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1. Introduction

In investigations of the QCD deconfining phase transitiortfossover) by means of heavy-ion
experiments, one ought also to be concerned about norifquit effects due to theapid heating
of the system [1]. The QCD high temperature vacuum is charaetd by ordered Polyakov loops,
which are similar to spins in the low temperature phase of3lbe3-state Potts model. We model
heating by a quench from the disordered into the orderedephBime evolution after the quench
leads to vacuum domains of distinct triality under Baeenter of theSU(3) gauge group. It appears
that these competing domains are the underlying caused@xplosive growth of structure factors
Fi(t), which we encounter in the time evolution after a heatingnghe We use the terrspinodal
decompositionoosely to denote generically such a time period of globatigtable behavior.

Relaxation of the system at its new temperature becomesfeagible after each structure
factor has overcome its maximum value. While the maximurnevalf the structure factor diverges
with lattice size, its initial and final equilibrium valuesedfinite in the normalization chosen in the
paper. The time (measured in updates per degree of freedwmg&ching the maximum diverges
with lattice size unless the underlying order-order synmnistbroken. Once the system has equili-
brated at high temperature, the subsequent temperatlo# faldriven by spatial lattice expansion
and the system stays in quasi-equilibrium during this eri®o one has different time scales under
heating and cooling [2].

The early time evolution of SU(3) gauge theory after the ghda well described by stochastic
equations, which follow from dynamical generalization®qtiilibrium Landau-Ginzburg effective
action models. We calculate the exponential growth factahis linear approximation and use a
phenomenological model [3] to estimate the Debye screamiags for two temperatures above the
deconfiningT,.

Finally we compare measurements of Polyakov loop cormiati gluonic energy densities
and pressures around structure function maxima with trepirlibrated values in the deconfined
region at high temperatures. These measurements are i@ghfer a scenario in which the heating
process turns back to cooling before actually reaching thelibrium side of the structure factor
maxima. In the conclusions we continue this discussion.

2. Notation and Preliminaries

We simulate puré&U(3) non-Abelian Euclidean lattice gauge theory with the Wilsation

2-3 1
SA - ? Z [1— ETI‘(UMN + h.C.)], (21)

n,av

whereUp y = Un,uunw.vugﬁuu,{ , denotes the product of the SU(3) link matrices in the fun-

damental representation around a plaquette and the sunovensll plaquettes. Simulations are
carried out onN; N3 lattices. Lattice size in physical units is denotee- aN,, wherea is the
lattice spacing.

The Markov chain Monte Carlo (MC) process provides model Aa(®Ber) dynamics in the
classification of Ref. [4]. We use the Cabibbo-Marinari [®latbath algorithm and its improve-
ments of Ref. [6] (no over-relaxation, to stay in the uniaditg class of Glauber dynamics). A
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time step is a sweep of systematic updating through thedativhich touches each degree of free-
dom once.

Polyakov loop is defined as a trace of a productStf3) matrices inN; direction, and its
lattice average is the order parameter of pure gauge theory:

N, —1 1
P(X) =Tr |_L Ui, (P)L= NG > P(R). (2.2)
i= o X
Lattice averaged correlation function of Polyakov loopdesioted:
1 B
(POP' (X)L = 3 > POPT(+%). (2.3)
o

The Fourier transform of (2.3) is called structure functamd in discretized version is
2

3
P = g (2.4)

S e p(x)
X

As we let the system evolve after a queri®(X) becomes time-depende®®(X,t). The time
t corresponds to the dynamical process, i.e., in our case tddv chain model A dynamics.
We consider an ensemble of systems (replica) and dynamixssreables are calculated as en-
semble averages denoted py). The time-dependent structure functions averaged ovdicasp
areFy(t) = (F(P,t)). We use the notatiof;(t) to represent a structure function at momentum
p = k/a=2mf/L, where|fi| = n; defines.. TheF, are called structure function modes or structure
factors (SFs).

3. Evolution in SU(3) Pure Gauge Theory

We report the results from quenches on different latticeth Wi = 4,6,8. All quenches are
from the initial value g® = 5.5. The data serve to study the quantum continuum lmit O (in
physical units like fermi). The final valueﬁ of the bare coupling constants are chosen, so that
the values off; /T; stay at the fixed ratios: 1.25 and 1.568 for the present stdythis we take
(substantial) corrections to the two-loop equation of Ldmbattice into account. Details, lattice
sizes and gauge coupling values used are given in [1].

3.1 Finite Volume Continuum Limit

Infinite volume limitN; = const Ny — o was extensively studied for Potts models and for
SU(3) pure gauge theory [1]. In the following we illustrate the eggrh of the limita — O,
L = constant]T¢ /T, = constant, by increasiny; from 4 to 6 to 8 and the volumig3 from Ny = 16
to 24 to 32, so that the ratibl;/N; stays constant. Due to the divergence of (bare) Polyakov
loop correlations we face a renormalization problem, wiiehovercome by dividing all SH5 by
their equilibrium values aft, F s. The time-scale situation changes too, because we haveto us
different bare coupling constant values for differéiit As one knows, a finite physical volume
equilibrates in a finite time, we fix this normalization prety by rescaling the time axis to

;o t
v= )\t(Nan/Tc) (3'1)
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Figure 1: Time evolution of SH /Fy ¢ for SU(3) lattice gauge theory dw, N2 lattices of constant physical
volume of a quench td; /T, = 1.25 (left) andT; /T, = 1.568 (right).

so that all maxima fall on top of one another.

Figure 1 shows the time evolution of titg/F; ¢ SFs for our twoTs/T; values. Rescaling
factors areA;(N;,1.25) = 1: 2655 : 5457 andA;(N;,1.568) = 1:2.768 : 6362 for theN; values
4:6: 8, respectively. The maxima of the curves decrease WwiteeasingN; from 4 to 6 to 8. As
the decrease slows down with increasing lattice size, tiseseme evidence for an approach to a
shape, which represents the continuum limit.

3.2 Debye Screening Mass

The current understanding of the early time evolution oteys out of equilibrium is largely
based on investigating stochastic equations which arendiga (time dependent) generalizations
of the Landau-Ginzburg effective action models of the st@quilibrium) theory. For model A the
linear approximation results in the following early growdthSFs:

F(B.t) = F(B,t =0)exp(2w(p)t) , (3.2)
w(p) >0 for |p| > pc,

wherep; > 0 is a critical momentum (for details of linear theory for nebé see Ref. [7]).

From our measurements Bf ,t) on theN; = 4, 6 and 8 lattices we find straight line fits to the
form w(p) = ap+ a1 p?, p = | P| with a negative slopa;. They determine the critical momentum
pc as the value wherex(p) changes its sign. The fits fdk /T, = 1.25 and forT; /T, = 1.568 are
shown in Fig. 2, where we introduced (p) = A:(N;,T;/Tc) w(p). This definition absorbs the
shift (3.1) of the time scale, so that(p)t’ = w(p)t holds. The obtained values fpg(N;)/T; are
listed in table 1. The (finite volume) continuum limit is exgholated by fitting these values to the

form
Pc(Nr) — pc  const

T T N;
with the results given in the fifth column of table 1.
Relying on a phenomenological analysis by Miller and Ogili8], pc is related bymp =
V3 pc to the Debye screening mass at the final temperafuter the quench, shown in the last

(3.3)
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Figure 2: SU(3) determination o for T /T = 1.25 (left) andT; /T, = 1.568 (right).

Table 1: Fit results forpe/Te.

Lattice size: N =4 N =6 N =8 [ Mp
Ti/Tc=1.25: | 1.613 (18)| 1.424 (26)| 1.37 (10)| 1.058 (79)| 1.83(14) T,
Ts/Tc=1.568:| 2.098 (19)| 2.058 (22)| 2.29 (15)| 2.006 (73)| 3.47(13) T,

column of table 1. The value 8% /T, = 1.568 is in excellent agreement with a determination of
mp(T) from a best-fit analysis of the large distance part of thercsiloglet free energies on equi-
librium configurations by Kaczmarek et al. [8]. This suppdtie idea that the simulated dynamics
bears physical content. Our estimateTatT, = 1.25 is by a factor of two smaller than the one of
Ref. [8]. But this is not really a surprise, becauggT; = 1.25 is close to the spinodal endpoint,
so that the derivation [3] of the relationship betweasg and p¢ is no longer valid. The screening
length associated with the Debye maSs— 1/mp, is then approximately 0.6 fermi & /T, = 1.25
and 0.3 fermi aflt /T, = 1.568. Our result is that the Debye screening length is shotherscale

of the deconfined region envisioned to be abott @’ in relativistic heavy-ion experiments.

3.3 Measurements near Structure Factor Maxima versus Decdimed Equilibrium

For SU(3) gauge theory the triality of Polyakov loops with respecthe Z3 center of the
gauge group takes the place of the spin orientations in th&-3te Potts model. Although a
satisfactory cluster definition does not exist for gaugeties (see [9] for some progress), the
underlying mechanism of competing vacuum domains is erpett be similar to the one in spin
models. Indirect indication of such a mechanism is preseint&ig. 3 where we plot histograms of
the order parameter at different time steps during the ¢aviut = 0, t = tax andt = Stmax (tnax
represents a time step when SFs reach maxima). The histegiaamormalized to have the same
height on all three plots. At= 0 all systems (replica) in the ensemble are in the confinedgbka
the Polyakov loop fluctuates around zero.t At thaxthe order parameter shifts to non-zero values.
Some replica "move" toward each of the three final values,sbate other have the Polyakov
loop value somewhat "in between": due to the competitionifitnt domains those systems
have not decided yet which final value of the order paramstéos be assumed. At= 5t the
ensemble is clearly in equilibrium with one third (on aveagf the replica assuming each possible
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Figure 4. Fall-off behavior of the Polyakov loop  Figure 5: SU(3) gluonic energy densities and pres-
correlations aff; /T, = 1.25 at different times. sures afly /T = 1.25.

Polyakov loop value. To study how the the existence of difitdomains influences Polyakov loop
correlations and the gluonic energynd pressure densities, we calculate these quantities at times
t <tmaxas well as at > tmax.

During the quench we measure two-point correlations batviRedyakov loops defined by
Co(d,t) = (P(0,t)P(d, 1)) — ({|P(0,t) )0). (3.4)

Their fall off with distance at different times is shown ingFi4. At Bnax (in equilibrium) it is
exponential (as expected). In contrast to that large arcgls are found at.Bty,ax andtmax, Which
are fully consistent with a power law.

The equilibrium procedure for calculating the gluonic eyyee and pressurg densities is
summarized in Ref. [10, 11]. We calculate their evolutiomimiy the quench along the same lines.
In Fig. 5 we show the time evolution of the gluonic energy dteess (upper curves) and pressure
densities (lower curves) for tHE /T, = 1.25 quench on our 4 16°, 6 x 24° and 8x 322 lattices
using the rescaled time definition (3.1). The curves for #s two lattices fall almost on top
of one another, indicating their neighborhood to the cantm limit. The approach to the final
equilibrium values is rather smooth and takes about the sengeas equilibration of the structure
factors.
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4. Summary and Conclusions

In equilibrium at temperatures much higher than the deceniant temperaturg. the pertur-
bative prescription of QCD is that of a weakly coupled gas wdisiparticles. In contrast, recent
experiments at the BNL relativistic heavy-ion collider (RH show coherence in particle produc-
tion and strong collective phenomena, which are well dbedriby the model of a near-perfect,
strongly coupled fluid [12]. Nonperturbative effects arpested to play some role in the prescrip-
tion of equilibrium QCD at temperatures reached at RHIC.theil; /T, = 1.25 andT; /T, = 1.568
temperatures investigated in this paper equilibriumdattalculations indeed indicate corrections
(compare Fig. 7 of [10]). However correlations are typigalver ranges much smaller than the
size of the deconfined plasma, compare our estimates of thgeDsereening magssp(Tr). So
one should noa-priori exclude the possibility that, under heating, the systemndidreach true
equilibrium, but instead got stuck in the neighborhood ef 8 maxima of the spinodal decompo-
sition.
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