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Mass loss from a viscous accretion disc in presence
of cooling
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We compute the mass loss from a viscous advective disc, which undergoes centrifugal pressure
mediated shock. We show that for same outer boundary condition of the disc, the mass out-
flow rate decreases with increasing viscosity, since viscosity weakens the centrifugal barrier that
generates the shock. We also show that in presence of cooling the mass outflow rate decreases
marginally, which shows that these outflows are basically centrifugally driven. We also show that
the optical depth of the disc for external photons entering the post shock disc is decreased because
of mass loss, and hence should soften the spectrum.
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1. Introduction

Jets are ubiquitous astrophysical objects and are known to accompany YSOs, aged stars, X-ray
binaries (binary system comprising either neutron star or stellar mass black hole candidates and an
ordinary stellar companion), AGNs (supermassive black hole candidates). While jets or outflows
around gravitating centres with hard boundaries are quite natural, it is altogether a different propo-
sition to consider jets from around a black hole. As black holes do not have either hard boundary
or intrinsic atmospheres, jets/outflows have to originate from the accreting matter onto black holes.
Therefore, the physics of accretion disc is of paramount importance in order to understand the
ejection mechanism from the accretion disc.

Matter accreting onto black holes has to satisfy two inner boundary conditions without re-
gards of the type of outer boundary condition. Namely, (a) matter crossing the horizon has to be
super sonic and, (b) angular momentum of matter within the marginally stable orbit (rms = 3rg,
where rg = 2GMB/c2, G, MB, c are Schwarzschild radius, gravitational constant, mass of the black
hole and speed of light, respectively) has to be sub-Keplerian. At large distances from the black
hole, matter is evidently subsonic, therefore condition (a) automatically suggests that accretion
flows onto black holes are globally transonic. A transonic, sub-Keplerian flow may admit two
X-type critical points depending on the flow parameters. Matter crossing the outer critical point
(xo) becomes supersonic, and supersonic matter at around few×10rg may undergo shock due to
centrifugal pressure [1, 2].

Such a shocked accretion disc-model was used to compute the spectral states of black hole
candidates [4, 5, 14, 8] where the post-shock torus — CENBOL (CENtrifugal Pressure supported
BOundary Layer), produces the hard power-law tail by inverse-Comptonizing the softer photons
from the outer disc.

Numerically, it was also shown that for a two dimensional accretion flow, the unbalanced
thermal gradient force along the z direction in the post-shock disc drives a significant portion of
the inflowing matter as bipolar outflows [15]. In the analytical front, mass outflow rates were
also computed from advective discs, and generally it was shown that as high as 10%-15% of the
accreting matter can be ejected as bipolar outflows. However, these investigations were performed
in the inviscid limit.

Earlier investigation of shock induced outflows from inviscid disc showed that outflows gener-
ated from a post-shock disc depends on the strength of the centrifugal barrier as well as the thermal
driving from post shock disc or CENBOL [6, 11, 12].

In presence of viscosity, as matter flows inward angular momentum decreases while specific
energy increases. Will the mass outflow rate increase because of enhanced viscous heating, or
will it decrease because of the weakened centrifugal barrier? Moreover, since post-shock flows
are denser and hotter than pre-shock flows, cooling processes in the CENBOL should be more
effective. While viscosity transports angular momentum and increases the energy of the flow,
cooling processes only reduce the energy of the flow, but leave angular momentum distribution
unaffected. Thus, for the same outer boundary condition, a higher cooling rate should make the
shock front move closer to the black hole, and would reduce the specific energy of the flow. Should
this reduce the mass outflow rate further? However, if there is mass loss from the post-shock flow,
then the density should go down, which should reduce the cooling rate. The question is, which one
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dominates, whether cooling reduces mass loss or mass loss reduces cooling? We want to investigate
how cooling and mass loss affect each other in presence of viscosity in the disc.

In the next section we present the model assumptions and equations of motion. In section 3,
we present the results and in finally in section 4, we draw conclusion.

2. Assumptions and equations of motion

We assume a stationary, axisymmetric viscous accretion flow in presence of cooling effects.
The central black hole is assumed to be non-rotating and general relativistic effects are approxi-
mated by a Paczyński-Wiita potential [16]. However, the outflows are less dense and differential
rotation is less effective, therefore we assume the outflows to be inviscid and adiabatic.

The equations of motion for accretion are,

the radial momentum equation :

u
du
dx

+
1
ρ

dP
dx

−
λ 2(x)

x3 +
1

2(x−1)2 = 0, (1a)

the baryon number conservation equation :

Ṁ = 2πΣux, (1b)

the angular momentum conservation equation :

u
dλ (x)

dx
+

1
Σx

d
dx

(

x2Wxφ
)

= 0, (1c)

and the entropy generation equation :

ΣuT
ds
dx

= Q+−Q−, (1d)

where, flow variables u, ρ , P and λ (x) in the above equations are the radial velocity, density,
isotropic pressure and specific angular momentum of the flow respectively. Here Σ and Wxφ =

−αΠΠ denote the vertically integrated density and the viscous stress (αΠ and Π are the viscosity
parameter and total pressure respectively), s is the specific entropy of the flow, T is the local
temperature. Q+(= ρhH) and Q−(= ρhC) are the heat gained and lost by the flow (integrated in
the vertical direction) respectively, where h =

√

2
γ ax1/2(x−1) is local disc height and a =

√

γP/ρ
is local sound speed.

The heating and cooling terms are [3, 7, 13, 17],

H = Ax(ga2 + γu2)
dΩ
dx

, (2a)

where A = −αΠIn/γ and g = In+1/In, Ω is the angular velocity. In the above expressions n =

1/(γ −1) is the polytropic index, and In = (2nn!)2/(2n+1)!. And,

C =
βSa5

ux3/2(x−1)
, (2b)
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where, β is the cooling factor, and

S =
32ηṁµ2e41.44×1017

3
√

2m3
eγ5/2

1
2GM�c3 , (2c)

where η is the ratio between magnetic pressure and the gas pressure and in this paper has been kept
fixed (η = 0.1), e is the electron charge, me is the electron mass, ṁ is the accretion rate in units of
Eddington rate, M� is the solar mass, and for fully ionized plasma µ = 0.5.

The equations of motion of jets are,

E j =
1
2v2

j +na2
j +

λ 2
j

2x2
j

−
1

2(r j −1)
, (3a)

where, E j is the specific energy of the jet. The integrated continuity equation:

Ṁout = ρ jv jA , (3b)

and instead of the entropy generation equation we have the polytropic equation (p j = K jρ γ
j , p j, ρ j

are the local pressure and density of the jet, and K j is a constant proportional to the entropy) of
state for the jet.

The jet geometry and the computation of jet streamline are discussed in detail by Chattopad-
hyay & Das (2007) [10], therefore we present it only very briefly. The jet is assumed to flow in
between two geometric surfaces, namely funnel wall (FW) and centrifugal barrier (CB), which are
given by,

λ 2

x2
FW

=
1

rFW −1 , (3c)

where, r2
FW = x2

FW + y2
FW≡ spherical radius, and xFW is the cylindrical radius of FW. The centrifu-

gal barrier (CB) surface is mathematically presented as,

λ 2

x3
CB

=
xCB

2rCB(rCB −1)2 , (3d)

where, r2
CB = x2

CB + y2
CB≡ spherical radius of CB. And xCB, yCB are the cylindrical radius and axial

coordinate (or height at rCB) of CB. The jet cylindrical radius is given by,

x j =
xFW + xCB

2
, y j = yFW = yCB. (3e)

And, the jet cross-sectional area is,

A = 2π(x2
CB − x2

FW ). (3 f )

Furthermore, we define another variable, which we call mass-outflow rate which is the frac-
tional mass-outflow w.r.t the accretion rate at the outer sonic point, and is mathematically repre-
sented as,

Rṁ =
Ṁout
Ṁ−

=
Rv j(xs)A (xs)

4πxsh+u−
=

Rv j(xs)A (xs)

4π
√

2
γ x3/2

s (xs −1)a+u−
, (3g)

where, xs is the shock location in accretion and R(= ρ+h+

ρ−h−
) is the compression ratio at the shock.
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2.1 Self consistent accretion-ejection solution

We solve the accretion-ejection by a novel iterative technique. The Rankine-Hugoniot shock
conditions are modified for mass loss, i.e., (a) the energy flux is continuous across the shock —

E+ = E−, (4a)

(b) the mass flux is continuous across the shock —

Ṁ+ = Ṁ−− Ṁout = Ṁ−(1−Rṁ), (4b)

and finally, (c) the momentum balance condition —

W+ +Σ+u2
+ = W− +Σ−u2

−, (4c)

where subscripts “−” and “+” refer, respectively, to quantities before and after the shock. The
methodology is as follows:
(a) We assume Ṁout = 0, and solve for shocks in the accretion flow i.e., for eqs. (1a-1d).
(b) Once we have a shock we assign E j = E+, λ j = λ+ and the density at the jet base to be the
post-shock density ρ j(xs) = ρ+.
(c) We solve for jet i.e., eqs. (3a-3f), and then with this solution compute Rṁ from eq. (3g)
(d) Use the computed value of Rṁ in shock conditions [eqs.(4a-4c)], to compute a new x′s.
(e) Repeat above steps till x′s converges, the converged value of x′s is the actual xs.

3. Results

As we have pointed out, viscosity transports angular momentum outwards but heats up the gas
inwards, while cooling decreases energy along the accretion flow. To understand the proper role of
each of the above mentioned processes on the accretion flow we first take up only viscous flow and
then turn on cooling, i.e., to say, we put β = 0 until otherwise stated.

Figure (1a), shows Rṁ as an increasing function of Ein (energy at inner sonic point of the
accretion flow). Each curve is parametrized by αΠ = 0 (solid), 0.005 (dotted), 0.01 (dashed), and
0.015 (dashed-dotted), and 0.02 (long dashed) respectively. Specific angular momentum at inner
sonic point (xci) is kept fixed at 1.75. We also see that Rṁ decreases with increasing values of αΠ

(the viscosity parameter). In Fig. (1b), the dependence of Rṁ on αΠ is more explicitly shown.
Though Rṁ decreases with increasing αΠ, but for increasing λi (specific angular momentum at xci),
Rṁ increases.

As the accretion flow is shocked by centrifugal barrier, the post shock flow will be of higher
thermal energy and the unbalanced thermal gradient forces along z direction will drive bipolar jets.
Thus for higher post shock energy (represented by higher Ein) the thermal driving will be greater
[e.g., Fig. (1a)]. However, if λ is higher, the centrifugal barrier will be stronger and therefore
stronger will be the shock, generating more outflow [e.g., Fig. (1b)]. It is intriguing to know which
of the above two phenomena is instrumental in creating outflows? Moreover, why does Rṁ decrease
with αΠ?

Since shocks generate outflows, it will be intriguing to see how shocks are affected by viscos-
ity.
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(a) (b)

Figure 1: (a) Rṁ with Ein, for αΠ = 0 (solid), 0.005 (dotted), 0.01 (dashed), and 0.015 (dashed-dotted), 0.02
(long-dashed) respectively, and λi = 1.75, β = 0. (b) Rṁ vs αΠ, for for λi = 1.8 (solid), 1.775 (dashed) and
1.75 (dotted), respectively. Inner sonic points are xci = 2.313, 2.375, and 2.445, respectively, where β = 0.

Figure 2: Variation of xs with αΠ, λi = 1.75 xci = 2.445, β = 0. The dotted curve represents solution without
mass loss, and solid represents xs with mass loss.
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(a) (b)

Figure 3: (a) Variation of M (upper panel), λ (middle panel), E (lower panel) with log(x), for αΠ = 0
(dashed) and αΠ = 0.003 (dotted). The outer edge quantities are xinj = 200, (Einj,λinj) = (0.002,1.75). The
shocks are xs = 20.3 (dashed) and xs = 11.65 (dotted). (b) Variation of τ in the post-shock disc with (x), for
the same inflow parameters as Fig. (3a). Cooling parameter β = 0 for both the figures.

In Fig. 2, the shock location (xs) is plotted with αΠ, for solutions without mass loss (dotted) and
with mass loss (solid). The parameters are same as the dotted curve of Fig. 5a, i.e., (λ i,xci) =

(1.75,2.445), which we choose to be a representative case. It is to be remembered that the dotted
curve is a typical solution from Chakrabarti & Das (2004) [7]. We clearly show that mass loss
from the post-shock region of the disc causes the shock to move in (the dotted curve is of higher
value than the solid one). However, as αΠ is increased the two curves tend to converge. Since Rṁ

decreases with αΠ, the difference in shock location also diminishes. From Fig. 2, it is quite clear
that αΠ or viscosity also reduces xs. As we mentioned before viscosity should increase the post
shock energy of the flow. Is it not good enough to increase xs?

In Fig. (3a), Mach number M (upper panel), λ (middle panel), and specific energy E (lower
panel) are plotted with log(x). Each curved is parametrized by αΠ = 0 (dashed) and αΠ = 0.003
(dotted), and are launched with same outer boundary condition (Einj,λinj) = (0.002,1.75), the outer
edge being xinj = 200. Increasing αΠ decreases the shock location from xs = 24.8 (dashed) to
xs = 11.65 (dotted), consequently the mass outflow rate decreases from Rṁ = 0.093 (dashed) to
Rṁ = 0.07. It is clearly shown in this figure that as viscosity is increased E (x) increases and λ (x)
decreases, but increase in E (x) cannot compensate the decrease in λ (x), and hence the shock moves
inwards. As the shock moves inwards the jet area at the base decreases and the mass outflow rate
decreases. So in this particular case when the flow variables at the outer boundary have been kept
fixed the position of the shock is determined mainly by the centrifugal force of the flow. Therefore
we may safely conclude that, if the outer boundary is fixed, then by increasing viscosity, the shock
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Figure 4: Variation of mass outflow rate Rṁ with the cooling parameter β . The curves are parametrized by
λi = 1.825 (solid) and λi = 1.775 (dashed), and the viscosity parameter is kept fixed at αΠ = 0.005.

location and consequently the mass outflow rate is decreased.
What would be the observational consequence of such accretion-ejection mechanism? Chakrabarti

& Titarchuk (1995) did show that the post shock matter or the CENBOL is the source of high en-
ergy power-law photons which are generally observed in black hole candidates. What happens to
the spectrum from such a disc when viscosity and mass loss is considered? Since the density in
the CENBOL decreases due to mass loss and since the shock is located nearer to the black hole,
so the CENBOL will be relatively less dense and smaller in size. Both these facts should reduce
the optical depth. Which means more photons will be able to penetrate the CENBOL and for the
photons inside it will be able to leave the CENBOL. The spectrum under such circumstances will
be softer. In Fig. (3b), τ(x) is plotted only for the post-shock flow or the CENBOL, for the follow-
ing viscosity parameter αΠ = 0 without considering mass loss (dotted), and for αΠ = 0.003 with
(solid) mass loss. And indeed we see that the optical depth of CENBOL is reduced.

We have shown that the outflows generated by shocked accretion flow are basically centrifu-
gally driven. The crucial point is, viscosity basically weakens the centrifugal barrier. Though
viscosity increases energy of the flow (due to viscous heating), but this does not compensate the
weakening of the centrifugal barrier, and consequently the size of the CENBOL decreases and with
the decreased size of CENBOL the mass outflow rate decreases too.

We want to pursue this even further by including the cooling mechanism. We only incorpo-
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rate the synchrotron cooling since bremsstrahlung cooling is too weak [9]. In Fig. (4) we have
plotted Rṁ with the cooling parameter β , each curve being parametrized by λi = 1.825 (solid) and
λi = 1.775 (dashed), with αΠ = 0.005. Once again we see that Rṁ is higher for higher angular
momentum. The post-shock CENBOL is denser and hotter than pre-shock disc. That means syn-
chrotron cooling would be enhanced at CENBOL. Thus cooling should decrease Rṁ. It does, but
the effect is marginal. So we do see that the outflows generated by shocks are basically centrifugally
driven.

4. Conclusion

In the present paper we have self consistently calculated mass outflow rates by solving accre-
tion and jet equations simultaneously. We have also incorporated viscous effects as well as cooling
effects.

We have shown that,
(i) If the accreting matter starts from the same outer boundary condition then the viscosity weakens
the centrifugal barrier which makes the shocks to be located closer to the black hole.
(ii) As mass leaves the post shock disc, it reduces the post shock pressure, and that makes the shock
to be located closer to the black hole.
(iii) As the centrifugal barrier is weakened by viscosity, the mass outflow rates are reduced.
(iv) If cooling is considered mass outflow rates are marginally reduced. Thus it shows that these
outflows are basically centrifugally driven.
(v) The combined effect of mass loss and dissipation (viscosity+cooling) reduces the optical depth
of the post-shock disc, which means that the spectrum from such a disc will be softer, in other
words, “the disc will enter in its ‘hard’ state as the disc is shocked, however, because of mass loss
the spectrum will become softer.” This means that the mass loss changes the spectral state from
hard to intermediate hard states.
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