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We report on numerical studies of RG decimations in SU(2pygabheory. We study in particular
a class of plaquette actions involving sums of group reprtesens. We measure a number of
observables representative of different length scalesdardo investigate the transformation of
the system under different choices of spin blocking, andrana the flow of the effective action
couplings. A need for a projection to some class of effecistons on the configurations result-
ing from the adopted numerical decimation procedures isotsinated. A numerical decimation
procedure resulting in an effective single plaquette Lagian tailored to reproduce different
medium/large scale physics is devised.
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1. Introduction

The Monte Carlo Renormalization Group (MCRG) technique is a useful twaldnstructing
an improved action with reduced discretization errors on the lattice. It leasdgensively used in
the search for the ‘perfect actioff] [1], for which, under blockingisfrmations, trajectory flows
approach the Wilsonian ‘renormalized trajectory’, and lattice artifacts pdesap

Under RG evolution any starting action generally develops a variety of additamuplings.
An adequate model of the resulting effective action must, therefore, mealatioice of several such
couplings. In the past effective models with actions consisting of varilmsed loops in the fun-
damental representatiof] [2], or a mixed fundamental-adjoint single plagetive [3] have been
studied. Systematic errors due to the truncation of the phase space ghoveevbe significant and
prevent the effective model from reaching the renormalized trajecfdsp it is a priori unclear
if a configuration obtained after the numerical block spinning is reprebentz the equilibrium
configurations of the adopted effective model.

After one or more block spinnings are performed, starting from a simple\iélgon) action,
one needs to measure the set of couplings retained in one’s model ofietiivefaction. This may
be achieved by use of demd [4] or Schwinger-Dyson metHdds [2].

Our goal is to study the long distance confining regime of non-Abelian gdnegey. Various
RG decimation schemes can be employed in order to connect perturbaiivesshile with non-
perturbative long scale physics. In Refff [5] an exact analytical deimarocedure was devised
which imposes lower and upper bounds on such quantities as the partitdiofyrand the parti-
tion function in the presence of a vortex, and other related quantities. rbloegure can also be
implemented numerically. Other numerical decimation schemes have beenegudpisre and
are explored below.

We report some progress on the construction of an effective singleigitagaction model
which is designed to reproduce long/medium scale physics correctly. Bow¢hdevise special
decimating procedures, which target specific medium and large distaserrables (Wilson loops,
static quark potential etc.). We pursue both analytical and numericalguoe® Here, we report
mainly on a numerical decimation study.

2. Decimation procedures

Starting with a reflection positive plaguette action, e.g. the fundamentakeaygegion Wilson
action, on lattice\ of spacinga, aftern decimation stepsa(— A a) the partition function is

Za(B.n) =exp( Y o™ |A[/A™) Zyw (2.1)
m=0

where @™ denotes the bulk free energy generated by edéhYa — A(Ma step, andZ,w is
the resulting partition function at scal'a. For a class of decimations of the ‘potential moving’
type characterized by certain parameters it was showfi in [5] that: (a)tlmman Z,« retains
one-plaquette form, but contains generally all representations; (l® iharrange of values of the
parameters for which each decimation step results in an upper b@u8,n— 1) < Zx(S,n);
(c) there is another range of parameter values for which each decimépmesults in a lower
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bound,Zx(B,n—1) > Zx(B,n). It is then possible to introduce a single parametewrhich, at
each decimation step, interpolates between the upper and lower bourtteranedhas a value that
keeps the partition function constant, i.e. exact under each succstsive

The same development can be generalized to apply in presence of oseevaiiles, in par-
ticular vortex free energies, i.e. twisted partition functions. Other quantifiggaerest, such as
Wilson loops, Polyakov loops and 't Hooft loops, can be related to thiexdree energy through
known inequalities. This procedure then leads to exact analytical resnits;an also be applied
as a numerical RG procedure. Its numerical implementation is under developme

Here we report on numerical decimations utilizing two other well-known availabmerical
procedures. For blocking by a factor 2 in all lattice directicans{ 2a), which we use throughout
in this study, these are:

e Swendsen decimatiofy[6]

Qulm) = UM+ )¢ 5 Ul (1+ DU+ V(49 +20) - (22)
vZu

e Double Smeared Blocking][7]
Uu(n) = (1—6c)Uy(n)+c ; Uy(MUp(n+9)US(n+ 1)  x 2times
vZu
Qu(n) = Up(mUyu(n+f1). (2.3)

Herec is the parameter which controls the relative weight of staples. For the Sermi@cimation
¢ = 0.5 and 1 values have been used. For the double smeared blocking, tieatlasit value
¢ = 0.077 has been usef [8].

For our numerical decimation, we choose to start from the standard Wittmmna After a
decimated configuration is obtained, we need to ‘project’ it to some effestitien. Motivated by
the exact decimation procedure, we assume that a single plaquette action

N
' 1
S= > Bill—gxiWUp)l, (2.4)
j=1/2 !

truncated at some high representatinis a general form of the effective action.

It is important to note that the decimated configurations may not represaitibegm config-
urations of a particular effective action. Therefore we follow the mianooécal El] evolution of
the effective model starting from the decimated configurations.

2.1 Numerical methods

To compare the effective model to the decimated model, we need an effi@gribwimulate
a gauge theory with actior] (2.4). We use a procedure due to Hasenbugdidecco[[9]. The
fundamental representation part of the action with specially tuned couplirsg@sto generate trial
matrices for the metropolis updating. This procedure typically achieves 86éptance rate for the
metropolis algorithm at the used couplings. Alternatively one could use by ieweloped biased
metropolis algorithm[[J0]. Simple heatbath updating is used only in the casealy fundamental
representation action.
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For the microcanonical updating and demon measurements we implement andathplge-
rithm, which retains demon energy valugg [11], making the demon canonfeabddmons energies
are restricted t0—Enax, Enax|, thus preventing demons from ‘running away’ with all the energy.
The couplings of the effective action can be obtained as solutions of tizien

(Ee) = 1/B — Enax/tanh]BEmax] (2.5)

In table (1) we demonstrate the ability of the canonical demon method in meatheioguplings
on & lattice. An ensemble of 3000 configurations with couplings listed in the firsbfdive table
is used. Demon is allowed 1 sweep for reaching equilibrium, than 10 sweepsefsurements.
The measured couplings are listed on the second row of the table and aediagreement with
the initial values.

B2 By B2 B Bs)2
in 2.2578 -0.2201 0.0898 -0.0333 0.0125

demon| 2.2580(4)| -0.2206(4)| 0.0903(5)| -0.0336(5)| 0.0127(4)

Table 1: Measurements of couplings by canonical demon method.

3. Decimation study

We fix the effective action to have 8 consecutive representations, gténdim the fundamen-
tal. A 32" lattice atB = 2.5 is decimated once, using Swendsen type decimation with various
staple weights. In Fig. 1 (left) we show the fundamental representation demon energysfart-
ing from ¢ = 0.1 Swendsen decimated configurations. We note that there is a significaohde
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Figurel: Demon fundamental energy flow foe= 0.1 Swendsen decimated configurations. The average and
a single demon run (left). Demon fundamental energy floncfer0.2 Swendsen decimated configurations
and for configurations generated with an effective actiagh(j.

energy change during the microcanonical evolution. The change feretit replicas is always in
the same direction. There is a noticeable trend for flow stabilizatienldi0 sweeps.

Next we let the demon reach equilibriuns 00 sweeps) and then measure the couplings of
the effective actior{(2]4). We then simulate this model and generate thermedizéglrations. We
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Figure 2. Demon fundamental energy flow for various decimated cordigoms (Swendsen and Double
Smeared Blocking).

then compare the demon evolution on these thermalized configurations withntlos d&olution
on thec = 0.2 Swendsen decimated configurations (Fig. 1 (right)). We see that intinerfecase
there is no change in the demon energy, which indicates a very fast depitibration. Whereas
in the latter case there is a pronounced change — this pronounced ehargye is clearly due to
configuration equilibration during the microcanonical evolution.

Therefore one concludes that starting from the (Swendsen) decinmatidurations sufficient
microcanonical evolution has to occur in order to ‘project’ into the equilibraomfigurations of
the effective model.

Next we vary the staple weight parameteand observe the demon energy flow. In Hig. 2 we
demonstrate the fundamental demon energy evolutior £010.2,...,1.0 Swendsen decimations
and for the double smeared blocking with the classioadlue. We observe that there is a special
c ~ 0.26 value, when right from the start there is little demon energy changeseTparticular
decimation configurations are very close to the equilibrium configuratioreaftbdel [2.4). In Fig.

A we look at the adjoint demon energy flow. We notice that there is a smalgjetfanc = 0.26,
while for c = 0.3 it stays constant. This indicates that for the truncated actions the decimation c
produce configurations which are only approximately in equilibrium andribjeqtion is generally
needed.

Next we compare some medium scale physical observables measuredienithated config-
urations and on configurations obtained from the effective models.f&irdtec = 0.2 Swendsen
decimation we check the difference betw@ér N Wilson loops measured on the decimated con-
figuration immediately after the decimation and after the projection of 100 sweepJab[]2. We
see that it is indeed the process of ‘projection’ that makes the diffeiarateservables decrease.

As the next step we would like to fix the decimation parameter at the value which m@smiz
the difference at the largest Wilson loop that we measure. In lab. 3 eseprthe results for
Swendsen type decimation and Wilson loops up 103 We note that for different scale observ-
ables the smallest difference occurs at diffei@values. It is interesting that for the largest Wilson
loop the best results are obtained éce 0.26 - the value which produces configurations closest to
equilibrium.
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Figure 3: Demon adjoint energy flow for various Swendsen decimatefigurations.

| eq/m | Bi/2.B. B2, - [ AP/P% [ AW, /WSS [ AWS, 3/ WSS |
0/1 2.1391(5),-0.1628(9),0.0637(11),
-0.0250(1),0.0098(15) -0.0642(1)| -0.2832(5) | -0.7196(9)

100/20 | 2.2963(4),-0.2351(5),0.0955(7),
-0.0357(9),0.0131(11),-0.0050(12)-0.0045(1)| -0.0296(10) | -0.3912(20)

Table 2: Canonical demon measured couplings afterake0.2 Swendsen decimation and difference of
various size Wilson loops estimates measured on decima&testiv effective action configurations. Mea-
surements performed right after the decimation and aft@rsi@eps (measurements 20 sweeps).

The classicak value of double smeared blocking produces results which are incapfble o
reproducing large scale physics correctly. There is obviously a neeihahis case for a procedure
similar to that described here for Swendsen type decimation.

Summary

Multirepresentation-single plaguette actions can effectively reprodungedoale physics. We
demonstrated that a procedure naturally leading to a projection to somefoddfextive actions is
needed on the configurations resulting from any particular adopted inaingecimation scheme.
Such numerical decimation procedures applied to the effective singlegttadiagrangian can be
tailored to reproduce different medium/large scale physics.

It is possible to extend the study by looking at the inter-quark potential. Tbiddhallow
one to probe all length scales and check the effective action model andaded configurations
correspondence. There is also a possibility to compare numerical antlde@mation proce-
dures. Numerically obtained coupling values can be used to connect taabiedecimation and
for consistency checks.
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0.1

1.9912(3),-0.3085(4),
0.0990(4),-0.0362(6),
0.0139(7),-0.0045(8)

-0.0001(1)

-0.4160(6)

-0.8899(11)

0.2

2.2963(4),-0.2351(5),
0.0955(7),-0.0357(9),
0.0131(11),-0.0050(12

-0.0045(1)

-0.0296(10)

-0.3912(20)

0.26

2.3351(7),-0.1449(10),
0.0766(12),-0.0279(13)
0.0084(17)

-0.0038(12)

0.1502(11)

0.0926(29)

0.3

2.3447(8),-0.0869(12),
0.0628(14),-0.0236(15)
0.0075(20)

-0.0006(1)

0.2545(12)

0.4559(41)

0.5

2.3618(9),0.0866(13),
0.0070(17),-0.0027(20)
-0.0013(22)

0.0082(11)

0.4780(14)

1.5029(69)

1.0

2.4033(9),0.1150(14),
-0.0274(18), 0.0071(22
-0.0041(29)

0.0092(1)

0.4456(14)

1.4845(75)

DS

2.5463(11),-0.1167(17)

0.0320(23),-0.0055(28

0.0068(1)

0.4149(14)

1.2697(70)

Table 3: Canonical demon measured couplings after different da@msand difference of various size
Wilson loops estimates measured on decimated and geneavédtedffective action configurations. Ther-

malization 100 sweeps, measurements 20 sweeps.
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