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In SU(3) simulations with the model A (Glauber) dynamics we find unambiguous signal for the

transition when the (driving) temperatureTf is larger thanTc. A dynamical growth of Polyakov

loop structure factors, reaching maxima which scale approximately with the volume of the system,

precedes equilibration. We study their influence on variousobservables, using different lattice

sizes to illustrate an approach to a finite volume continuum limit. Strong correlations are found

during the dynamical process, but not in the deconfined phaseat equilibrium. Debye screening

massesmD(Tf ) are estimated from initial response to the temperature change and found to be

consistent with equilibrium estimates by Kaczmarek et al.
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1. Introduction

In investigations of the QCD deconfining phase transition (or crossover) by means of heavy-ion
experiments, one ought also to be concerned about non-equilibrium effects due to therapid heating
of the system [1]. The QCD high temperature vacuum is characterized by ordered Polyakov loops,
which are similar to spins in the low temperature phase of the3D 3-state Potts model. We model
heating by a quench from the disordered into the ordered phase. Time evolution after the quench
leads to vacuum domains of distinct triality under theZ3 center of theSU(3) gauge group. It appears
that these competing domains are the underlying cause for the explosive growth of structure factors
Fi(t), which we encounter in the time evolution after a heating quench. We use the termspinodal
decompositionloosely to denote generically such a time period of globallyunstable behavior.

Relaxation of the system at its new temperature becomes onlyfeasible after each structure
factor has overcome its maximum value. While the maximum value of the structure factor diverges
with lattice size, its initial and final equilibrium values are finite in the normalization chosen in the
paper. The time (measured in updates per degree of freedom) for reaching the maximum diverges
with lattice size unless the underlying order-order symmetry is broken. Once the system has equili-
brated at high temperature, the subsequent temperature falloff is driven by spatial lattice expansion
and the system stays in quasi-equilibrium during this period. So one has different time scales under
heating and cooling [2].

The early time evolution of SU(3) gauge theory after the quench is well described by stochastic
equations, which follow from dynamical generalizations ofequilibrium Landau-Ginzburg effective
action models. We calculate the exponential growth factor of this linear approximation and use a
phenomenological model [3] to estimate the Debye screeningmass for two temperatures above the
deconfiningTc.

Finally we compare measurements of Polyakov loop correlations, gluonic energy densities
and pressures around structure function maxima with their equilibrated values in the deconfined
region at high temperatures. These measurements are of interest for a scenario in which the heating
process turns back to cooling before actually reaching the equilibrium side of the structure factor
maxima. In the conclusions we continue this discussion.

2. Notation and Preliminaries

We simulate pureSU(3) non-Abelian Euclidean lattice gauge theory with the Wilsonaction

SA =
2·3
g2 ∑

n,µν
[1− 1

2·3Tr(Un,µν +h.c.)], (2.1)

whereUn,µν = Un,µUn+µ̂,νU†
n+ν̂,µU†

n,ν denotes the product of the SU(3) link matrices in the fun-
damental representation around a plaquette and the sum runsover all plaquettes. Simulations are
carried out onNτ N3

σ lattices. Lattice size in physical units is denotedL = aNσ , wherea is the
lattice spacing.

The Markov chain Monte Carlo (MC) process provides model A (Glauber) dynamics in the
classification of Ref. [4]. We use the Cabibbo-Marinari [5] heatbath algorithm and its improve-
ments of Ref. [6] (no over-relaxation, to stay in the universality class of Glauber dynamics). A
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time step is a sweep of systematic updating through the lattice, which touches each degree of free-
dom once.

Polyakov loop is defined as a trace of a product ofSU(3) matrices inNτ direction, and its
lattice average is the order parameter of pure gauge theory:

P(~x) = Tr
Nτ−1

∏
i=0

U~x,i , 〈P〉L =
1

N3
σ

∑
~x

P(~x). (2.2)

Lattice averaged correlation function of Polyakov loops isdenoted:

〈P(0)P†(~x)〉L =
1

N3
σ

∑
~i

P(~i)P†(~i +~x). (2.3)

The Fourier transform of (2.3) is called structure functionand in discretized version is

F(~p) =
a3

N3
σ

∣

∣

∣

∣

∣

∑
~x

e−i~k~xP(~x)

∣

∣

∣

∣

∣

2

. (2.4)

As we let the system evolve after a quenchP(~x) becomes time-dependent:P(~x, t). The time
t corresponds to the dynamical process, i.e., in our case the Markov chain model A dynamics.
We consider an ensemble of systems (replica) and dynamical observables are calculated as en-
semble averages denoted by〈...〉. The time-dependent structure functions averaged over replicas
areF~p(t) = 〈F(~p, t)〉. We use the notationFi(t) to represent a structure function at momentum
~p =~k/a = 2π~n/L, where|~n| = ni definesi. TheFi are called structure function modes or structure
factors (SFs).

3. Evolution in SU(3) Pure Gauge Theory

We report the results from quenches on different lattices with Nτ = 4,6,8. All quenches are
from the initial value 6/g2 = 5.5. The data serve to study the quantum continuum limita→ 0 (in
physical units like fermi). The final valuesg2

f of the bare coupling constants are chosen, so that
the values ofTf /Tc stay at the fixed ratios: 1.25 and 1.568 for the present study.For this we take
(substantial) corrections to the two-loop equation of Lambda lattice into account. Details, lattice
sizes and gauge coupling values used are given in [1].

3.1 Finite Volume Continuum Limit

Infinite volume limit Nτ = const, Nσ → ∞ was extensively studied for Potts models and for
SU(3) pure gauge theory [1]. In the following we illustrate the approach of the limita → 0,
L = constant,Tf /Tc = constant, by increasingNτ from 4 to 6 to 8 and the volumeN3

σ from Nσ = 16
to 24 to 32, so that the ratioNσ/Nτ stays constant. Due to the divergence of (bare) Polyakov
loop correlations we face a renormalization problem, whichwe overcome by dividing all SFsFi by
their equilibrium values atTf , Fi, f . The time-scale situation changes too, because we have to use
different bare coupling constant values for differentNτ . As one knows, a finite physical volume
equilibrates in a finite time, we fix this normalization problem by rescaling the time axis to

t ′ =
t

λt(Nτ ,Tf /Tc)
(3.1)
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Figure 1: Time evolution of SFF1/F1, f for SU(3) lattice gauge theory onNτ N3
σ lattices of constant physical

volume of a quench toTf /Tc = 1.25 (left) andTf /Tc = 1.568 (right).

so that all maxima fall on top of one another.
Figure 1 shows the time evolution of theF1/F1, f SFs for our twoTf /Tc values. Rescaling

factors areλt(Nτ ,1.25) = 1 : 2.655 : 5.457 andλt(Nτ ,1.568) = 1 : 2.768 : 6.362 for theNτ values
4 : 6 : 8, respectively. The maxima of the curves decrease whenincreasingNτ from 4 to 6 to 8. As
the decrease slows down with increasing lattice size, thereis some evidence for an approach to a
shape, which represents the continuum limit.

3.2 Debye Screening Mass

The current understanding of the early time evolution of systems out of equilibrium is largely
based on investigating stochastic equations which are dynamical (time dependent) generalizations
of the Landau-Ginzburg effective action models of the static (equilibrium) theory. For model A the
linear approximation results in the following early growthof SFs:

F̂(~p, t) = F̂(~p, t = 0)exp(2ω(~p)t) , (3.2)

ω(~p) > 0 for |~p| > pc ,

wherepc > 0 is a critical momentum (for details of linear theory for model A see Ref. [7]).
From our measurements ofF(~p, t) on theNτ = 4, 6 and 8 lattices we find straight line fits to the

form ω(p) = a0 +a1 p2, p = |~p| with a negative slopea1. They determine the critical momentum
pc as the value whereω(p) changes its sign. The fits forTf /Tc = 1.25 and forTf /Tc = 1.568 are
shown in Fig. 2, where we introducedω ′(p) = λt(Nτ ,Tf /Tc)ω(p). This definition absorbs the
shift (3.1) of the time scale, so thatω ′(p) t ′ = ω(p) t holds. The obtained values forpc(Nτ)/Tc are
listed in table 1. The (finite volume) continuum limit is extrapolated by fitting these values to the
form

pc(Nτ)

Tc
=

pc

Tc
+

const
Nτ

(3.3)

with the results given in the fifth column of table 1.
Relying on a phenomenological analysis by Miller and Ogilvie [3], pc is related bymD =√

3pc to the Debye screening mass at the final temperatureTf after the quench, shown in the last
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Figure 2: SU(3) determination ofpc for Tf /Tc = 1.25 (left) andTf /Tc = 1.568 (right).

Table 1: Fit results forpc/Tc.

Lattice size: Nτ = 4 Nτ = 6 Nτ = 8 ∞ mD

Tf /Tc = 1.25 : 1.613 (18) 1.424 (26) 1.37 (10) 1.058 (79) 1.83(14)Tc

Tf /Tc = 1.568 : 2.098 (19) 2.058 (22) 2.29 (15) 2.006 (73) 3.47(13)Tc

column of table 1. The value atTf /Tc = 1.568 is in excellent agreement with a determination of
mD(T) from a best-fit analysis of the large distance part of the color singlet free energies on equi-
librium configurations by Kaczmarek et al. [8]. This supports the idea that the simulated dynamics
bears physical content. Our estimate atTf /Tc = 1.25 is by a factor of two smaller than the one of
Ref. [8]. But this is not really a surprise, becauseTf /Tc = 1.25 is close to the spinodal endpoint,
so that the derivation [3] of the relationship betweenmD and pc is no longer valid. The screening
length associated with the Debye mass,ξD = 1/mD, is then approximately 0.6 fermi atTf /Tc = 1.25
and 0.3 fermi atTf /Tc = 1.568. Our result is that the Debye screening length is short onthe scale
of the deconfined region envisioned to be about 103 fm3 in relativistic heavy-ion experiments.

3.3 Measurements near Structure Factor Maxima versus Deconfined Equilibrium

For SU(3) gauge theory the triality of Polyakov loops with respect to the Z3 center of the
gauge group takes the place of the spin orientations in the 3D3-state Potts model. Although a
satisfactory cluster definition does not exist for gauge theories (see [9] for some progress), the
underlying mechanism of competing vacuum domains is expected to be similar to the one in spin
models. Indirect indication of such a mechanism is presented in Fig. 3 where we plot histograms of
the order parameter at different time steps during the evolution: t = 0, t = tmax andt = 5tmax (tmax

represents a time step when SFs reach maxima). The histograms are normalized to have the same
height on all three plots. Att = 0 all systems (replica) in the ensemble are in the confined phase so
the Polyakov loop fluctuates around zero. Att = tmax the order parameter shifts to non-zero values.
Some replica "move" toward each of the three final values, butsome other have the Polyakov
loop value somewhat "in between": due to the competition of different domains those systems
have not decided yet which final value of the order parameter is to be assumed. Att = 5tmax the
ensemble is clearly in equilibrium with one third (on average) of the replica assuming each possible
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Figure 3: The histograms of the order parameter value att = 0, tmax, 5tmax (left to right) on 6×243 lattice.
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Figure 4: Fall-off behavior of the Polyakov loop
correlations atTf /Tc = 1.25 at different times.

Figure 5: SU(3) gluonic energy densities and pres-
sures atTf /Tc = 1.25.

Polyakov loop value. To study how the the existence of different domains influences Polyakov loop
correlations and the gluonic energyε and pressurep densities, we calculate these quantities at times
t ≤ tmax as well as att > tmax.

During the quench we measure two-point correlations between Polyakov loops defined by

Co(d, t) = 〈P(0, t)P(d, t)〉L − (〈|P(0, t)|〉L)2 . (3.4)

Their fall off with distance at different times is shown in Fig. 4. At 5tmax (in equilibrium) it is
exponential (as expected). In contrast to that large correlations are found at 0.5tmax andtmax, which
are fully consistent with a power law.

The equilibrium procedure for calculating the gluonic energy ε and pressurep densities is
summarized in Ref. [10, 11]. We calculate their evolution during the quench along the same lines.
In Fig. 5 we show the time evolution of the gluonic energy densities (upper curves) and pressure
densities (lower curves) for theTf /Tc = 1.25 quench on our 4×163, 6×243 and 8×323 lattices
using the rescaled time definition (3.1). The curves for the last two lattices fall almost on top
of one another, indicating their neighborhood to the continuum limit. The approach to the final
equilibrium values is rather smooth and takes about the sametime as equilibration of the structure
factors.
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4. Summary and Conclusions

In equilibrium at temperatures much higher than the deconfinement temperatureTc the pertur-
bative prescription of QCD is that of a weakly coupled gas of quasiparticles. In contrast, recent
experiments at the BNL relativistic heavy-ion collider (RHIC) show coherence in particle produc-
tion and strong collective phenomena, which are well described by the model of a near-perfect,
strongly coupled fluid [12]. Nonperturbative effects are expected to play some role in the prescrip-
tion of equilibrium QCD at temperatures reached at RHIC. FortheTf /Tc = 1.25 andTf /Tc = 1.568
temperatures investigated in this paper equilibrium lattice calculations indeed indicate corrections
(compare Fig. 7 of [10]). However correlations are typically over ranges much smaller than the
size of the deconfined plasma, compare our estimates of the Debye screening massmD(Tf ). So
one should nota-priori exclude the possibility that, under heating, the system didnot reach true
equilibrium, but instead got stuck in the neighborhood of the SF maxima of the spinodal decompo-
sition.
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