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Dual superconductivity is believed to be a promising mechanism for quark confinement. Indeed, that

this picture is true has been confirmed in the maximal Abelian (MA) gauge. However, it is not yet

confirmed in any other gauge, and the MA gauge explicitly breaks color symmetry. To remedy this

defect, we propose to use our compact formulation of a non-linear change of variables (NLCV), called

once by the Cho-Faddeev-Niemi (CFN) decomposition, on a lattice. This formulation has succeeded

to extract the magnetic monopole with integer-valued magnetic charge in the gauge-invariant way. We

present measurements of various correlation functions for the operators constructed from the NLCV in

SU(2) Yang-Mills theory. Some of our results reproduce previous results obtained in MA gauge, e.g.,

DeGrand-Toussaint monopole, infrared Abelian dominance and off-diagonal gluon mass generation.

These studies preserve color symmetry, which is sharp contrast to the conventional MA gauge. We

argue the gauge fixing independence of these results and the implications for quark confinement
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1. Introduction

Quark confinement is still an unsolved and challenging problem in theoretical particle physics. Dual
superconductivity[2] is believed to be a promising mechanism for the vacuum of the non-Abelian gauge
theory[1]. Indeed, the relevant data supporting the validity of this picture have been accumulated by
numerical simulations especially since 1990 and some of the theoretical predictions [3, 4] have been
confirmed by these investigations: infrared Abelian dominance [5], magnetic monopole dominance [6]
and non-vanishing off-diagonal gluon mass [7] in the Maximal Abelian (MA) gauge [8], which are the
most characteristic features for dual superconductivity. However, they are not yet confirmed in any other
gauge than the MA gauge, and the MA gauge explicitly breaks color symmetry. To establish this picture
in gauge invariant way, we need to answer how to define and extract “Abelian" part,Vµ , from the original
non-Abelian gauge field,Aµ , which is responsible for the area decay law of the Wilson loop average.
The conventional Abelian projection [3] is too naive to realize this requirement. At the same time, we
must answer why the remaining partXµ in the non-Abelian gauge fieldAµ decouple in the low-energy
(or long-distance) regime.

We propose to use a non-linear change of variables (NLCV) which was called the Cho-Faddeev-
Niemi (CFN) decomposition[11, 12, 13, 14]. To remedy the defect of ordinary approaches [15, 16, 18],
we introduce a compact representation of NLCV on a lattice. The naive decomposition presented at the
last conference was improved to extract the magnetic monopole with integer-valued magnetic charge in
the gauge-invariant way[19]. Some of our results reproduce previous results obtained in MA gauge, e.g.,
DeGrand-Toussaint monopole, infrared Abelian dominance.

2. Lattice CFN variables or NLCV on a lattice

In the continuum formulation [12, 10], a color vector field~n(x) = (nA(x)) (A = 1,2,3) is introduced
as a three-dimensional unit vector field, and the bold faced variable is used to express the Lie-algebra
su(2)-valued field, e.g.,n(x) := nA(x)TA, TA = 1

2σA with Pauli matricesσA (A = 1,2,3). Then thesu(2)-
valued gluon field (gauge potential)Aµ(x) is decomposed into two parts,Aµ(x) = Vµ(x)+Xµ(x), in such
a way that the color vector fieldn(x) is covariant constant in the background fieldVµ(x):

0 = Dµ [V]n(x) := ∂µn(x)− ig[Vµ(x),n(x)], (2.1)

and that the remaining fieldXµ(x) is perpendicular ton(x):

~n(x) ·~Xµ(x)≡ 2tr(n(x)Xµ(x)) = 0. (2.2)

Here we have adopted the normalizationtr(TATB) = 1
2δAB. Bothn(x) andAµ(x) are Hermitian fields. This

is also the case forVµ(x) andXµ(x). By solving the defining equation (2.1), the decomposed variables
are obtained in the form:

Vµ(x) = V‖
µ(x)+V⊥

µ (x) = cµ(x)n(x)− ig−1[∂µn(x),n(x)], (2.3)

Xµ(x) =−ig−1[
n(x),Dµ [A]n(x)

]
, (2.4)

where the second termV⊥
µ (x) :=−ig−1[∂µn(x),n(x)] = g−1(∂µ~n(x)×~n(x))ATA is perpendicular ton(x),

i.e., ~n(x) ·~V⊥
µ (x) ≡ 2tr(n(x)V⊥

µ (x)) = 0. Here it should be remarked that the parallel partV‖
µ(x) =

cµ(x)n(x), cµ(x) = tr(n(x)Aµ(x)) proportional ton(x) can not be determined uniquely only from the

defining equation (2.1), and the perpendicular condition of (2.2) determinesV‖
µ(x) and remainder part

Xµ(x).
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On a lattice, on the other hand, we introduce the site variablenx = nA(x)σA in addition to the original
link variableUx,µ which is related to the gauge potentialAx′,µ :1

Ux,µ = exp(−iεgAx′,µ ,), (2.5)

where(x′,µ) = (x+ µ/2,µ) represents the midpoint of the link2. Note thatnx is Hermitian,n†
x = nx, and

Ux,µ is unitary,U†
x,µ = U−1

x,µ . The link variableUx,µ and the site variablenx transform under the gauge
transformation II [10] as follows:

Ux,µ →ΩxUx,µΩ†
x+µ = U ′

x,µ , nx →ΩxnxΩ†
x = n′x. (2.6)

Now, suppose we have obtained a "link variable"V̂x,µ and X̂x,µ as a group element ofG = SU(2)
through

V̂x,µ = exp(−iεgVx′,µ), (2.7)

X̂x,µ = exp(−iεgXx,µ), (2.8)

where these are related to thesu(2)-valued background field identified with the continuum variable, (2.3)
and (2.8). A lattice version of defining equations (2.1) and (2.2) are given by

D(ε)
µ [V]nx := ε−1[Vx,µnx+µ −nxVx,µ ] = 0, (2.9)

tr(nxXx,µ) = 0. (2.10)

The equation (2.9) needs a definition of the lattice covariant derivative for an adjoint field, and the mid-
point evaluation of the difference is adapted:∂ (ε)

µ nx = ε−1[nx+µ −nx] = ∂µnx′+ O(ε2). Therefore, the
continuum covariant derivative for the adjoint field up toO(ε2) at midpoint is given by3

ε−1[Vx,µnx+µ −nxVx,µ ] = ∂µnx′− ig[Vx′,µ ,nx′ ]− iε
2

{
gVx′,µ ,∂µnx′

}
+O(ε2).

The derivative (2.9) obeys the correct transformation property, i.e., the adjoint rotation on a lattice:

D(ε)
µ [V]nx →Ωx(D

(ε)
µ [V]nx)Ω†

x+µ ,

provided that the link variableVx,µ transforms in the same way as the original link variableUx,µ :

Vx,µ →ΩxVx,µΩ†
x+µ = V ′

x,µ . (2.11)

This is required from the transformation property of the continuum variableVµ(x),4 see [10]. Therefore,
we obtain the desired condition betweennx andVx,µ :

nxVx,µ = Vx,µnx+µ . (2.12)

The defining equation (2.12) for the link variableVx,µ is form-invariant under the gauge transformation
II, i.e., n′xV ′

x,µ = V ′
x,µn′x+µ .

1We define a color vector fieldn(x) := nA(x)TA in the continuum, whilenx := nA
x σA on the lattice for convenience. Note

also that we use a blackbord bold faced variable in the argument of exponential to express that it is determined from link variable.
2In general, the argument of the exponential in (2.5) is the line integral of a gauge potential along a link fromx to x+ µ.

We adopt this convention to obtain the naive continume limit ofO(ε2) corrections.
3The termiε

2

{
gVx′,µ ,∂µ nx′

}
is of the orderO(ε2), sinceVx′,µ in contimume limit is obtained by eq(2.3), and∂µ nx′ ·nx′ =

0+O(ε) is saticefied.
4This indicates thatVx,µ is a real link variabule, that is, the argument of the exponential in (2.7) is the line integral of a

gauge potential along a link fromx to x+ µ .
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A lattice version of the orthogonality equation (2.2) given by equation(2.10) or

tr(nxexp{−iεgXx,µ}) = tr(nx{1− iεgXx,µ})+O(ε3) = 0+O(ε3). (2.13)

This implies that the trace vanishes up to first order ofε apart from the second order term. Note thatXx,µ

is defined on the lattice site and transforms in the same way asnx:

Xx,µ →ΩxXx,µΩ†
x = X′x,µ , (2.14)

so that orthogonality condition (2.10) is gauge invariant. Then, we proceed to solve the defining equation
(2.12) for the link variableVx,µ and equation(2.10) for the variableXx,µ , and express it in terms of the site
variablenx and the original link variableUx,µ = exp(−iεgAµ(x)), as is case that the continuum variable
Vµ(x) andXµ(x) are expressed in terms ofn(x) andAµ(x). Remembering the relationXx,µ =Ax,µ−Vx,µ ,
Xx,µ = exp(−iεgXx,µ) can be defined using link variablesVx,µ andUx,µ contacting to sitex:

Xx,µ = λV†
x−µ,µUx−µ,µ +φUx,µV†

x,µ −λ
g2ε2

2
[Vx−µ/2,µ ,Ax−µ/2,µ ]−φ

g2ε2

2
[Ax+µ/2,µ ,Vx+µ/2,µ , ]+O(ε3)

= λV†
x−µ,µUx−µ,µ +φUx,µV†

x,µ − (λ −φ)
g2ε2

2
[Vx,µ ,Ax,µ ]+O(ε3), (2.15)

where the relation for matricesexp(tA+ tB) = exp(tA)exp(tB)+ t2/2[A,B]+O(t3) is used. The param-
eterλ = φ is selected so thatXx,µ is determined to coincide with continuum expression up toO(ε3).

As for Vx,µ , on the other hand, the equation (2.12) is a matrix equation and it is rather difficult to
obtain the general solution. Therefore, we adopt an ansatz (up to quadratic inn):

Vx,µ = Ux,µ +αnxUx,µ +βUx,µnx+µ + γnxUx,µnx+µ , (2.16)

which enjoys the correct transformation property, the adjoint rotation (2.11). It turns out that this ansatz
satisfy the defining equation (2.12), if and only if the numerical coefficientsα,β and γ are chosen
to be γ = 1, α = β . Then, substituting the ansatz (2.16) with a still undetermined parameterα into
equation(2.15), we obtainα = 0+O(ε2), see [18].

Thus we have determinedVx,µ andXx,µ up to an overall normalization

Vx,µ = Vx,µ [U,n] = Ux,µ +nxUx,µnx+µ ,

Xx,µ = Xx,µ [U,n] = V†
x−µ,µUx−µ,µ +Ux,µV†

x,µ .

The unitary link variablêVx,µ [U,n] andX̂x,µ [U,n] can be obtained after the normalization:

V̂x,µ [U,n] := Vx,µ/

√
1
2

tr[V†
x,µVx,µ ], X̂x,µ [U,n] := Xx,µ/

√
1
2

tr[X†
x,µXx,µ ]. (2.17)

3. Numerical simulations and generation of configuration of NLCV

We generate the configurations of SU(2) link variables{Ux,µ} using standard Wilson action. The
numerical simulation are performed on244 lattice atβ = 2.3, 2.4, 2.5, by thermalizing 15000 sweeps,
and on364 latticeβ = 2.5, 2.6, 2.7 by thermalizing 18000 sweeps. 200 configurations are obtained every
300 sweeps.

NLCV on lattice is obtained according to the method of previous paper [18]. Figure 1 shows the
extended gauge symmetry in master-YM for NLCV (left panel) and NLCV of SU(2) link variables via
gauge transformations (right panel). The configuration of SU(2) link variablesUx,µ and the color vector
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YM+LLG

global (2)SU

M-YM 
+nMAG

M-YM
+LLG+nMAG
global (2)SU

Type I  (2)SU ω

equivalent

equivalent

M-YM

[ ](2) (2) / (1)SU SU Uω θ×

Type II (2)SU ω θ=

Yang-Mills
theory

Landau gauge
MA gauge

CFN variable

n

Heat bath

Figure 1: (left)The relationship between the master-YM theory and the original YM theory. (right) NLCV via
gauge transfroamtion.

field nx has an extended gauge symmetrySU(2)ω × [SU(2)/U(1)]θ . The equivalent theory to the origi-
nal YM theory is obtained by the gauge fixing which we call the new Maximal Abelian gauge (nMAG).
We define a functional written in terms of the gauge (link) variableUx,µ and the color (site) variable
nx; FnMAG[U,n;Ω,Θ]≡∑x,µ tr(1−Θnx

ΩUx,µ
Θnx+µ

ΩU†
x,µ), where we have introduced the enlarged gauge

transformation:ΩUx,µ := ΩxUx,µΩ†
x+µ for the link variableUx,µ andΘnx := Θxn

(0)
x Θ†

x for an initial site

variablen(0)
x . The gauge group elementsΩx andΘx are independent SU(2) matrices on a sitex. Af-

ter imposing the nMAG, the theory still has the local gauge symmetrySU(2)ω=θ
local , since the “diagonal”

gauge transformationω = θ does not change the value of the functionalFnMAG[U,n;Ω,Θ]. Therefore,nx

configuration can not be determined at this stage. In order to determinenx, we need to impose another
gauge fixing or choice of the gauge of link variableUx,µ for fixing SU(2)ω . The desired color vector
field nx is constructed from the interpolating gauge transformation matrixΘx by choosing the initial value
n(0)

x = σ3 andnx := Θxσ3Θ†
x = nA

x σA with nA
x = tr[σAΘxσ3Θ†

x]/2 (A = 1,2,3), where{Θx} are given
by gauge transformations that satisfyUx,µ = ΘxUMAG

x,µ Θ†
x+µ . We choose, for example, the conventional

Lorentz-Landau gauge or Lattice Landau gauge (LLG) for this purpose. The LLG can be imposed by
minimizing the functionFLLG[U ;Ω] = ∑x,µ tr(1−ΩUx,µ) with respect to the gauge transformationΩx for
the given link configurations{Ux,µ}.

4. Infrared Abelian Dominance and Mass generation of the off-diagonal gluon

Using new variables through NLCV, we are now ready to study characteristic features of the YM
theory for any choice of gauge fixing such as the infrared Abelian dominance, magnetic monopole domi-
nance and the non-vanishing off-diagonal gluon mass.5 Our proposed decomposition extract the “Abelian
part” Vx,µ in any gauge fixing preserving the color symmetry. The conventional MAG fixed theory is
reproduced as a special case of our formulation base on NLCV. To study the infrared Abelian domi-
nance and the non-vanishing off-diagonal gluon mass in LLG other than MAG, the correlation function
of the decomposed variableVx,µ andXx,µ has been measured. Left panel of figure2 shows propagators
DAA(x−y) =

〈
Ax,µAy,µ

〉
, DVV(x−y) =

〈
Vx,µVy,µ

〉
andDXX(x−y) =

〈
Xx,µXy,µ

〉
. The gauge potentials

are defined as link variablesAx′,µ = i
2gε

[
Ax,µ −A†

x,µ

]
, Vx′,µ = i

2gε

[
Vx,µ −V†

x,µ

]
. On the other hand, we

can define theXx,µ in two ways, one is extracted from compact representation,Xx,µ = i
2gε

[
Xx,µ −X†

x,µ

]
,

and the other is from definition of the decomposition,Xx′,µ = Ax′,µ −Vx′,µ . Plotting of two type of

5The magnetic monopole dominance has been found using integer valued and gauge invariant magnetic monopole defined
by our NLCV. This fact has been reported in lattice2006 [20] .
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Figure 2: (left) correlation functions〈O(x)O(y)〉 in the logalithmic scale, (right) rescaled correlation functions
ln

(
r3/2Gµµ(r;M)

)

DXX(x− y) are overlapped for several lattice spacings (severalβs), and extracted variable is consistent
(see left panel of figure2). On the other hand,DAA(x−y) andDVV(x−y) are overlapped, andDXX(x−y)
is dumped more quickly for infrared region thanDVV(x− y). This implies that the infrared Abelian
dominance is found in the LLG.

Next we study the mass of the decomposed fields from the correlation functions. The inverse Fourie
transformation of the massive gauge boson propagator should behave for larger = |x−y| as follows,

Gµµ(r;M) =
〈
Xµ(x)Xµ(y)

〉
=

∫
d4k

(2π)4eik(x−y) 1
k2 +M2

(
4+

k2

M2

)
' 3

√
M

2(2π)3/2

e−Mr

r3/2
.

So the scaled propagatorr3/2Gµµ(r;M) is proportional toe−Mr , that is, the mass of gauge potential,M, is
obtained as the dumping factor of ther3/2Gµµ(r;M). In other words, the gradient of the linear fitting in
the r vs ln

(
r3/2Gµµ(r;M)

)
plot gives the massM. Right panel of figure2 shows scaled log-plot of the

correlation functions. The distancer is in the unit square root of the string tension,
√

σST = 440MeV.

The relation betweenβ and lattice spacingε is from [21]. The dumping of propagator ofXx,µ field gives
the massMx' 1.18GeV, “Abelian part”Vx,µ indicatesMV = 0.48−0.66GeV. These are consistent with
study in MAG.[7]

5. Summary and discussion

We have proposed a new formulation of lattice Yang-Mills theory base on the NLCV. This resolves
all drawbacks of the previous formulation of the decomposition on a lattice. This compact formulation en-
ables us to guarantee the magnetic charge quantization in the gauge invariant way and to extract “Abelian"
part and “off-diagonal" part preserving color symmetry in any choice of gauge of the original YM theory.
These features are sharp contrast to the conventional MA gauge and these studies.

We have measured the correlation function (propagator in real space) in LLG. The Infrared Abelian
dominance and the gluon mass generation have been found. These results are consistent with study in
MA gauge.
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