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1. Introduction

QCD describes the behavior of fundamental particles (quarks, gluons) that interact via the
strong nuclear force. At low temperatures, quarks and gluons are confined into bound states of
mesons and baryons. However, there is strong theoretical and experimental evidence that nuclear
matter changes drastically when the temperature becomes large. At sufficiently high temperature,
quarks and gluons are liberated from the confines of mesons and baryons, forming a quark-gluon
plasma (QGP).

We present here a study of high temperature QCD with 3 degenerate quark flavors. Although
3f QCD is not directly applicable to the real world, we can still gain insight into QCD at high
temperatures. Figure 1 shows the QCD phase diagram as a function of the quark masses. For
3 flavors, it is believed that for small quark masses, we have a first-order chiral phase transition,
which ends in a second-order critical point at mq = mc. Conversely, with infinitely heavy quarks,
we expect a deconfining phase transition. For intermediate masses, the transition becomes a smooth
crossover in a narrow temperature range[1, 2].

In this work we calculate the critical temperature Tc and also attempt to explore the region
where the crossover transition changes to first order. By using finite-temperature lattices with
Nt = 4 and Nt = 6, we can study the scaling properties of the p4 fermion action with two different
choices of gauge-link smearing. In our simulations, we use the inexact Hybrid-R algorithm, but we
also make a comparison with the exact RHMC algorithm. For more details, see our forthcoming
paper[3].

2. Actions

For our calculation, we use the p4 staggered fermion action[4]. The p4 action differs from the
naive staggered action with the addition of a bent three-link term. Thus, the p4 fermion matrix is
written as:

M[U ]i j = ηi
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Figure 1: QCD phase diagram as a function of the
light (mu,md) and strange (ms) quark masses.
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By choosing the coefficients appropriately, we can eliminate the violations to rotational symmetry
up to O(p4) in the quark propogator. As shown in Figure 2, the p4 action seems to have a better
approach to the continuum limit for thermodynamic quantities, at least in the free-field case.

p4fat3 p4fat7
c1

3
4

1
1+6ω -1/8

c3
3
4

ω
1+6ω 1/16

c5 0 1/64
c7 0 1/384

c1,2 1/48 1/48

Table 1: Fermion action parame-
ters. c1 is the one-link coefficient,
while c3,5,7 are for the 3, 5, and
7-link staples. c1,2 corresponds to
the p4 term. ω = 0.2 for p4fat3

In this 3f calculation, we use two different variants of the p4 ac-
tion, differing only in the amount of gauge-link smearing. The
p4fat3 action utilizes only the three-link staple in smearing the
gauge fields. We choose the weight for the three-link staple
to be ω = 0.2. This action has been used previously to study
QCD thermodynamics[2]. The p4fat7 action uses the three,
five, and seven-link staples to more fully control the effects of
taste-symmetry breaking. The coefficients for p4fat7 are cho-
sen to eliminate the lowest order couplings between quarks and
gluons that violate taste symmetry. This method was also used
to choose the parameters for the Asqtad action[5], with the ex-
ception that we omit the Lepage term, and do not use tadpole
improvement. Table 1 has a full list of the parameters.

For the gauge action, we employ a tree-level Symanzik action that includes the normal pla-
quette as well a planar 6-link rectangle term.

3. Finite temperature simulations

We performed simulations for Nt = 4 and Nt = 6 with two different fermion actions at various
different quark masses and for spatial volumes of 83,123,163, and 323 for Nt = 4 and 163 for Nt = 6.
For each value of the quark mass, we simulated at several different values of the gauge coupling in
order to sweep through the transition region. All these simulations were done using the Hybrid-R
algorithm[6], which suffers from being an inexact algorithm with O(δ t 2) errors. To minimize these
errors, we choose a step size of δ t = 0.4mq for all our evolutions. Table 2 gives a summary of the
different simulation parameters.

In the chiral limit, the chiral condensate ψ̄ψ is a good order parameter for the chiral phase
transition. In the pure gauge theory, the Polyakov loop is a good signal for deconfinement. In the
intermediate regime, we do not expect a sharp phase transition, but both quantities should show the
most rapid change in the transition region.

Action Nt Nσ mqa # of β
p4fat3 4 8, 12, 16 .005, .01, .025, .05, .1, .2 77
p4fat3 6 16 .01, .02, .05, .1 49

p4fat7 4 8, 16, 32 .01, .02, .035, .05, .1, .2 72
p4fat7 6 16, 32 .01, .02, .05, .2 61

Table 2: Parameters for the finite-temperature simulations
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Figure 3: Chiral Condensate Susceptibility for
p4fat3, Nt = 6
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Figure 4: Polyakov Loop Susceptibility for p4fat3,
Nt = 6

Accordingly, we measured the chiral condensate 〈ψ̄ψ〉, the Polyakov Loop 〈L〉, and their
susceptibilities (χq, χL)† in our finite temperature simulations. The Polyakov loop is measured
every trajectory, while ψ̄ψ is measured every ten trajectories, using at least ten different random
sources per measurement. We can then extract the critical value of the gauge coupling, βc by
locating the peak in susceptibility for χq and χL. Figures 3 and 4 show the chiral and Polyakov loop
susceptibilities for p4fat3 wtih Nt = 6. Table 3 gives βc for different quark masses and volumes.

Figure 5 shows ψ̄ψ for the p4fat7 action at Nt = 4. The sharpness of the transition for the
chiral condensate and the Polyakov loop, as well as the volume scaling of the susceptibility peaks
(not shown) seem indicative of a first order transition. This first-order transition seems to persist
even to very large values of the quark mass (mπ ∼ 800MeV ), contrary to previous studies with

Nt mqa Nσ βc,L [from χL] βc,q [from χq] βc [averaged]

4 0.100 16 3.4800(27) 3.4804(24) 3.4802(18)
0.050 16 3.3884(32) 3.3862(47) 3.3877(34)

8 3.4018(35) 3.3930(201) 3.4015(94)
0.025 8 3.3294(27) 3.3270(28) 3.3283(31)
0.010 16 3.2781(7) 3.2781(4) 3.2781(3)

8 3.2858(71) 3.2820(61) 3.2836(60)
0.005 16 3.2656(13) 3.2678(12) 3.2667(24)

12 3.2659(13) 3.2653(12) 3.2656(10)

6 0.200 16 3.8495(11) 3.9015(279) 3.8495(520)
0.100 16 3.6632(55) 3.6855(105) 3.6680(228)
0.050 16 3.6076(24) 3.6189(328) 3.6077(115)
0.020 16 3.4800(110) 3.4800(80) 3.4800(65)
0.010 16 3.4518(50) 3.4510(83) 3.4516(44)

Table 3: βc determined from the peaks in the Polyakov loop susceptibility and the chiral susceptibility using
the p4fat3 action. The last column gives the average with combined statistical and systematic errors.

†We measure only the disconnected part of the chiral susceptibility
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Figure 5: Chiral Condensate for p4fat7, Nt = 4
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Figure 6: βc as a function of mqa. The top two
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staggered fermions[1, 7]. Furthermore, as shown in Figure 6, the value of βc for Nt = 4 and Nt = 6
with p4fat7 coincide as mq → 0. We believe that the finite-temperature transition is being polluted
by the presence of an unphysical, bulk phase transition. This is supported by some exploratory
studies at Nt = 8. As a result, we only use our studies with p4fat3 to make statements about the 3f
transition. For more details on p4fat7, see Ref. [3]

4. Comparison of RHMC with R Algorithm

As our simulations were performed with the Hybrid-R algorithm, it is important to know to
what extent the systematic errors in the R algorithm affect our results. We have repeated some of
our runs using the exact RHMC algorithm[8, 9]. Figure 7 is a comparison of the RHMC and R
algorithms for p4fat3. For this small quark mass (mq = 0.01), the step size we choose for the R
algorithm is quite small (δ t = 0.004). At this step size, we have good agreement with RHMC.

Figure 8 shows the same comparison for p4fat7 at a larger quark mass (mq = 0.10). For the
step size used in our simulations (δ t = 0.04), the errors in the R algorithm are apparent. Only
when we reduce the step size by a factor of two do we achieve agreement with the RHMC result.
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Figure 7: ψ̄ψ vs. β for RHMC and R algorithms
with p4fat3, 83 ×4,mq = 0.01
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However, in the calculation of Tc, the R algorithm seems mostly to shift only the bare parameters -
the resulting systematic error in physical quantities seems to be less than the statistical error.

5. Zero Temperature Scale Setting

In order to determine a physical scale for our lattices, we must measure zero temperature
quantities such as the meson spectrum, the string tension σ , or the Sommer scale r0. Therefore, we
also performed zero temperature simulations on 163 × 32 volumes in the vicinity of the transition
region. On these lattices we measured both the meson spectrum and the static quark potential every
tenth trajectory.

The static quark potential is extracted from the measurements of the Wilson loop. The spatial
transporters are constructed using iterative APE smearing. Once the static quark potential has been
determined, physical parameters such as the Sommer scale and the string tension can found by
fitting to a three-parameter ansatz (Cornell potential):

V (r) = −α
r

+σr + c

where σ is the string tension. The Sommer scale r0 is defined as:

r2 dV (r)
dr

|r=r0
= 1.65

More details are found in Ref. [10]
We also calculate the staggered meson spectrum, using point-wall quark propagators with a

Z2 wall source. We obtain masses for the vector meson (mρ ), the Goldstone pion (mπ ), and the
heavier non-Goldstone pion (mπ2). This allows us to check the scaling between Nt = 4 and Nt = 6,
as well as to measure the extent of taste-symmetry breaking. The parameters and results for the
zero temperature measurements are summarized in Table 4.

6. Results and Conclusions

Our finite and zero temperature calculations allows us to express the critical temperature Tc in
terms of a physical scale set by the static quark potential - Tcr0, for example. We can then do a
simultaneous chiral and continuum extrapolation to some appropriate physical limit:

Tcr0(mπ , Nt) = Tcr0(mπc, Nt = ∞)+A
(

(mπ r0)
2 − (mπcr0)

2)1/δβ
+B/N2

t

β mqa # traj mπ a mπ2a mρ a r0/a
√

σa

3.3877 0.050 7800 0.7084(1) 1.094(7) 1.310(20) 2.066(7)[7] 0.552(12)[12]
3.3270 0.025 12000 0.5118(3) 0.998(24) 1.222(32) 1.982(14)[13] 0.564(11)[11]
3.2680 0.005 1500 0.2341(9) 0.860(90) 1.250(50) 1.888(15)[9] 0.587(17)[17]

3.46345 0.020 4420 0.4413(8) 0.665(5) 0.908(11) 2.797(20)[20] 0.404(6)[6]
3.4400 0.010 4290 0.3210(7) 0.594(7) 0.882(20) 2.770(13)[13] 0.405(6)[6]

Table 4: Parameters for the zero temperature simulations, meson masses, the Sommer scale r0, and the
string tension σ . The upper part of the table refers to scale setting runs for our Nt = 4 lattices while the
lower part to our Nt = 6 calculations.
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where δβ = 1.5654 is the critical exponent for the Z(2) universality class, corresponding to the
endpoint in the first-order transition line. This extrapolation is valid for mπ > mπc where the critical
value of the pion mass, mπc ≈ 0.15, has been estimated in previous studies[7]. In our case, all the
points we have simulated are consistent with crossover behavior, with no indication of being in the
first-order region.

This combined extrapolation results in a value Tcr0 = .439(8)[+1] at mπ = mπc. If we take
mπc = 0 and extrapolate to the chiral limit, we get Tcr0 = .419(9). This is slightly smaller than the
value obtained in our 2+1f calculation Tcr0 = 0.444(6)[+12][−6] in the chiral limit[10].
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