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1. Introduction

After much effort, the most popular constructions for aahirauge model on a lattice are still
not watertight. Here | present a simple yet less ambitiouthauwlogy illustrated below in terms
of naive fermions. The idea is to make the doublers of unwhakerality (e.g. with right-handed
coupling to the gauge fields) heavy enough so that the eféeatiodel at low energy looks chiral.
This idea was also pursued by Montvay[1], who constructedeatsoin terms of mirror pairs of
naive fermions which mixed through Wilson and Yukawa intécms. While Montvay’s model
and the model I'm presenting here are effectively chirabat €nergy, they may not be useful to-
ward a lattice formulation of the Standard Model withoutler developments (some possibilities
discussed below). Heavy families, mirror or not, are diffito reconcile with precision data. (See
ref.[2] for a discussion plus references to earlier work] age ref.[3] for a more recent assess-
ment of the experimental situation.) The problem is thatmigemions are made heavy through a
Yukawa interaction, they also strongly couple to the sdaddats (radial and Goldstone modes). The
net result is that loop diagrams involving these fermioresrast suppressed, and have measurable
consequences at low energy, for example, on the amokef B mixing.

The basic idea of my model is to lift the degeneracy betweam end odd naive fermion
modes through a modified kinetic term. This contrasts witlephttempts to use Wilson-Yukawa
terms as in the Smit-Swift model, which failed to do a very dgab (see the review of ref. [4]).
Both models have a weak-coupling phase transition wkege> becomes non-zero. This paper is
devoted to a study of the fermion spectrum near this tramsiti the broken phase. Both models
also have a strong-coupling transition around which therii@ns bind to the scalar field, producing
an uninteresting left-right symmetric spectrum.

A truly chiral gauge model could be achieved in my model, enswariant of it, if there were
phase transitions at intermediate coupling around whiehetfen modes were weakly coupled to
the scalar field, while the odd modes coupled strongly endadiind. | believe such transitions
may exist, but it has been difficult so far to come up with tugsthy analytical methods to rule
one way or the other. Numerical simulations may be necessary

2. Preliminaries

An “even” naive fermion mode is, of course, any one of 8 modsfindd around a corner of
the Brillouin zone having an even number of momentum compisne 71. (Here and below the
lattice spacing is set to 1.) That is, even modes hawethe vicinity of

(0707070)7(7-[7 T[?O?O)?' .. 7(7-[7 T[? T[? T[)
while odd modes live around
(m,0,0,0),...,(m,mm0),....

Consider the behavior of various vector and axial-vectgeaib under a transformation from
an even to odd mode, e.g. under

Yn — (=1)™y1ysth.
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The vectorny, Yn+y is even, (i.e. same for all modes) while the axial veegy, ysyn., is odd
(i.e. opposite sign for evens and odds) as is well known.létss well known that there are objects
with the opposite behaviowny, Yn+u+o is odd whileghy, sy i+ o is even, wheres is any one
of the 16 vectorg+1,+1,+1,+1).

A kinetic term which is odd under the transformation is thus

_ 1 _
Kodd = Yhodd P = 32 Z UnYu(Uhsptro — Un-p—-o),

no

which gives an inverse propagator
S (p) =iy sinpy [ cospa.
A

Now we are in a position to define a kinetic term which brealksdbageneracy between the even
and odd modes:

1

wherea is a free parameter. To see how the breaking works, first dendiee fermions with
S=K(a)+myy. Then the masses of the even and odd modesfar 1 are

1+a
Meven &M, Modg ~ 7— M. (2.1)

Fora — 1, myq — 1.

3. The Modd

The main point of this paper is to study the effect of the kinetrmK (a') within an otherwise
usual Yukawa model given by

S=K(a) +Y(Prnhn+h.c) +ktr(@l gh p+h.c) (3.1)

whereg is an element of U(1) or SU(2). | will refer to this model as Medified-Kinetic-Yukawa

or MKY model. Adding a Wilson-Yukawa term does not make muifecence in the results, and
so is omitted. Standard mean-field methods reveal that th& Mhigdel has phase transitions at
weak and strong coupling as in the Smit-Swift model. As noer@d above, | have not established
yet whether or not there are any transitions in the interatedioupling regime, because neither
mean-field nor Hartree-Fock methods are readily applicdtd#es. Numerical simulations should
be doable but slow because of the non-nearest-neighbofigsiin Koqq. In 4 dimensions, each
fermion degree of freedom couples to 73 others (64 frgy plus 8 fromKgen plus 1 from the
Yukawa term), as compared to 9 in a model with only nearegfhber couplings.

4. Analysis

I'm going to present results only at= 0 in the broken phase, near the weak coupling transi-
tion. The critical coupling from mean-field methods for batfl) and SU(2) is given by

1
zyE/szlsﬁ(a) .
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where

1
sy(a) = H—asmp“(lJrancosp)\). 4.2)
)

The results for 2 values af are
ye(-8) = .38, yc(.9) = .29.

Since thex = 0 model with these small values pis essentially equivalent to a 4-fermion model
with couplingy?, the corrections to these values will @¢y*), which is small.
The masses of the even and odd modes are simply

1+a
Maen XY < @>, Modd ~ mmeven
which | expect are reliable as long maigyq is small, “small” estimated anecdotally from my numer-
ics to be less than .17 or so, more or less depending,@s determined by studying the poles of
the propagator. Whemgq is not small, it is not so simply related tyen.

To have any hope of effectively decoupling the odd modes daimgatheir effects small at
low energy, we need to see hawgyg compares to the mass of the gauge fields, ot t@p >r.
Fortunately a mean-field estimate for this is easy to obfn recipe is as follows. First make the
standard MF change of variables from compadb non-compacY. The saddle point value fof

is the MF estimate fok ¢ >. Expand around the saddle point by setting
V=(<¢o>+p)eT
Then< ¢ > comes from the coefficient of the Goldstone part of the affedction:
St (p, M) =< @ >R P+ ... .
This is equivalent to introducing gauge fieldsvith couplingg and defining< ¢ >r= Ma/g. The

result is 2
2_ COS" Py
<02 | (3050 (0)7 + M2

wheres, (a) is given by eq. 4.1.

Here are a few sample numbers for SU(2). Bor .8 andy = .39(= y¢(.8) +.01) | find
Meven = .018, Mogg = 162, < @ >r=.079 and thusnyg/ < @ >r= 2.0. Inspecting eq. 2.1 one
might expect that making closer to one would increase this ratio. This seems to bedbe lout
the increase is small. For example for= .9 andy = .30(= y¢(.9) +.01) | find mgen = .0056,
Modd = -114 and< ¢ >r= .0505 which givesn,q/ < ¢ >r= 2.2. For U(1) | also found ratios
around 2.

Within the MF approximation I'm using here, | can’t safel\kéea much closer to 1, because
then the zero-order coefficieritl — a)/(1+ a), of y, p, for an odd mode becomes comparable to
its one-loopO(y*) correction.

To get some idea of the accuracy of the MF estimates versugation results, | have turned
to the Smit-Swift model. Foy = .05, k = 0 andw = .15 (the coefficient of the Wilson-Yukawa
term), the MF analysis givesp = .16 andmp/ < @ >gr= .43, wheramp is the mass of the lightest
(unwanted) doubler. From simulations ofl@ and 8 lattices, Bocket al [5] find mp/ < @ >r=
.30+ .05, a bit lower than my estimate. Even if my MF estimates alfoven,q/ < ¢ >r are 30%
too high they are still significantly > 1.
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5. Final Remarks

Getting the mass of the wrong-chirality doublers greatanth ¢ >g near the weak-coupling
transition is interesting, but, by itself, probably notggito lead to a phenomenologically accept-
able formulation of the Standard Model, as discussed imiineduction. Some clever amendments
to this model would be necessary. One would have to somelfeet tifie contributions of the heavy
fermions to the so-called S-parameter(see ref.[2]). Thalgaector gives the same sign to S and
so cannot help. Perhaps scalar self-interactions can leel tiando this. It may be more fruitful
to look for phase transitions in the intermediate coupliegime where the even modes are light,
while the odd modes bind to the scalar, and thus truly deeoupl
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