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Dual superconductivity is believed to be a promising mechanism for quark confinement. Indeed, that
this picture is true has been confirmed in the maximal Abelian (MA) gauge. However, it is not yet
confirmed in any other gauge, and the MA gauge explicitly breaks color symmetry. To remedy this
defect, we propose to use our compact formulation of a non-linear change of variables (NLCV), called
once by the Cho-Faddeev-Niemi (CFN) decomposition, on a lattice. This formulation has succeeded
to extract the magnetic monopole with integer-valued magnetic charge in the gauge-invariant way. We
present measurements of various correlation functions for the operators constructed from the NLCV in
SU(2) Yang-Mills theory. Some of our results reproduce previous results obtained in MA gauge, e.g.,
DeGrand-Toussaint monopole, infrared Abelian dominance and off-diagonal gluon mass generation.
These studies preserve color symmetry, which is sharp contrast to the conventional MA gauge. We
argue the gauge fixing independence of these results and the implications for quark confinement
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1. Introduction

Quark confinement is still an unsolved and challenging problem in theoretical particle physics. Dual
superconductivit\Z] is believed to be a promising mechanism for the vacuum of the non-Abelian gauge
theoryfl]. Indeed, the relevant data supporting the validity of this picture have been accumulated by
numerical simulations especially since 1990 and some of the theoretical predi@jajshhve been
confirmed by these investigations: infrared Abelian dominabBhenjagnetic monopole dominancé] [
and non-vanishing off-diagonal gluon mag}ih the Maximal Abelian (MA) gauged], which are the
most characteristic features for dual superconductivity. However, they are not yet confirmed in any other
gauge than the MA gauge, and the MA gauge explicitly breaks color symmetry. To establish this picture
in gauge invariant way, we need to answer how to define and extract “AbelianVpaftom the original
non-Abelian gauge fieldgz,, which is responsible for the area decay law of the Wilson loop average.
The conventional Abelian projectioB][is too naive to realize this requirement. At the same time, we
must answer why the remaining paf, in the non-Abelian gauge field/, decouple in the low-energy
(or long-distance) regime.

We propose to use a non-linear change of variables (NLCV) which was called the Cho-Faddeev-
Niemi (CFN) decompositiodll,12,13,/14]. To remedy the defect of ordinary approach#s, [16, [19],
we introduce a compact representation of NLCV on a lattice. The naive decomposition presented at-the
last conference was improved to extract the magnetic monopole with integer-valued magnetic charge.in
the gauge-invariant wa{g]. Some of our results reproduce previous results obtained in MA gauge, e.g+
DeGrand-Toussaint monopole, infrared Abelian dominance.

2. Lattice CFN variables or NLCV on a lattice

In the continuum formulationd2, [10], a color vector fieldi(x) = (na(X)) (A= 1,2,3) is introduced
as a three-dimensional unit vector field, and the bold faced variable is used to express the Lie-algebra
su(2)-valued field, e.g.n(x) := na(X)Ta, Ta = %O‘A with Pauli matricessp (A= 1,2,3). Then thesu(2)-
valued gluon field (gauge potenti#), (x) is decomposed into two par#s, (x) =V, (X) + X (X), in such
a way that the color vector fieldlx) is covariant constant in the background fi®lg(x):

0= Zu[VIn(x) := dun(x) —ig[V u(x),n(x)]; (2.1)
and that the remaining fiel, (x) is perpendicular to(x):

A(X) - Xy (x) = 2tr(n(x)Xu(x)) = 0. (2.2)

Here we have adopted the normalizatigifaTg) = %5AB. Bothn(x) andA,(x) are Hermitian fields. This

is also the case fov ,(x) and X (x). By solving the defining equatioi2(l), the decomposed variables
are obtained in the form:

V() = Vi) +VE () = cu(3)n(x) ~ig*[dun(x),n(x)], (2.3)
Xp(x) = —ig~t [n(x), Zu[AIn(X)] , (2.4)
where the second termﬁ(x) = —ig~1[d,n(x),n(x)] = g~ 1(duM(X) x [(X))aTa is perpendicular tai(x),

i.e., i(X) - Vi (x) = 2tr(n(x)V(x)) = 0. Here it should be remarked that the parallel pa&t(x) =
cu(X)n(x), cu(x) = tr(n(x)Ay(x)) proportional ton(x) can not be determined uniquely only from the
defining equationd.1), and the perpendicular condition &.2) determinesl“ll(x) and remainder part
Xu(X).
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On a lattice, on the other hand, we introduce the site variaptena(X)oa in addition to the original
link variableUy ;, which is related to the gauge potentﬁa&#:l

Ux7u :eX[x—ISQAX/“,), (25)

where(X, 1) = (x+ /2, i) represents the midpoint of the litkNote thainy is Hermitian,n} = n, and
Uy is unitary,U,Iu = U;‘}. The link variableUy , and the site variablay transform under the gauge
transformation I1/L0] as follows:

Ux7u — QXUX“QI+“ = U/ nX — anxgl == n;( (26)

X, U
Now, suppose we have obtained a "link variablg}, and X, as a group element @ = SU(2)

through
Vi u = exp(—iegVy ), (2.7)

where these are related to th&?2)-valued background field identified with the continuum variat2e3)(
and R2.8). A lattice version of defining equation2.0) and 2.2) are given by

Dﬁ) V]ny = ‘S_l[vx,unx+p — Ny ] =0, (2.9)

The equationZ.S) needs a definition of the lattice covariant derivative for an adjoint field, and the mid-
point evaluation of the difference is adaptei;i‘?)nx = & Yngipy — Ny] = duny+ O(€?). Therefore, the
continuum covariant derivative for the adjoint field updge?) at midpoint is given b§

€V N — NV ] = G — 19V, N] — % {GVy . Oune } + O(€2).
The derivative2.9) obeys the correct transformation property, i.e., the adjoint rotation on a lattice:
Dy [VIne — Qx(Dif VI Q)
provided that the link variabMg ,, transforms in the same way as the original link varialyg :
Vicu — QVuQF, = Vi 1. (2.11)

This is required from the transformation property of the continuum varidple) 2 seellL(]. Therefore,
we obtain the desired condition betwegrandVy

nxvx_’u — Vx’unx+u. (2.12)

The defining equatiori2(12) for the link variableV, , is form-invariant under the gauge transformation

I, ie, Vg =V ey

1we define a color vector field(x) := na(x)Ta in the continuum, while, := nfga on the lattice for convenience. Note
also that we use a blackbord bold faced variable in the argument of exponential to express that it is determined from link variable.
2|n general, the argument of the exponential2cE] is the line integral of a gauge potential along a link fraro x+ p.
We adopt this convention to obtain the naive continume limig¢£2) corrections.
3The term%‘9 {gVXr,u,ﬁu nx/} is of the orderﬁ(sz), sinceVy ,, in contimume limit is obtained by €8(3), andd,ny - Ny =
0+ 0'(¢) is saticefied.
4This indicates tha¥ , is a real link variabule, that is, the argument of the exponentig2iv) (s the line integral of a
gauge potential along a link fromto x+ u.
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A lattice version of the orthogonality equatic®.2) given by equatioif.10) or
tr(ngexp{ —iegXy u}) = tr(n{1—iegXx u}) + O(€3) = 0+ O(3). (2.13)

This implies that the trace vanishes up to first ordes apart from the second order term. Note tKat
is defined on the lattice site and transforms in the same way.as

Xyu — QuXx QI = X>/<7H ) (2.14)

so that orthogonality conditioi2(10) is gauge invariant. Then, we proceed to solve the defining equation
(2.12) for the link variablevy ;, and equatiorl.10) for the variableXy ;,, and express it in terms of the site
variableny and the original link variabl®ly , = exp(—iegA (X)), as is case that the continuum variable

V u(x) andX,(x) are expressed in termsofx) andA ,(x). Remembering the relatiafy, , = Ay — Vi,

Xy u = exp(—iegXy ,) can be defined using link variablgg, andUy , contacting to sitex:

22 2.2
g€ g€
)\Vx uuUXfu,u"‘q)UX,quTu — A== 2 [Vx H/ZIJ’AX u/Zu] @ 2 [Ax+u/2,uan+u/2,ua]‘|‘ﬁ(53)

982

:)\VXT_“?“UX_MHJranX’uVX — (A — @)= [V, A ] + O(£%), (2.15)

where the relation for matricesxp(tA+tB) = exp(tA) exp(tB) +t2/2[A, B] + 0(t3)is used. The param-
eterd = ¢ is selected so that , is determined to coincide with continuum expression ug'te®).

As for V ;;, on the other hand, the equatidh 12) is a matrix equation and it is rather difficult to
obtain the general solution. Therefore, we adopt an ansatz (up to quadmtic in

VX,IJ - UX»IJ + anxux_’u + BUX’IJnx_A'_u + anux_’u I’]X_HJ, (216)

which enjoys the correct transformation property, the adjoint rotadhfl), It turns out that this ansatz
satisfy the defining equatior2(12), if and only if the numerical coefficienta,3 andy are chosen
to bey =1, a = . Then, substituting the ansat2.1€) with a still undetermined parameter into
equatior2.15), we obtaina = 0+ (£?), seell§).

Thus we have determinég ;, andXy , up to an overall normalization

Vi = Vu[U, ] = Uy + Uy iy
Xxvl'l == XX# [U 5 n] == VXT—[J.,[JUX*IJ:IJ + UXJJVXT.,IJ .

The unitary link variabl&/ ,[U,n] andXy ,[U,n] can be obtained after the normalization:
- 1
ViulU,n] = Ve p/ tr[quVx uls Xxu[U nj:=Xep/ [Xxuxx ul- (2.17)

3. Numerical simulations and generation of configuration of NLCV

We generate the configurations of SU(2) link variablel ,} using standard Wilson action. The
numerical simulation are performed @4* lattice atf = 2.3, 2.4, 2.5, by thermalizing 15000 sweeps,
and on36* lattice B = 2.5, 2.6, 2.7 by thermalizing 18000 sweeps. 200 configurations are obtained every
300 sweeps.

NLCV on lattice is obtained according to the method of previous palfr [Figurell shows the
extended gauge symmetry in master-YM for NLCV (left panel) and NLCV of SU(2) link variables via
gauge transformations (right panel). The configuration of SU(2) link varidllgsand the color vector
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Figure 1: (left)The relationship between the master-YM theory and the original YM theory. (right) NLCV via
gauge transfroamtion.

field ny has an extended gauge symmesky(2),, x [SU(2)/U(1)],. The equivalent theory to the origi-
nal YM theory is obtained by the gauge fixing which we call the new Maximal Abelian gauge (nMAG):
We define a functional written in terms of the gauge (link) varidlilg, and the color (site) variable
Ny; FamaglU,n; Q,0] = 3y tr(1— ©ny@Uyx 4,y s Uy 1), where we have introduced the enlarged gauge
transformation:QUx,u = QXUWQL“ for the link variableUy and®ny = @xn)ﬁo)ef( for an initial site
variablen&o). The gauge group elemenk, and ©y are independent SU(2) matrices on a siteAf-
ter imposing the nMAG, the theory still has the local gauge symnﬁlﬂ@)local, since the “diagonal”
gauge transformatiow = 8 does not change the value of the functioRaiac[U, n; Q, ©]. Thereforeny
configuration can not be determined at this stage. In order to detenyimee need to impose another
gauge fixing or choice of the gauge of link variaklg, for fixing SU(2),,. The desired color vector
field ny is constructed from the interpolating gauge transformation m@yiy choosing the initial value

n — g5 andny = 0,030] = nf'a” with n? = tr{oa®x030]]/2 (A= 1,2,3), where{O,} are given
by gauge transformations that satisfy,, = ©,U MAG@LH We choose, for example, the conventional
Lorentz-Landau gauge or Lattice Landau gauge (LLG) for this purpose. The LLG can be imposed-by
minimizing the functior  g[U; Q] = Yxu tr(1— QUX?,J) with respect to the gauge transformati@pfor
the given link configuration$U, , }.

4. Infrared Abelian Dominance and Mass generation of the off-diagonal gluon

Using new variables through NLCV, we are now ready to study characteristic features of the YM
theory for any choice of gauge fixing such as the infrared Abelian dominance, magnetic monopole domi-
nance and the non-vanishing off-diagonal gluon n?a®sir proposed decomposition extract the “Abelian
part” Vy ;, in any gauge fixing preserving the color symmetry. The conventional MAG fixed theory is
reproduced as a special case of our formulation base on NLCV. To study the infrared Abelian domi-
nance and the non-vanishing off-diagonal gluon mass in LLG other than MAG, the correlation function
of the decomposed variab\g , and Xy, has been measured. Left panel of fig@rehows propagators
Daa(X—Y) = (AxpAyy ), Duv(X—Y) = (VxuVy, ) andDxx (X — y) = (XxuXyy). The gauge potentials
[Axu A;E.,u} ) Vx’

are defined as link variables, [qu qu] On the other hand, we

can define th&, , in two ways, one is extracted from compact representaliQp, = de [XX T XI ,,} ,
and the other is from definition of the decompositidfy , = Ay, — Vy ;. Plotting of two type of

M= 2gs M= ng

5The magnetic monopole dominance has been found using integer valued and gauge invariant magnetic monopole defined
by our NLCV. This fact has been reported in lattice2026] |
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Figure 2: (left) correlation functiong§O(x)O(y)) in the logalithmic scale,
In (r¥2Gy,(r;M))

(right) rescaled correlation functions

Dxx(x—Yy) are overlapped for several lattice spacings (sev@sal and extracted variable is consistent
(see left panel of figur@). On the other hand)aa(x—y) andDyy (x—y) are overlapped, aridxx (X —Y)
is dumped more quickly for infrared region th&@yy(x—y). This implies that the infrared Abelian
dominance is found in the LLG.

Next we study the mass of the decomposed fields from the correlation functions. The inverse Fourie
transformation of the massive gauge boson propagator should behave fardafge y| as follows,

d*K gy 1 k? 3VM e Mr
Guu(r;M) = <X/J(X)Xu(y)> = / (27-[)4e|k( Y k2 1 M2 <4+> = 2(27-[)3/2 r3/2 -

M?2
So the scaled propagalrﬁ/zG“u(r; M) is proportional tee=M", that is, the mass of gauge potenthdl,is
obtained as the dumping factor of trfézGuu(r; M). In other words, the gradient of the linear fitting in
ther vsin (r3/ZGW(r;M)) plot gives the masdvl. Right panel of figur@ shows scaled log-plot of the
correlation functions. The distangeis in the unit square root of the string tensiQigst = 440MeV.
The relation betweefi and lattice spacing is from [21]. The dumping of propagator &, , field gives
the masdviy ~ 1.18 GeV, “Abelian part”Vy , indicatesMy = 0.48— 0.66 GeV. These are consistent with
study in MAG.[7]

5. Summary and discussion

We have proposed a new formulation of lattice Yang-Mills theory base on the NLCV. This resolves
all drawbacks of the previous formulation of the decomposition on a lattice. This compact formulation en-
ables us to guarantee the magnetic charge quantization in the gauge invariant way and to extract “Abelian”
part and “off-diagonal” part preserving color symmetry in any choice of gauge of the original YM theory.
These features are sharp contrast to the conventional MA gauge and these studies.

We have measured the correlation function (propagator in real space) in LLG. The Infrared Abelian
dominance and the gluon mass generation have been found. These results are consistent with study in
MA gauge.
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