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1. Introduction

Mixed action simulations became popular in recent years as they combine tHat®mad-
vantages of a simple sea quark action with the exact or near exact gmraledry of overlap or
domain wall valence quarks. The price to pay, in addition to an internal gist@mcy (unitarity
violation), is the complication in the analysis. One option is to derive and usialpaguenched
mixed action chiral perturbative formulae. Alternatively, one can match ananpeters of the va-
lence and sea quark actions as well as possible and deal with any rendifféengnce as part of
the lattice artifacts. This approach is useful if the chiral perturbativeddae do not exist or the
numerical data does not allow the fitting of all the parameters, or if one desibee insight into
the physics contained in a particular set of gauge configurations.

The effectiveness of the latter approach was illustrated in Refs. [Wyl&re we showed that,
at least within the 2—dimensional Schwinger model, mixed action simulations wittapwealence
quarks on rooted or unrooted staggered sea quark configuratipriduee the full dynamical
overlap results if the overlap mass is tuned appropriately. In this work patreur first results
along the same lines in 4—dimensional 2—flavor QCD. We show that confiqwsajenerated with
2—flavor staggered quarks at a single lattice spacing but at fouratiffguark masses are consistent
with 2—flavor QCD configurations, at least for the three heavier maddfesalso show how the
topological charge distributions can be used to determine the best ovaldgge® matching masses
and that with these mass values the data sets predict a consistent valgediairahcondensate of
2—flavor QCD. All details can be found in Ref. [3].

2. Strategy and Simulation setup

Our sea quark action is the 2—flavor Asqgtad staggered action [4 — 6].aWwedenerated four
configurations sets, each consisting of 400-500laRices at a lattice spacing of abaut 0.13fm.
The details of the sets are summarized in Table 1. The level of taste bretiengtios of the
heaviest and lightest pion masses, is approximated from corresponridirftagor results [5]. The
last column lists the separation of the configurations in terms of unit length niatedtynamics
trajectories.

Our valence action is an overlap action based on an improved Wilson keriY P smeared
links. This action was used in recent overlap simulations [7, 8].

To investigate if the rooted staggered gauge ensembles are consistent eviflatar con-
tinuum QCD one has to consider observables that are sensitive to thewand do not depend
strongly on the valence quark mass. Spectral quantities are not ajpeoput the low lying in-
frared eigenmodes of the massless valence Dirac operator offer achomd. Another quantity
which we will consider is the topological charge of the configurations. &u €onfigurations we
ask what valence quark mass matches the staggered configurationstthe behat valence mass
minimizes the lattice artifacts, the difference between lattice data and continuldn QC

3. Eigenvalues of the Dirac Operator and Random Matrix Theory

Random matrix theory (RMT) captures the universal chiral properfi€s® and predicts the
distribution of the physical (infrared) eigenvalues of the massless Dpaator in thee—regime.
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| Set| B | amy | ro/a[9,10] | Taste breaking| Time separation

L | 718 | 001 | 3.84(6) 60% 5
M | 720 | 0.02 | 3.82(3) 34% 5
H | 722 | 0.03| 3.60(4) 24% 10
E | 7.24 | 004 | 3.64(3) 18% 15

Table 1: Parameters of tha; =2 staggered background configurations. The molecular digsatime
separations between the configurations reflect the autdation of the topological charge.

The predictions are given in fixed topological seat@nd depend on the low energy constathe
infinite volume chiral condensate. The distribution of the (microscopicalbated)n eigenmode
A2V is given as

ijn()\ZV) :Avn(rnzv,nf) 5 (31)

wheremis the quark mass of the configurations (sea quark mass), which in auiscais overlap
guark mass that corresponds to the background configurations thatgereerated by staggered
quarks, i.e.mis the matching quark mass as described in Sect. 2. The valmasofiot known a
priori and thereforé\, ,, depends on two variables, = m>V and>. We fit the measured eigenvalue
distribution to random matrix theory at fixddl and predict the chiral condensaeThe systematic
deviation of the data from the RMT prediction of Eq.(3.1) characterizes ttiedartifacts, both
from discretization errors and from the non-locality of the action. Thisadi®n is the measure of
consistency between the lattice action and continuum QCD and replacesitheeresed in Ref.[1]
for the same purpose. If the rooting procedure is correct, it should sxaero as the continuum
limit is approached at fixed physical (matching) quark mass, assuming thiasone are done in
the region where the RMT predictions are valid.

To fit the cumulative distributions, we use the Kolmogorov-Smirnov (KS) tegtrtiinimizes
D2 ... the maximal deviation between the measured and the predicted cumulativeitlsts11 —
13]. An advantage of the KS test is that there is an explicit and simple farthéaonfidence level
of the fit. For a given sample length this quality facf@¥s is a monotonically decreasing function
of Dmax that gives the probability that the measured distribution is consistent with tigtiaal
one. The KS fit maximizes the quality factQks or the product of quality factors if more than one
distribution is used.

However,Qks will go to zero exponentially with increasing statistics if the measured distri-
bution is notexactlydescribed by the analytic form. In any lattice calculations there are lattice
artifacts and finite volume effects, so the analytic form is never exacthpdeped, the quality
factor vanishes as the numerical statistics increases. In the following ewe fiaita by maximizing
the quality factor (or products of quality factors) according to the KS testiéscribe the goodness
of the fit by the valudax itself to enable a comparison with other results.

Fig. 1 shows a typical fit of the cumulative distribution for thfle(amy; = 0.02) data set at
M=135. The left panel corresponds to the= 0, the right panel to the = 1 sector. Only the first
modes of they = 0 and 1 topological sectors are included in the fit. In addition to the two fitted
modes we also show the non-fitted second modes in the same topologicas.segigris almost
a factor of two smaller for the = 1, v = 1 mode, but not significantly worse for the non-fitted
modes than for the fitted= 1, v = 0 mode.
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Figure 1: RMT predictions of the cumulative distribution of the twaMest eigenmodes in the= 0 and
1 sectors of théMl set atM =13.5 (see below). The fit uses only the first mode in each topcidgiector.
Arrows indicate the maximal deviation between the datasgétle analytical predictions.

In Fig.2 we plot the maximal deviatiorByax as a function of the RMT parametbt. Ev-
idently the quality of the fit is not very sensitive to the paraméfer While small values are
disfavored, larger values are almost equally probable. Contrary torgginal hopes the eigen-
mode distributions cannot be used to define a matching mass, it defines anlyeaaf acceptable
values.

0.25 Result of the fit are similar for the other
three data sets. The upper panels of Figure 3
0.20F 1 showDnaxfor the fitted modes, and the depen-
dence on the staggered mass is obvid)gax
) 0151 1 is significantly lower at the heavieBtdata set
& than for the lightest. one, with the interme-
0'10'.\-\‘\‘\,“_‘_‘_‘_‘_’_.' diate mass sets lying in between. This behav-
—o—v=0,n=1 ior is expected since at finite lattice spacing a
0.05F —@—v=1,n=1 b, .
—0—y=0,n=2 smaller staggered mass leads to increased taste
P I ‘ ‘ ‘ ‘ symmetry breaking (Table 1), it differs more
4 6 8 10 12 14 16 .
M from the flavor symmetric valence quark sec-

tor. With decreasing lattice spacing at fixed
physical quark mass this deviation should de-
crease and eventually vanish in the continuum
limit.

At eachM value the fit predict&V /a and usingo/a from Table 1 this can be converted to
physical units as shown on the lower panels of Fig.3. The correspongartap mass valuas
are shown along the upper border of the figure. In order to predictiinal condensate we have
to find an independent quantity that predicts the matching valence quark Miasgopological
charge distribution is a possible choice as we will discuss in Sect. 4.

In Table 2 we list the number of configurations, thgax values of the RMT fit at specific
M = mxV values and the corresponding quality factors. Dhgy values can be compared to those
from Ref. [13]. That work uses dynamical overlap configurationsimilar physical volumes at
slightly coarser lattice spacing. Using the same fitting strategy as ours thé&yfine- 0.11~0.20.

In view of these numbers we can conclude that, as far as the Dirac apeiggamode distribution

Figure 2: Dpmax as the function oM for the M data
set. The fit uses the first modes of the= 0 and 1
sectors (filled points).
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Figure 3: DmaxandZ/3 in GeV as the function ol = mzV for all four data sets.

is concerned, the rooted staggered action configurations do not styaw|ittice artifacts than the
overlap ones.

4. Topology

Since we have sufficient statistics, over 400 approximately independefigarations at each
coupling value on not too large volumes ti& about 6 fr), we can study the topological charge
distribution. Following the discussion of Refs. [14 —16], we write the pbdlig of encountering
a chargetv configuration in the dynamical ensembleRs= Z,(mzV)Qy (o). HereQ, is the
quenchegrobability of a charge-v configuration, expected to be Gaussian up/d torrections,
while Z,, describes the suppression due to the fermionic determinant. The fermigpiesaion
factor has been calculated both within chiral perturbation theory and titeoma matrix model

| Set| M=mzv | 5¥3/Mev |  am |
L | 12.7(2.0) | 295.7(7.0) | 0.083(4)(14)

| N | Dmax | Qks |
89 | 0.157 | 0.022
144 | 0.130 | 0.014
103 | 0.121 | 0.092
172 | 0.080 | 0.217
87| 0.123 | 0.132
178 | 0.081 | 0.181
85| 0.071 | 0.768
193 | 0.058 | 0.022

M | 13.5(2.8) | 291.7(4.1) | 0.090(3)(19)

H | 16.9(1.9) | 288.0(5.4) | 0.098(4)(12)

Ol O IOlIFr o<

E | 22.6(4.3) | 293.5(4.1) | 0.127(4)(24)

=

Table 2: Results of the RMT fit to the lowest eigenmodes in the 0,1 sectors. For the determination of
M see Sect. 4. The first error on the matching overlap raass due to the uncertainty & only, while the
second one takes into account both the erros afidM.
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[14, 15]. Thus the charge probability distributi® depends on two variables] = mzV ando.
The latter can be determined from the quenched topological susceptibilayrs® parameter fit to
the topological charge distribution data predigswhich we list in Table 2.

5. Thechiral condensate and matching masses

With theM = mxV values predicted from the topological charge distribution we are now able
to extract the physical value of the chiral condensate. Combinind/tivalues withrp/a from
Table 1 we find that all four configuration sets predict a consistent Yatuthe > condensate, as
listed in Table 2. The only sign that the lightset differs from the RMT prediction more than the
other mass values is the larger error of the predicted condensate. [likewaaobtain,

>1/3 = 291(5) MeV (5.1)

lat —
is the lattice condensate. It is consistent with predictions obtained on owmemical configu-
rations [13], further supporting our observation that the rooted stadgmnfigurations are QCD
like, the non-local terms of the action can be simply taken into account as latifeets.

To connect the value of the condensate to a more conventional schemb|Silee 2GeV,
one needs the corresponding renormalization fagtorSuch a factor should be calculated non-
perturbatively on the staggered configurations with our specific valBiree operator. We have
not done this calculation yet but similar ones exist [12, 13, Zgkeems to be largely independent
of the detailed properties of the background configurations and we estimedéue to beZs > 0.9,
which will lower Z;/t?’ by 3%. In addition, there is a finite volume correction to the condensate that
could lower its value further [13]. These effects will have to be investijate they are beyond
the scope of the present work.

CombiningM andX we get the values listed in thafti’ column of Table 2. These matching

masses are not only surprisingly large but they do not depend lineailyeostaggered masses.
While the staggered quark mass changes a factor of four between thetlightekeaviest data
sets, the matching overlap masses change only 50% . This is similar to whasemedin the
Schwinger model [1]. The matching valence masses show an overaltshiftared to the stag-
gered sea mass values. In addition at very small sea quark masses,tid@natching breaks
down, the valence quark masses are largely independent of the s&arpss values. This is il-
lustrated in Fig. 3 of Ref. [1]. Such behavior implies that staggered coatigns at small quark
masses are not necessarily closer to chiral continuum QCD than the heage configurations.
All the computational efforts creating light configurations might be in vaieating only configu-
rations with larger lattice artifacts. This might not be a problem when the datafgzed with the
whole machinery of staggered partially quenched chiral perturbatiomtihe should be consid-
ered when individual configuration sets are analyzed in mixed action sirngat@f course this is
only a lattice artifact and any such effect will disappear as the continuumi$imiproached.

6. Conclusion

We have studied the properties of the rooted staggered action in a mixed siotigiation
using overlap valence quarks. By comparing physical quantities thah@ependent of the va-
lence quark mass to continuum QCD predictions we identified lattice artifactstadabd their
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dependence on the sea quark masses. In this work we consideredaitnakig distribution of the
massless Dirac operator and the distribution of the topological charge.okveaced the former
to the universal predictions of random matrix theory and found that tstesatic deviation of the
data from the predictions were comparable to dynamical overlap simulatiaisg the topologi-
cal charge distribution we could identify the matching overlap valence quass value which best
describes the staggered configurations. We found these matching teahesfairly large and their
dependence on the staggered sea mass values indicate a finite offseffionad a linear mass
renormalization factor between the valence and sea mass values. With tbetbsematching
mass we extracted the value of the chiral scalar condensate. We fouritettpedictions from
all of our staggered configuration sets were consistent. These finditigate that at our lattice
spacinga~ 0.13fm, and with not very light sea quarks the rooted staggered lattice aoatiigns
have lattice artifacts similar to other lattice actions, the non-local terms arisingtfre rooting
procedure can be simply considered as part of the cutoff effectsdbr to show that these non-
local terms indeed become irrelevant in the continuum limit the calculation haverepleated at
different lattice spacings and the scaling of the lattice artifacts should betigated. 1t would also
be important to study in a similar manner the lattice artifacts of other observables.
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