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1. Introduction

It is interesting to study color confinement mechanism in@ua Chromodynamics (QCD).
The dual superconductor scenario of the QCD vacuum may badidzde for that mechanism.
In paticular, it is known that the string tension calculafeam the abelian and monopole parts
reproduces well the original one, once we perform an abgirajection in Maximally Abelian
(MA) gauge. It is so-called "abelian and monopole dominandut it has been diffcult to see
these phenomena in any other gauges. One of the reason gétigie problem may come from the
fact that they used the monopoles on the lattice defined byr@®w®Gand Toussaint(DT) [6].

Recently, we have demonstrated that the gauge-invariaghata monopole can be con-
structed in the pure Yang-Mills theory without any fundataéscalar field. The success is achieved
based on a new viewpoint proposed by three of us [2] for thelin@ar change of variables
(NLCV), which was called Cho—Faddeev—Niemi (CFN) deconitjms [3][4], see also [5]. We
have found that the magnetic charge of our lattice magnediwamole is perfectly quantized. More-
over, we have confirmed dominance of our magnetic monopdieeirstring tension, while it was
first shown in [7] in the conventional Maximally Abelian (MAjauge [8]. Therefore we can show
the gauge invariance of the dual superconductor scenatiedCD vacuum.

In this paper, we summarize the recent results on a latticeutation of Yang-Mills theory
based on NLCV and a gauge-invariant magnetic monopole omicefd].

2. Lattice CFN variablesor NLCV on alattice

We have proposed a natural and useful lattice formulatiaghehon-linear change of variables
(NLCV) in Yang-Mills theory corresponding to the CFN decawsition [3, 4]. It is a minimum
requirement that such a lattice formulation must reprodbeeontinuum counterparts in the naive
continuum limit. In this stage, therefore, it is instruetito recall how the CFN variables are
defined in the continuum formulation. We restrict the foliogrargument to SU(2) gauge group,
for simplicity.

In the continuum formulation [3, 2], a color vector figix) = (na(x)) (A= 1,2,3) is intro-
duced as a three-dimensional unit vector field. In what ¥adlove use the boldface to express the
Lie-algebrasu(2)-valued field, e.gn(X) :=na(X)Ta, Ta= %GA with Pauli matriceoa (A= 1,2,3).
Then thesu(2)-valued gluon field (gauge potentia), (x) is decomposed into two parts:

Au(X) = V(X)) +Xu(x), (2.2)
in such a way that the color vector fiahdx) is covariantly constant in the background fislg(x):
0= Zu[VIn(x) := dun(x) —ig[V u(X),n(X)], (2.2)

and that the remaining fiel, (x) is perpendicular to(x):
A(X) - Xy (x) = 2tr(n(x) X (x)) = 0. (2.3)

Here we have adopted the normalizatiofTflg) = %GAB. Both n(x) and A, (x) are Hermitian
fields. This is also the case fof, (x) andX,(x). By solving the defining equation (2.2), thg, (x)
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field is obtained in the form:
V(%) = cu(¥)n(x) —igHdun(x),n(x)]. (2.4)

On a lattice, on the other hand, we introduce the site variapl in addition to the original
link variableU, , which is related to the gauge potentfg),(x) in a naive way:*

U = exp(—iegAy (X)), (2.5)

wherece is the lattice spacing anglis the coupling constant. Herg is Hermitian,n! = ny, and
Uy y is unitary, U)Z u =Uyi. The link variableUy , and the site variable, transform under the
gauge transformation Il [2] as

U = QU QF = Us e = QunQf =n. (2.6)

X,

Suppose we have obtained a link variallg, as a group element @ = SU(2), which is
related to thesu(2)-valued background fieldl ,(x) through

Vi = exp(—iegV (X)), (2.7)

whereV ,(X) is to be identified with the continuum variable (2.4) and heevig, must be unitary
Vi =V L.
A lattice version of (2.2) and (2.3) is respectively given by

My Vi = Vi Nt s (2.8)

and
tr(nUxuVyr ) = 0. (2.9)

Both conditions must be imposed to determifig for a given set oh, andUy ;.

By solving the defining equation (2.8) and (2.9), the linkiahle V, , is obtained up to an
overall normalization constant in terms of the site vagalland the original link variablely , =
exp(—iggA (X)), just as the continuum CFN variable aAg(x) in (2.4)':

Vx7u :VX:H [U,n} :szu‘i_nXuX’unx.‘_u. (210)

Finally, the unitary link variabIeA/X,,l[U,n] is obtained after the normalization:

. . 1
Vo = ViU, n] == Ve i /1 / étr[vXTuvw]. (2.11)

It is easy to show that the naive continuum lirait» O of the link variable (2.11) reduces to the
continuum expression (2.4).

*In general, the argument of the exponential in (2.5) is the ihtegral of a gauge potential along a link frerto
x+ u. Note also that we define a color vector fielgk) := na(x) Ta in the continuum, while := n2aa on the lattice
for convenience.

TSee [1] for the detail.
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Therefore, we can define tlgauge-invariant quxG_)p[U,n], (plaguette variable) by
éX,HV[U ) I’]] = s‘zarg(tr{(lJr nX)\7X7u\7x+[1,v\7xt¢-v,u\7xTv}/tr(l))- (2-12)

It is also shown that the naive continuum limit of (2.12) reelsl to the gauge-invariant field
strength;

O v = 9uCy — AyCy + g~ n- (AN x dyN) = Gpy (%), (2.13)

which plays the similar role that 'tHooft—Polyakov tenstayed in describing the magnetic monopole
in Gergi—Glashow model.

3. Numerical simulations

It has been shown that the SU(2) master Yang-Mills theoryteriin terms ofA,(x) and
n(x) has the enlarged local gauge symmeéfg’czl = SU(2).o % [SU(2) /U (1))8 ., larger than
the local gauge symmeti$U(2)%2.., = SU(2)],.4 in the original Yang—Mills theory. In order to
fix the whole enlarged local gauge symme@@;:gl, we must impose sufficient number of gauge
fixing conditions.

First of all, we generate the configurations of SU(2) linkables{U, ,, }, Uy , = expg—igeA,(X)],
using the standard Wilson action based on the heat bath thettext, we define the new Maximal
Abelian gauge (nMAG) on a lattice. By introducing a vectoldiey of a unit length with three com-
ponents, we consider a functiorgluaclU,n; Q, O] written in terms of the gauge (link) variable
Uy, and the color (site) variablg, defined byFvaclU,n; Q0] = 3, tr(1— G’nXQUWen)(Jr“QU)Z“).

Here we have introduced the enlarged gauge transformafioi;, := Qxe#QLu for the link

variableUy , and®ny = @Xnﬁo) O for an initial site variablen&o) where gauge group elemertds
and©y are independent SU(2) matrices on a gitd he former corresponds to tigJ(2)“ gauge
transformation(A ) (x) of the original potential: (A,)?(x) = Q(X)[A,(X) +ig~19,]QT(x) =
AL (X) + Dy[A]w(x) + O(w?) for the Q = €99 while the infinitesimal form of the latter reads
n%(x) = n(x) +gn(x) x B(x) = n(x) +gn(x) x B(x) for the adjoint{SU(2) /U (1)]° rotation©y =
dad(x)

After imposing the nMAG, the theory still has the local gasgmmetrySU(2)©=% := SU(2)|! ..,
since the ’'diagonal’ gauge transformatiom= 6 does not change the vaue of the functional
FamaclU,n; Q. ©]. Therefore,ny configuration can not be determined at this stage. In order to
completely fix the gauge and to determimg we need to impose another gauge fixing condition
for fixing SU(2)|!.,. For example, we choose the conventional Lorentz-Landageyar Lat-
tice Landau gauge (LLG) for this purpose. The LLG can be impdsy minimizing the function
FLiclU; Q) FglU; Q] = Suputr(1— Uy y) — 1/4 [ d* [(A)®(X)]? (£ — 0),.with respect to
the gauge transformatidy for the given link configurationgUy ,, }.

In what follows, the desired color vector fiefg is constructed from the interpolating gauge

transformation matrix®, by choosing the initial valuel? = o3 and
Ny = 0,030) = Yo, nt =tr[oa©,030]]/2 (A=1,2,3). (3.1)

We generate the configurations of the color vector field according to the method explained
above together with the configurations of SU(2) link vars{Uy ,}. Then we can construct
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{\7X,,1[U,n}} from (2.11). The numerical simulations are performed on‘dlatice atf =2.2, 2.3,
2.35, 2.4, 2.45, 2.5, 2.6 and on“llattice atB = 2.4 by thermalizing 3000 sweeps respectively.

3.1 Quantization of magnetic charges

We construct the gauge-invariant field strength (2.12) tmaekconfigurations of the magnetic
monopole currentk, , } defined by

1 — 1
Ku(s) = —Es“vpgdvepg(er H) =~ —Eswpadvag(x). (3.2)

This definition agrees with our definition of the monopolehia tontinuum (divided by72).

In our formulation, we have only the real varialG_De[U ,n] at hand, and we are to calculate the
monopole current using the final term in (3.2). Thereforés ot so trivial to obtain the integer-
valuedky (s) from the real-value®p[U, n]. To check quantization of the magnetic charge, we have
made a histogram df (s, ) := 27k, (s) = %s,lvpadvépa(qu M), i.e., magnetic charge distribu-
tion. Note thatk(s, 1) should become a multiple ofr2if the magnetic charge is quantized. Our
numerical results show thki(s, u) is completely separated into 0 #2rwithin an error of 1010,
see Table 3.1. We have checked that the data in Table 3.1 sxinatotal all the configurations
N = 4 x 8* = 16384, because the numbérof links in thed-dimensional lattice with a side length
L is given byN, = dL9. This result clearly shows that the new CFN magnetic chargeantized as
expected from the general argument. We have observed thabtiservation law of the monopole
current holds, since the number-e2m configurations is the same as that-d?rr configurations.

Charge| -75 | 65 | 55 | 45| 35| -25 | -15 | -05
~-65|~55|~45|~-35|~-25|~-15| ~-05| ~05
Number| O 299 0 0 0 0 0 15786
Charge| 0.5 15 2.5 3.5 4.5 5.5 6.5
~15| ~25| ~35| ~45| ~55| ~65| ~7.5
Number| O 0 0 0 0 299 0

Table 1: Histogram of the magnetic charge (value<afs, i) distribution for CFN monopoles orf'8attice
atp3 =2.35.
3.2 Monopole dominance of the string tension

In order to study the monopole dominance in the string tensice proceed to estimate the
magnetic monopole contributiofi\i,(C)) to the Wilson loop average, i.e., the expectation value of
the Wilson loop operatofW; (C) ). We define the magnetic pat,(C) of the Wilson loop operator
W (C) as the contribution from the monopole currénts) to the Wilson loop operatof:

Win(C) = exp(27 3 ku(9N,(9)), (3.3)
ST

Nu(S) = 3 86— ) pouapydaSh (S 1) B9 = () (3.4

*The Wilson loop operatdi (C) is decomposed into the magnetic pak(C) and the electric pake(C), which
is derived from the non-Abelian Stokes theorem, see AppeBdif [10]. In this paper, we do not calculate the electric
contribution(We(C)) whereWe(C) is expressed by the electric currgpt= 9, Fyy.
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whereNy (s) is defined through the external electric souigés) which is used to calculate the static
potential: ¢' denotes the backward lattice derivatiﬂ,’gef (x) = f(x) — f(x—p), Sf;y(s) denotes a
surface with the closed loop on which the electric sourcd,(s) has its support, and, }(s— )
is the Lattice Coulomb propagator. We obtain the stringitenby evaluating the average of (3.3)
from the generated configurations of the monopglgg’s) }.

We calculate the respective potent¥@lR) from the respective averad@/(C)):

Vi(R) = ~log {(W(RT))/ (W(RT 1)} (i=rf.m) (3.5)

whereC = (R, T) denotes the Wilson loof with side lengthd)R andT. The obtained numerical
potential is fitted to a linear term, Coulomb term and a corigizrm:

Vi(R) = oiR— ai/R+¢i, (3.6)

whereo is the string tensiony is the Coulomb coefficient, ariis the coefficient of the perimeter
decay: W(R,T)) ~ exg—GiRT - G(R+T) + aiT/R+---]. The numerical simulations are per-
formed on 8 lattice atB = 2.3,2.4, and 16 lattice atB = 2.4, 50 configurations in each case. The
results are shown in Table 2. In order to obtain the full SWélltsot, as, especially, we used
the smearing method [9] as noise reduction techniques focffigurations on Telattice.

B o as Om Om

2.3(8") 0.158(14) 0.226(44) 0.135(13) 0.009(36)
2.4(8) 0.065(13) 0.267(33) 0.040(12) 0.030(34)
2.4(16%) 0.075(9) 0.23(2) 0.068(2) 0.001(5)

Table 2: String tension and Coulomb coefficient |

B Of as ObTm aOpTm
2.4(16% 0.072(3) 0.28(2) 0.068(2) 0.01(1)
2.45(1¢) 0.049(1) 0.29(1) 0.051(1) 0.02(1)
2.5(16) 0.033(2) 0.29(1) 0.034(1) 0.01(1)

Table 3: String tension and Coulomb coefficient Il (reproduced fraif) [

We find that the numerical errors At= 2.3 of 8* lattice are relatively small in spite of small
size of the lattice 8 Moreover, the monopole pag, reproduces 85% of the full string tension
ot. The data of 8 lattice at = 2.4 show large errors. The data of“llattice atB = 2.4 exhibit
relatively small errors for the full potential and showsttbg, reproduces 91% of;. In general,
the monopole part does not include the Coulomb term and himecpotential is obtained to an
accuracy better than the full potential.

For comparison, we have shown in Table 3 the data of [7] whichdiscovered the monopole
dominance for the first time on %8attice wheregprm, reproduces 95% ofi;. Here oprm and
aptm denotes the conventional monopole contribution extra@tenh the diagonal potentiaAf;
using Abelian projection in MAG. In particular, the compsm between the data on“liattice at
B = 2.4 and the data on f@attice atB = 2.4 in Table 2 reveals that the monopole contributions
have the same value between the conventional DT monopolewnaagnetic monopole. Thus,
we have confirmed the monopole dominance in the string tenging our magnetic monopole.
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4. Conclusion and discussion

In this paper, we have proposed a new formulation of the NLEVamg-Mills theory which
was once called the CFN decomposition. This compact fortonlaof new variables enables us
to guarantee the magnetic charge quantization. The moadoohinance has been shown anew in
the string tension. Thus, the magnetic charge quantizatrshmonopole dominance in the string
tension are confirmed in the gauge invariant way, whereasttaee been so far shown only in a
special gauge fixing called MA gauge which breaks the colorragtry explicitly.
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