for example
π1(SU(3)/Z3) = Z3. (1.8)

So G2 is a good playground to study the dual superconductor picture in a theory without center
vortices, thus isolating monopole contribution in confinement.

2. Simulation and Results

Much work has been devoted to simulations on G2 Yang-Mills theory by the Bern group
[10, 11]. This group used the so called Fredenhagen-Marcu order parameter [12] to demonstrate
confinement in G2 theory, at least in the strong coupling limit. This parameter by construction
makes sense only at zero temperature. Our proposal concerns a different approach using the mag-
netic operator µ of use also in finite temperature simulations. Here we are going to investigate the
thermodynamical and dual superconducting properties of the system.

First some informations about the MC runs settings. To simulate the gauge theory

L =
1

7g2 TrFµνFµν (2.1)

1First equality follows from π1(G2) = 0. See for example [9]

3



P
o
S
(
L
A
T
2
0
0
6
)
0
6
3

Dual Superconductivity in G2 group Guido Cossu

β
0

0,005

0,01

0,015

0,02

0,025
χ P

164

6x123

6x163

6x203

1,37 1,38 1,39 1,4 1,41
0,002

0,003

0,004

0,005

Figure 1: Plaquette susceptibility plotted against β . The peak signals the bulk transition and the points
enclosed by the square are the physical transition for the Nt = 6 lattices. The transition for Nt = 4 is too
close to the bulk one and extremely difficult to measure (much of the signal is only “noise”). Also shown a
simulation a T=0 on a 164 lattice (blue points).

we used a simple Cabibbo-Marinari update (heat-bath + overrelaxation in a tunable ratio, for every
step) for the first three SU(2) subgroups (4× 4 representation) spanning the SU(3) ⊂ G2. This
simple setting cannot be used for the remaining three subgroups so we make a completely random
gauge transformation every n updates (tipically 2) to guarantee the covering of the whole gauge
group. Observables measured are the standard plaquette and the Polyakov Loop. To study the ther-
modynamical properties we simulated several lattices of spatial dimension Ns = 12,16,20,24,32
and Nt = 6 (Nt = 4 only for the smallest lattice). At the transition we needed histories of more
than 104 updates. The code is very fast (using only real algebra), is written using explicitly SSE2
instructions in single precision for the matrix-multiplication core and run on an Opteron farm here
in the computer facilities of the Physics Department of the University of Pisa.

2.1 Thermodynamics

To guess where the physical transition should be, we looked at the plaquette and Polyakov
loop susceptibilities.

The first thing to notice is the presence of a bulk transition in the plaquette susceptibility
(related to the specific heat), see fig. 1. The peak is present in every volume and Nt always at
the same β ∼ 1.36. There’s no scaling with volume and no movement toward the weak coupling
region passing from Nt = 4 to Nt = 6 as we would expect for a physical transition. This big peak
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Figure 2: Polyakov loop density (on the left) varying β in the range from 1.35, the critical coupling of the
bulk transition “βc”, to 1.401 where we are in the deconfined phase (all data from the 6× 163 lattice). On
the right a rescaling of the Polyakov loop for the smallest lattices assuming a first order transition (ν = 1/3
and yχ = 2.47 based on a fit on the peak heights). The smallest lattice is evidently not in a scaling region
while the other two agree quite well with the hypothesis. Points on the 6× 163 lattice on the left of βc are
probably bad sampled, we just need more statistics.

completely overshadows the real physical transition that can be seen as a little peak in the weak
coupling region at β ∼ 1.395 for Nt = 6 and several spatial volumes.

Polyakov Loop is insensitive to the bulk transition so we used it to detect the position of the
physical one, even if it’s not an order parameter, see fig. 2. From the behaviour of this observable
one can guess a first order transition. An accurate scaling analysis is needed for a conclusive
statement.

2.2 Parameter ρ

The ρ parameter which, we recall, is defined as the difference between the actions without
and with the monopole insertion is expected to be volume independent as β → 0 and to show a
dip at the physical transition, see for example [6] . Measures of this parameter showed it to be
extremely sensitive to the bulk transition with a strong dip at β ∼ 1.36 for all volumes, see fig. 3.
Dips at the physical transition are evident only for large volumes Ns > 20, fig. 4. The background
bulk transition precludes any direct scaling analysis using the monopole operator, moreover volume
indepencence before the physical transition can’t be seen; key features of the operator are obscured.
Another method is needed to study the problem.

A promising method for the ρ susceptibility measure is to renormalize the operator at T=0
subtracting its value 〈ρ0〉 ≡ 〈ρ(T = 0)〉. This is analogous to a renormalization in the free energy
density typical in thermodynamical analisies. This way is at an explorative stage.

2.3 Conclusion

We are working on the G2 centerless theory in search for confinement by dual superconduc-
tivity. Our parameter ρ shows as expected a dip at the transition points but there’s an unphysical
background that obscures its scaling properties. We are developing a method to deal consistently
with this background and find a first order scaling as expected from plaquette and Polyakov Loop
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Figure 3: Results on the ρ parameter at different lattice volumes, strong dip occours at the bulk transition
point.
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Figure 4: Same as before, magnification of the physical transition region.
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Monte Carlo hystories. Also a scaling analysis of the Polyakov Loop susceptibility, even if it is not
an order parameter, seems to indicate a first order phase transition.

We cannot yet conclude that the theory confines but first results, although plagued by the bulk
transition background, seems to indicate a positive answer.
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