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I review here some of the open questions regarding the geometry and emission mechanisms of

galactic black hole candidates. For hard states, I concentrate on the perspective of “disk+Compton

coronae” models (for discussions of jet models, see the papers by Sera Markoff). Specifically,

I discuss the implications from our 10 year longRXTE monitoring campaign of Cyg X-1. I

then present simultaneousRXTE/Chandraobservations of the “soft state” black hole candidate

4U 1957+11, and discuss to what extent it does or does not allow one to test “relativistic disk

models”. The use of such models has been claimed to measure black hole spin parameters. I

then briefly present a particularly freaky-weird observation of GX339−4, where the source “fell

off” the usual radio/X-ray correlation in the low/hard state. Questions addressed by the above

observations include: are the Compton corona models uniquefits to the data? (No. Jets work

equally well, and simple broken power laws work better still. We argue that the latter models

indicate multiple, broad-band continuum components.) Is there good evidence for a receding

disk as sources transit into the hard state? (The jury is still out.) What does the relativistically

broadened Fe line tell us? (Sometimes the disk,even into quiescence, stays very close to the

central object, in contrast to expectations of ADAF models.) How much better/more necessary

are recently discussed relativistic disk models? (I am verydoubtful that such models will ever

usefully measure black hole spin.)
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1. Introduction

As of this, the sixth conference in this series, I believe that most of us are comfortable with the
notion thatall black hole candidates (BHC) are, have been, or potentially could bemicroquasars,
i.e., galactic compact object sources that show significant jet activity (usually in the radio). The
main question that determines whether or not BHC exhibit steady jet activity is whether or not
they are in the spectrally hard (i.e., “low”) state [8, 3]. (For an unusual quasi-exception to this,
the reader is referred to the observation of GX339−4 discussed at the end of this article.) The
questions many of us are now focused on are: What are the emission mechanisms responsible for
BHC hard states (corona and/or jet)? What is the hard state geometry? (Thelatter is especially
relevant to coronal models of hard states.) Is rapid black hole spin required for launching a jet? (As
the Fender Conjecturestates: if jets require rapid spin, then all black holes are rapidly spinning,
since all seem to exhibit jets in their hard state.) Can we measure black hole spin?

In the following, I address some of these issues via a series of pointed monitoring observations
of three BHC: Cyg X-1, 4U 1957+11, and GX339−4. We have been monitoring Cyg X-1 with
RXTE for nearly 10 years now, and what follows are some highlights from our work which can
be read in detail elsewhere [6, 18, 24, 10, 9, 31] that are particularly relevant to Comptonization
and jet models. Next, I discuss recentChandraandRXTE observations of the soft state BHC,
4U 1957+11 (Nowak, et al., in prep.). As this source is persistently soft, with minimal hard tail
emission [20, 29], it becomes an excellent test of notions of spectrally measuring spin (despite, as
we shall discuss, lack of knowledge of its distance or mass). Finally, I will briefly show an unusual,
radio under-luminous, hard state of GX339−4 (Nowak et al., in prep.).

Throughout, with one exception, all plotted spectra are shown as “flux-corrected” spectra (i.e.,
adjustedsolelybased upon the detectorarf andrmf, with noreference to the model), as calculated
with the ISIS1 analysis system [13]. As such, and in contrast toXSPEC “unfolded” spectra, you
will not seeassumedmodel featuresfalsely mirrored in the data. The data are what they are,
and any observed structure in the “flux-corrected” spectra are indicative of physical reality and/or
response matrix features (not all of which are necessarily properly characterized).

2. Cyg X-1

Cyg X-1 is perhaps the most famous and one of the best studied of the BHC.A review of the
overall system properties can be found in [18]. Cyg X-1 served as one of the original motivators
for the definition of the “hard” (i.e., “low”) and “soft” (i.e., “high”) states,despite two tremen-
dous drawbacks. First, being at least partially wind-fed rather than strictly Roche lobe-fed (i.e.,
“focused-wind accretion”), it likely has something of a truncated accretion disk, different than the
typical X-ray nova accretion disk. Second, Cyg X-1 is perhaps one ofthe worst examples of “soft
state” transitions. As we will discuss, the Cyg X-1 state transitions are more ofdegree than kind
(see Fig. 2), with Cyg X-1neverentering a “disk dominated” state.

1All the models ofXSPEC, with most of the programmability ofIDL or MATLAB , plus arbitrarily and easily
extendible with almost anyFortran, C, or C++ library, plus parallel processing via thePVM module, plus passing of
data back and forth toDS9 via theXPA module, plus. . .. Oh, hell, if you’re still usingXSPECinstead, you deserve what
you get. For an introduction, seehttp://space.mit.edu/home/mnowak/isis_vs_xspec/index.html.
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Figure 1: Left: A number of suggested coronal geometries. The middle two are currently very popular, e.g.,
in ADAF models; however, their revival in Compton codes was somewhat independent of ADAFs (see text).
Right: ‘Flux-corrected’ (i.e.,not following XSPEC’s unfolding scheme - see text and Nowak et al. 2005)
RXTE spectra of a very hard state of Cyg X-1.

A typical Cyg X-1 hard state spectrum, as observed byRXTE in the 3–200 keV band, is shown
in Fig. 1. The salient features – present inall RXTE spectra of Cyg X-1 – are a low energy (3–
10 keV) power law that hardens above 10 keV, a (typically) broad line feature near 6.4 keV, and an
exponential rollover at high energies (usually> 20 keV). Cyg X-1 “soft states” also often require
an additional soft component (which can be modeled with a simple phenomenological disk com-
ponent). In fact, the simple phenomenological model as described above fits RXTE databetter
than any sophisticated Comptonization or jet model that we have tried[31]. As a corollary,includ-
ing parameterizing absorption and a relativePCA/HEXTE normalization constant, any model that
uses more than 11 free parameters to characterize theRXTE data is likely over-parameterized.

Comptonization of soft (seed) disk photons in a hot (≈ 100 keV) corona withτesof order a few
has long been proposed as a physical description of BHC spectra [7, 28]. Debate centers around
the geometry, with ‘sphere+disk’ models currently being very popular (see Fig. 1). The ‘revival’
of the ‘sphere+disk’ geometry for models of Cyg X-1 in fact occurred independently of Advection
Dominated Accretion Flow (ADAF) models, which also posit this geometry. It had been noted
that unless the corona is ‘photon starved’ (i.e., only a fraction of seed photons enter the corona),
it is simply too difficult to achieve temperatures high enough to produce spectra as hard as those
seen in Cyg X-1 [5, 25]. ‘Pill box’ geometries (i.e., the bottom of Fig. 1), although photon starved,
produce too much reflection,unlesssome process like relativistic beaming [1] is also invoked.

In [31], we successfully fit theRXTE Cyg X-1 spectra with theeqpair model of Coppi [2],
if we include additional disk and line components (smeared reflection is included in theeqpair
model). Fits to the hardest and softest spectra are shown in Fig. 2. The relevant coronal fit pa-
rameters then become therelative compactness (i.e., energy divided by radius) of the corona to
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Figure 2: Left: ASM flux, radio flux, coronal compactness and disk flux (the lattertwo from
phabs*(diskpn+eqpair+gauss) fits) from our pointedRXTE observations of Cyg X-1. Right: Our
softest and hardest Cyg X-1 observations. (Sadly, the latter shown as the potentially misleadingXSPEC
unfolded spectra. The individualdiskpn, eqpair, andgauss model components are also shown.)
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Figure 3: Left: Schematic of the sphere+disk coronal geometry, with expectations for how the compact-
ness/hardness could change with simple changes of the geometric parameters. Middle: coronal optical depth
vs. compactness ratio for our pointed observations of Cyg X-1. Here, and throughout, clear points will refer
to the Remillard & McClintock [26] power law photon index-based definition of the soft state (Γ1 > 2.2),
while the solid points refer to the photon index-based definition of the hard state. Right: higher energy power
law photon index (Γ2) vs. ratio of coronal compactness.

that of the disk, and the coronal optical depth. Other Comptonization models also work (with, for
example, Comptony parameter taking the role of relative compactness). Overalltrendsremain
unchanged among these models, especially on “broad” features such asfluxes; however,absolute
numbers (e.g., reflection fraction, Fe line strengthandwidth) are altered, often in systematic ways
[31]. Trends from theeqpair fits are shown in Fig. 2.

Using theeqpair model in this way only roughly approximates the sphere+disk geometry,
but it does provide good fits to the data. There is also a nearly one-to-onecorrespondence with
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Figure 4: Left: Difference in photon indices vs. lower energy photon index for broken power law fits to
Cyg X-1. Middle: Reflection fraction vs. compactness ratio for coronal model fits. Right: Disk flux vs.
compactness ratio for coronal model fits.

broken power law fits (see Fig. 3). An important point to note here is that what is a very clear
and distinct power law break vs. power law index correlation (Fig. 4) is not solelyattributable to
a reflection fraction-hardness correlation (i.e., [32]) in Comptonization models. Although aweak
relation between reflection vs. coronal compactness (i.e., hardness) is seen, the∆Γ−Γ1 correlation
is more dominatedby a disk flux-coronal compactness correlation (Fig. 4). That is, the break at
10 keV is largely driven by the relation betweentwo broad band continuum components being
observed within theRXTE band. To be clear, the presence of the Fe line indicates that theremust
be reflection, but its exact value and its correlations cannot be determinedindependently from the
broad-band continuum components assumed and fit in the 3–200 keV regime.

Within the context of the sphere+disk Comptonization model, aside from changing the ener-
getics or optical depth of the corona, one can alter the spectral hardness by changing the size of the
corona and/or the radius of the transition region between disk and corona(see Fig. 1). Such geom-
etry changes have been inferred from spectral fits, e.g., the reflection-hardness correlations, but as
we show above, that correlation is weak, is not truly self-consistently calculated within the context
of the fit model, and it does depend upon the presumed Comptonization and reflection model (i.e.,
reflect*compttmodels show a much more pronounced correlation, which is likely systematic
rather than physical in nature; [31]). Thus, researchers have turned to timing features to search for
further clues as to geometry changes in the Cyg X-1 system.

As we (and others) have shown, the Power Spectral Densities (PSD) ofthe X-ray variability of
Cyg X-1 can be well-described as the sum of multiple, broad Lorentzian components [17], with four
components dominating the fits (Fig. 6). The peak frequencies of these features are well-correlated
with spectral hardness, with harder spectra corresponding to lower frequencies [24]. This is what
one expects in sphere+disk models if the frequencies are indicative of characteristic disk time scales
at the radius of the transition region between corona and disk, and this transition radius moves
outward as the source becomes fainter and harder. If this is the case, then the highest frequency
component at≈ 40 Hz indicates thatthe transition region never moves beyond≈ 40GM/c2. (This
is in contrast to many of the larger values found referenced for ADAF models. As such, these
models have greatly scaled down their hypothesized coronal region sizesin recent years.)
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Figure 5: The dependence of characteristic power spectral density (PSD) frequencies upon photon index
(from Pottschmidt et al. 2002;Γ ≈ Γ1). Also shown are time lags between hard and soft variabilityvs. both
photon index and characteristic PSD frequency.
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Figure 6: Left: PSD of Cyg X-1 fit with five Lorentzian features. The fourmost prominent ones seem to
be persistent in the hard state PSD, and vary with spectral properties (see previous figure). Middle: Time
lag between hard and soft X-ray variability for a hard state observation of Cyg X-1 (see Nowak et al. 1999).
Note the peaks near the PSD peak frequencies. Right: The energy dependence of the hard X-ray variability
lag for three different PSD frequencies (see Nowak et al. 1999).

Often neglected is the fact that while the characteristic variability time scales increase with
hardness, the characteristic time lags between soft and hard X-ray variability decrease[24]. This
has no obvious explanation in the scenario where the transition radius grows as the source fades
into quiescence. Furthermore, the time lag between soft and hard X-ray variability seems to be
composed of multiple components at different frequencies, very possiblyassociated with the in-
dividual Lorentzian components in the PSD (Fig. 6, [18, 17]). The time lag we observe may be
in reality a composite of time lagsand leadsfrom independent components, and this possibility is
absent in most models of these data. Additionally, it is known that the time lag has alogarithmic
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Figure 7: Left: 15 GHz radio flux, measured with the Ryle radio telescope, vs. daily averageASM count
rate for Cyg X-1(see Nowak et al. 2005). Boxes correspond to “failed state transitions”. Right: Ryle radio
flux vs. coronal compactness for our pointed observations ofCyg X-1.

dependence upon energy, and in the past this had been used to argue for Comptonization models
(where logarithmic energy dependences are naturally expected); however, given theextremelylong
time scale of the lags relative to dynamical time scales, the inferred coronal size is unreasonably
large [23]. The large magnitude of the time lag must be incorporated in any model.

Finally, in all of the above we have not addressed any of the radio data. Nearly all of our
Cyg X-1 observations have simultaneous 15 GHz radio data obtained with the Ryle radio telescope.
As shown in Fig. 7, although the radio can fade with increasing flux/decreasing hardness, it rarely
fully disappears in Cyg X-1. This is partly what we mean by saying that state transitions are not
distinct in Cyg X-1 – there appears to be a continuum of observed properties between the hardest
and softest spectra. In fact, there are only two properties where the Cyg X-1 state transitions do
seem sharply defined. First, variability time lags seems to greatly lengthen in statetransitions and
failed state transitions [24]. Second, as shown in Fig. 7 (see also [31]),the slope of the radio/X-ray
hardness correlation changes from one state to the other (although this figure, too, straightens out
if one plots radio vs. hard X-ray flux; [22]). In nearly all Compton modelsto date, the radio data,
which clearly is an important aspect of the source properties, is anad hocadd-on, with only vague
arguments as to its correlation with the X-ray.

The need to self-consistently fit the radio and X-ray data together has given rise to jet models
of BHC [16]. The earliest versions of these models were dominated solely by synchrotron radiation
in the X-ray regime; however, for over three years now, these models have included synchrotron,
synchrotron self-Compton (SSC), disk photons, and Comptonization of disk photons. Other re-
views will go into these models in more detail; however, we will point out two salient facts. First,
as shown in Fig. 8, these models not only fit the radio data, they also simultaneously fit theRXTE
X-ray data equally well as the Comptonization models. Second, like the Comptonization models,
the X-ray is dominated by two broad-band continuum components that in partlead to the 10 keV
power law break. As opposed to being disk plus Comptonization components,these two compo-
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Figure 8: Jet model fit to radio and X-ray hard state data of Cyg X-1 (see Markoff, Nowak, & Wilms 2005).
The model components include disk emission, synchrotron, synchrotron self-Compton, and Comptonization
of disk photons. In the X-ray regime, the models work equallyas well as traditional corona models.

Figure 9: Left: The kerrbb model fit to the combinedMEG data of 4U 1957+11. System distance,
inclination, and mass were fixed (see text), but spectral hardening factor and black hole spin were left free.
Middle: same data and model as on the left, except that now theblack hole spin is fixed toa∗ = 0. Right: A
disk plus Comptonization model (see text) fit to the combinedMEG data. Dashed lines show the individual
model components.

nents instead are synchrotron and SSC. (The upper break is also partlyinfluenced by a Comptonized
disk component). Again, as there is a broad Fe line, reflectionmustbe a part of these spectra. The
specific reflection and line parameters one fits, however, will change depending upon whether one
assumes a Compton corona or X-ray emitting jet model.

3. 4U 1957+11

Contrary to Cyg X-1, 4U 1957+11 is a source that seems to spend nearly all of its time in a
spectrally soft (i.e., “high”) state. It shows evidence of a hard tail only at its highest luminosities
[29], thus 4U 1957+11 cannot be used as a test of jet models. Instead,4U 1957+11 provides us
with an opportunity to test recent sophisticated disk atmosphere models that incorporate the effects
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of black hole spin on the spectra (e.g., [14]). If such models truly can unambiguously measure
black hole spin as has been hypothesized [27], then they can be applied tosystems that transit
between hard and soft states to determine whether rapid spin is indeed a necessary component of jet
production (thus testing theFender Conjecture). We have obtained a simultaneousChandra/RXTE
observation, and furthermore have analyzed allRXTE observations from the archive. Below we
apply thekerrbb disk model [14], which includes spin, to these spectra.

The Chandraspectra are shown in Fig. 9. Owing to the high resolution and the 0.4 keV
lower bound of ourChandragratings observation, we can accurately measure the neutral column
(1021 cm−2) in front of the source, which removes one potential source of ambiguity inthe mod-
els. Although predominantly being merely phenomenological, the two-parameterdiskbb model
fits the datavery well. Thus, similar to our point about broken power law fits to Cyg X-1, any
model that attempts to describe the data with more than two parameters is likely over-determined.
Thekerrbb model has seven: system mass (M), accretion rate (̇M), distance (D), inclination (θ ),
spectral hardening factor (fcol), torque parameter (η), and dimensionless black hole spin (a∗).

In practical application of thekerrbb model, it is hoped thatM, D, andθ can be determined
via other observations and that fcol andη can be determined from theoretical considerations, which
would leave onlyṀ and a∗ as fit parameters. The complex optical lightcurve of 4U 1957+11
implies an inclination of∼ 75◦ [11]; however, the system mass and distance are completely un-
known. The lowest luminosityRXTE observationsdo not transit to the hard state; although, an
upturn in the fitted disk normalization fromdiskbb+powerlaw models (Fig. 10) indicates they
may be very near the transition, expected to be at≈ 3% LEdd [15]. Thus the least massive/closest
4U 1957+11 could be is 3 M� at 10 kpc (used in all figures shown here). The expected distance
then scales as the square root of the mass (e.g., 16 M� at 23 kpc).

Simplediskbb fits to the spectra yield very high temperatures (kT ∼ 1.7 keV), and low
normalizations (∼ 8). If one fixes fcol in thekerrbb model, thesediskbb parameters are only
achievable with a combination of large distance, high accretion rate,and high spin. (High spin
becomes more crucially needed if one increases the mass of and distance to 4U 1957+11.) A high
spin model (with fcol∼ 1.1) is shown in Fig. 9. Note, however, that we can find a nearly equally
good fit with a∗= 0 if we allow fcol= 3.3 (Fig. 9). Thus,at a minimum, one must be absolutely
convinced that there is a strong theoretical motivation for specific values of f col andη if disk models
are to be used to ‘measure’ spin.

As opposed to theChandradata, wherea∗≈ 1 anda∗= 0 are virtually indistinguishable, the
very high statisticsRXTE data seem to requirea∗≈ 1 (and find fcol≈ 1.1). If one sets the color
correction factor to the ‘theoretically preferred’ value of fcol= 1.7, and requires that the faintest
observations have a luminosity of≈ 3% LEdd, then theRXTE datarequire a∗≈ 1, D ≈ 23 kpc,
M ≈ 16 M�. (The degeneracy among all these models is partly indicative of the fact that the
produced spectra are rather smooth, with no specific sharp features unique toa∗= 1, for example.)
If such models can usefully be used to measurea∗, then a prediction of thekerrbb model, based
on theRXTE data, is that future observations should find 4U 1957+11 to be approximately 16 M�

and near 23 kpc, i.e., well into the galactic halo.
A further serious issue in applying thekerrbb model arises in looking at both theChandra

andRXTE data. If one allows a hardening due to Comptonization (here, modeled as the addition
of thecomptt model with a fixed coronal temperature and seed photon temperature frozen to the

9
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Figure 10: Left: All Sky Monitor lightcurve for 4U 1957+11 with scaled 3-18 keVPCA flux from pointed
observations overlaid.RXTE observations simultaneous withChandraandXMM-Newton are circled. Mid-
dle, Right: Count rate spectra for the softest/faintest (middle) and hardest/brightest (right) of theRXTE
observations, fit with thekerrbb+comptt+gaussian model. Dashed lines show the individual model
components folded through the detector response.

Figure 11: Left: Square root of disk normalization vs.PCA flux for diskbb+powerlaw fits to RXTE
observations of 4U 1957+11. Middle: disk temperature vs.PCA flux for diskbb+comptt fits to
4U 1957+11. Right: Spectral hardening factor vs.PCA flux for kerrbb+comptt fits to 4U 1957+11.
(For the latter, we assume a black hole mass of 3M�, a distance of 10 kpc, and an inclination of 75◦.)

best-fitdiskbb temperature), one achieves an even better fit to theChandradata than either the
diskbb or kerrbb models alone. Furthermore, the best fitdiskbb temperature decreases to
1.3 keV, and the best fit normalization increases to 15. That is, the very parameters driving the
need for high spin are fundamentally altered to values indicative of much lower spin. The fit to
theChandradata essentially leaves the spin parameter unconstrained in a systematic, rather than a
statistical, sense.

RXTE spectra, however, still require a high spin parameter. As shown in Fig. 11, there are
periods when the disk temperature and normalization drop dramatically, and thespectrum becomes
dominated by the Compton component (Fig. 10). These correspond to 4U 1957+11 entering the
“very high” or “steep power law” state. Otherwise, flux variations are predominantly driven by
disk temperature changes indiskbb models, or accretion rate changes inkerrbb models. Note
in Figs. 9 and 10 that even when dominated by the Compton component, the 4U 1957+11 spectrum
is very soft, and only differentiated from the disk spectrum by a decrease in spectral curvature2.

2Note that we also include a weak Fe line, likely due to galactic emission, in the fits.When thekerrbb model has
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Figure 12: Left: Fe line residuals from anRXTE observation of a GX339−4 hard state as it enters qui-
escence. The line remains broad, contrary to the expectation of ADAF models, despite the low flux (see
Nowak, Wilms, & Dove 2002). Right: An even fainter hard stateRXTE/Chandraobservation of GX339−4,
potentially showing a broad line (Nowak et al., in prep.)

In Fig. 11 we also see that as the flux increases, the fitted spectral hardening factor, fcol, de-
creases. That is, Comptonization is acting to harden the disk spectrum, rather than it being a
necessary parameter in the disk atmosphere model itself. As the flux decreases, the hardening
factor, fcol, smoothly increases, perhaps asymptoting to a ‘pure disk’ value. Given the fact even
the Compton-dominated spectra are so soft, and there seems to be a continuous evolution of fcol,
can one really be sure that the lowest flux spectra are indeed “pure” disk spectra? How does one
know that there isn’t a “residual corona” that merely mimics the effects of high spin in the disk
model? For these reasons, I am very skeptical that such models will ever usefully “measure” spin.
(However, if independent observation determines that 4U 1957+11 is indeed a 16 M� black hole at
23 kpc, I may become a believer. . .)

4. GX339−4

GX339−4 has been a very important source in establishing the relationship between hard X-
ray flux and steady radio jet activity [12, 8, 3, 4]. We have extensivelystudied the spectra and
variability properties of this source ourselves, and have successfully fit both Comptonization and
jet (and, of course, broken power law) models to the hard state spectra [30, 19, 17, 21, 22, 16].
Here, I will only briefly touch upon two faint, hard state observations of GX339−4.

The ‘sphere+disk’ Comptonization models posit a transition radius between inner corona and
outer disk, and likewise ADAF models similarly posit a transition radius from outer, efficient flow
to inner, inefficient flow. The former models do not set a specific radius for this transition (although
as discussed earlier, timing data of Cyg X-1 indicate that it cannot occur atR> 40 GM/c2). The
ADAF models have traditionally posited greater transition radii, with the radius possibly increasing

been fit to other sources, researchers have often required stronger lines, smeared edges, and even more prominent power
law components than required here, adding greatly to systematic uncertainties in the use of these disk models [27].
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Figure 13: Left: The broad-bandChandraspectra. The model is consistent with a disk whose inner edge
extends to the marginally stable orbit, plus a broad line. Right: The broad-bandChandra/RXTE spectra.
The observed (multiple humped) curvature, and flat high energy tail, are real. This is not your grandmother’s
broken power law, and does not fit either a simple corona or jetmodel (Nowak et al. in prep.)

as the source falls further into quiescence. Thus, especially for the lattermodels, we do not expect
to see broad Fe lines persist into quiescence. GX339−4 shows at least one, possibly two, counter-
examples to that ADAF expectation.

As discussed in [21], and shown in Fig. 12, the 1999 fade into quiescence saw the Fe line
remain strong and persistently broad. Despite the fact that the source wasapproximately a factor
of 10 lower in flux from its hard state transition level, the best fits indicated thatthe inner edge
of the line emission region was consistent with the marginally stable orbit. This is completely
inconsistent with ADAF theory.

More recently, during the 2005 fade into quiescence, we obtained a simultaneousChan-
dra/RXTE observation at an even fainter hard state flux level. As shown in Fig. 12, these data
are also consistent with a relativistically broadened line, counter to the expectations of ADAF
models (Nowak et al., in prep.). Here, however, owing to the faint nature of these spectra, the fits
are more uncertain (galactic ridge emission must be carefully subtracted from theRXTE spectra);
however, the broad line does seem to be preferred in theChandradata. Likewise, if one fits a
diskbb+powerlaw model to solely theChandradata, the fitted disk also prefers an inner radius
consistent with the marginally stable orbit, rather than the much larger disk radiioften fit in hard
state sources (Fig. 13).

The 1999 fade into quiescence was ‘regular’ in all respects, and was instrumental in defining
the theFradio ∝ F0.7

X−ray correlation between radio and X-ray fluxes in hard state BHC [4]. The
presence of the broad line in those data is also unambiguous, and thus is challenging for ADAF
theory. On the other hand, the 2005 fade into quiescence was very unusual. As discussed by S.
Corbel in these proceedings, a few weeks before theChandra/RXTE observation, GX339−4 ‘fell
off’ the usual radio/X-ray correlation, with the radio decreasingmuchmore rapidly. Relative to
the X-ray flux (which itself was very low, given that the observations occurred only three weeks
after the hard state transition), the radio was approximately a factor of ten toofaint for the usual
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correlation.
Furthermore, the broad-band X-ray spectra themselves, as shown in Fig. 13, are highly un-

usual. The data show a great deal of curvature and spectral breaks, and there is a very spectrally
flat high energy tail.All of these features are real, and arenot artifacts of the unfolding process.
(Remember, we’re not usingXSPEC . . .). We have also been very careful in the background sub-
traction of the galactic ridge emission. These data simply represent a very unusual, radio-weak
hard state spectrum. Currently, we have no good model with either typical corona or typical jet
models. (Broken power law models don’t even work well here.) Why GX339−4 failed to act as a
‘proper’ microquasar in this particular outburst decay remains a mystery.
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