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1. Introduction and Motivation

The creation of a new generation of computer hardware and software has given us deeper
insight into challenging problems, such as CP violation. Based on the recent analysis of the CP
violating weak decay procegs— 1T on quenched lattice¥[2], we are conducting a comparable
research program on the latest 2+1 flavor dynamical lattices.

CalculatingRe(¢'/¢) requires evaluating the weak matrix elemefpgs= (rrrr| 041=%/2|K)
andAo = (rrt| 0% =1/2|K), where0*'=%/2 and 0'=/2 are the low-energy four-quark operators
with quantum numbeAS = 1. On the lattice, it is often easier to use chiral perturbation theory
(xPT) to relate theK — it matrix elements to simplé¢ — mandK — vacuummatrix elements.

2. Operators

In 3-flavor QCD, we can expand the weak Hamiltonian responsibl& fer it decay into
10 low-energy four-quark operators. And we can further divide them iftb-a 3/2 part and a

Al =1/2 part. There are 6 operators that havd a- 3/2 part: { @(3/2) ‘ i=1278,9, 10}. In this
set, 4 operators are all proportional to a single oper&téf1(3/2) that ¢(271(E/2) = Sﬁfz/z) =
Zﬁé?l/g). By definition,

o@ME2) = (§dq), (Upup), + (Sala), (Upds), — (Sada), (dgdg), 1)

wherea andp are color indices. The two remaining operators are
0% = (Sada), () + (St (Tpds) — (Sodka). (dpdl) (22
ﬁég/Z) = (gﬂdB)L (lJ_L?Ua)R+ (§auﬁ)L (JBdG)R_ (gﬂdB)L (dﬁd“)R 2:3)

For theseAl = 3/2 operators, fromxPT, evaluating theiK — 1 matrix elements is sufficient to
determine theiK — T matrix elements to leading order in mass and momentum.

3. Simulation Details

We have measured our matrix elements on the RBC/UKQCD 2+1 flavor dynamical lattices,
using the lwasaki gauge action wifh= 2.13 and domain wall fermions withs = 16. The lattice
spacing isa~! = 1.60(3) GeV and the residual masses~ 0.003in lattice units.

We have setmssea= 0.04 and we have three choices for the light sea quark masses, which
aremysea= My sea€ {0.01, 0.02, 0.03}. Thus we have generated three independent ensembles. On
each ensemble we have collected 75 configurations, each separd@udjgctories. And we have
5 choices for valance quark masses, whichmayg, € {0.01, 0.02, 0.03, 0.04, 0.05}.

4. Evaluation of K — T Matrix Elements

4.1 Matrix Elements from Green’s Functions

To evaluate th& — 17 matrix elements, we put wall sourcestat= 5 andt; = 27, and take
the ratio of the wall-wall three-point Green’s functi®@ysk (t;tk,t;) with wall-point two-point
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Green'’s function$ (t;t;) andGk (t;tk) [1]:

im Gk Gt (m"|o]K")
>3t G (ttn) G (k) (17 [P 0) (0] P+ [KT)

(4.1)

whereZ,- (X) = [iuysd] (X) and P+ (X) = [isysu] (X).
Then, to remove the denominator, we make use of the wall-point two-point functions together
with the wall-wall two-point functions:

. 1 _ _
t“g;tG\;TVP: 2m <O‘X7T+‘ 7T+> <7-[+ |=@rr|o>e () (4.2)
™ n

. 1 2
WW —Mi(tr—t
tI,ITQQtG" —EKO\XMWH g Mrltr—t) (4.3)
where (0| x+| T") is the normalization factor of the wall source, afrd™ | 2, |0) is that of the

point source. With simultaneous fitting, we can calculate the required matrix elements from Eq
(4.1, (4.2 and 4.3).

5. Non-Perturbative Renormalization

To renormalize th& — 1T matrix elements, we follow the Rome-Southampton RI/MOM pre-
scription described irl], with ap = ZL—”I"' On our lattices| x = Ly =L, = 16andL; = 32 And
the value of momenta isw, ny € {—2,—-1,0,1,2}, n, € {0,1,2} andn; € {0,1,2,3,4}.

If &'is a four-quark operator, arfl is a combination of external quark fields with definite
spin and color structure, and Fourier transformed into momentum space,

El sy = 728 (o) 3 (P2) o (p) 6% (P2) (5.1)
the renormalization condition betweén andE! is:
Z 22PNV} = M (5.2)

whereAl is the amputated Green’s function with operatdrconnected with the external quark
fields inE!. And P! is a suitable projector, which corresponds to the spin structute ofThe
quantityF*! is the tree-level counterpart Bf { A"} evaluated in the free-field limit. Note there is
no sum onj in the above equation. The momentum are chosen suclp%hatp% =|p1— pzyz =
u2. After getting the value qu‘ZZ"i at certain momentum scaje and quark massy, we then
multiply it by Z2, obtained by NPR of axial current, with the method detaile@jntp get the final
renormalization matrix",

5.1 Non-Perturbative Renormalization for ¢(27:1)(3/2)

On DWF lattices, chirality is approximately conservetlss < Aqcp), s00?71E/2) doesn't
mix with the operators of different chirality, and we can neglect the mixing coefficients, keeping
only the diagonal element,
27,1)(3/2 : 27,1)(3/2
o2r1E/2) 2(27,1)(3/2)43lt )(3/2) (5.3)

ren =
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Figure 1: Renormalization factor&2%1(3/2) (left) and individual elements a(88)(3/2 (right) at several
momentum scalg@.

Table 1: Renormalization factorg(27-1)(3/2) and individual elements af(88)(3/2 at several momentum
scalept.
P M(GeV) Zz(rDE/2) Z77 Z78 Zg7 Zgg
0617 1257 0510(12) 0575(16) 0.133(14) 0.0310(52) 0.257(20)
1234 1777 0.5392(65) 0.6139(67) 0.1021(52) 0.0326(30) 0.400(11)
1542 1987 0.5298(60) 0.6167(58) 0.1021(47) 0.0453(27) 0.430(11)
2467 2513 0.5474(58) 0.6400(66) 0.1053(54) 0.0579(34) 0.5040(80)

After quadratic fitting in quark masses, the quaniity”(3/2) in the massless limit and for
several values qf is plotted in Figlland listed in Tabl4. One should note that the renormalization
constanZ (271 (3/2) is related to the renormalization constant®s. By definition,Zs, = 7, /Z3,
wherez, | is the same a&(271(3/2) jf we change the choice of momentum in 5a3) into p; = py,
which we have verified.

5.2 Non-Perturbative Renormalization for @3/2) and @f/z)

Different from the case of/(271)(3/2) these two operators mix with each other on lattice. So
their renormalization coefficients form2a< 2 matrix Z(88)(3/2),

3/2 3/2
o g,r/en) B <Z77 Z78> ﬁ;,lét) (5.4)
32) | — 3/2 :
ﬁé,r{en) 287 288 ﬁé,lét)

Following the same prescription as in Secffof, we can calculate the mixing mati&.8)(3/2)
at various external momentum scale. The individual elemerZ&€&t(3/2 are also plotted in Fid
and listed in Tabldl

Now we can renormalize the matrix elemefits” | 027V (E/2| K+), <n+ ‘@3/2)‘ K+> and

<n‘+ ‘ﬁég/z)‘ K+>. Their values at one scaje= 1.99GeV are listed in Tabl&.

4
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Table 2: RIMOM renormalized matrix elements{ir"|6@703/2)|K+), (m"|6¥?|K+) and
<7T+|ﬁé3/2)|K+>, aty = 1.99GeV, in lattice units.
Meea Myal o271)(3/2) @3 2) ﬁés 2)
0.01/0.04 0.01/0.01 3.70(1810* -1.171(57x10°2 -1.724(86x10 2
0.02/0.04 0.02/0.02 8.37(3610* -1.471(69x10°2 -2.138(96x 1072
0.03/0.04 0.03/0.03 1.514(5810°3 -1.817(72x1072 -2.60(12}10°?
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Figure 2: A fit of the renormalized matrix elementsr™| 27D (/2 |K+) (left) and(nﬂﬁ’%z)\K*) (right)
to leading-ordePT. The data points are from quarks with massgsa = Msval = My sea

(a) The fit for&(2"1(3/2) shows the leading-order theory is not sufficiext (d.o.f ~ 30). (b)The
phenomenological fit for’; and g takes an inexact “chiral limit” sinces sea= 0.04+ Myes re-
mains non-zero, and thus the value at that limit has an unknown systematic error.

6. Chiral Extrapolation

6.1 Chiral Fit for ¢(27.1(3/2)

When we use degenerate valance quanks, = Msvai, the leading order term in thePT
formula for {rr* |¢?"V(3/2| K+) reduces to a linear form which goes through the origi],

4
<n+ ‘ﬁ(zu)(s/z)‘ K+>LO _ ﬁ01(2771) BoMyq 6.1)
Here we just show that this leading order approximation is not sufficienRjFiye have used

the data points whengy vaj = Msval = My sea and they have a large deviation from a straight line
(x?/d.o.f ~ 30), showing some quadratic behavior (note that the NLO term is expected to be a
quadratic term oﬁ'ﬁal plus a chiral log term). The work to include the NLO terms is underway.

6.2 Chiral Fitfor 61*? and 6{*/?

Since these two operators are in (8,8) representation oBW@), © SU(3)r group, the
leading-order term for these operators is a constant,

<n+ ’ﬁ(s,as)(s/z)’ K+>LO _ %a(&S) (6.2)
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Table 3: Leading-order LECs for7(88)(3/2) gperators in physical units: G&V
u=126GeV u=178GeV U =199GeV u=251GeV
7 _197(26)x10°% _18423x10% —18523)x10% —191(24)x10°
8  —17122)x10% —262(31)x10* —2.8434)x10“4 —3.33(40)x 107

Table 4: Matrix elements(n+W|ﬁi(8'8)(3/2)|K°> in physical units: GeV.

(- |6BOCA K0 1 =126GeV p=178GeV u=199GeV u=251GeV
7 0.289(38) 0.269(34) 0.270(34) 0.279(35)
8 0.251(33) 0.384(46) 0.416(49) 0.488(58)

At present,there is no publication on NLO partially quenched chiral perturbation theory
(PQxPT) for ¢88 with non-degenerate sea quark mass&hus, we retreat to phenomenolog-
ical approach and from the distribution of the data points @igand experiences on quenched
latticesll], we try to fit a straight line through the data points to extrapolate to chiral limit.

We should note that the “chiral limit” we extrapolate to is not the exact chiral limR@{PT
(where allmq = 0). The reason is our 2+1 flavor ensemble has a fixggba= 0.04+4 ms and
cannot be extrapolated to zero. Therefore the extrapolated result at our “chiral limit” would have
an unknown systematic error, which, again, could only be removed by RQQPT.

Finally we find the LECai(S’S), {i=7,8}, as listed in Tabl8. We use the leading-ordgiPT
(88)

formula, Eq6.3) [4], to calculateK — rrrr matrix elements for; ™, as in Tabled.
4
o <878><3/2>‘ KOY — __ A 468 .
<" n ‘ﬁ >LO ff2? (6-3)

7. Comparison with Quenched Results

In Figl3, we have a preliminary comparison with the earlier RBC resl]lfsf the matrix ele-
ments{ T T 6}(3/1 KO, i€ {7,8). Please note that the 2+1 flavor values are very preliminary
results and still need to be thoroughly checked by independent calculations. So this comparison is
not conclusive.

8. Conclusion and Outlook

Using RBC/UKQCD 2+1 flavor dynamical lattices of si¥& x 32we have evaluateld — 71
matrix elements with the operatorg27)®2) ¢{¥2 and 6{¥?, and have calculated the rele-
vant renormalization constants in the RI/MOM scheme. All of these matrix elements need further
theoretical input fronPQxPT.

The work on this project is continuing. We will also calculate fiile= 1/2 matrix elements
and gather more physical results, suctbs- 1/2 rule andRe(¢’/¢).
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Figure 3: Comparison of matrix elemen(sn’rn’ ’ﬁf‘/z)‘ K°> (left) and<71+7r )ﬁé?‘/z)‘ K°> (right) with

earlier RBC quenched results. The values are in physical units’G@¥e squares are the preliminary
leading order value on 2+1 flavor lattice, and the triangles are the numbers in the RBhaypetd there
is an unknown systematic error involved in 2+1 flavor value, due to the absense dPQkPT, that cannot
be plotted.
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