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We present a new, time dependent, three-dimensional code for modelling the inner regions of
X-ray binaries and AGN, where the photon distribution emitted by the accretion disc evolves si-
multaneously with the interacting electron distribution. The HEART (High Energy Astrophysical
Radiative Transfer) code can model many different geometries including a spherical corona and
an inhomogeneous corona. Inverse Compton scattering, bremsstrahlung, synchrotron radiation,
Coulomb interactions, reprocessing of photons by the accretion disk, electron-positron annihila-
tion and pair production are modelled. Electron distributions may be of power law form, thermal
or a combination. We include some fits to X-ray spectral data and some results already obtained
using the code.
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Figure 1: The cell structure of a semi-spherical corona with a width of 6 cells [1] .

1. Introduction

There is no satisfactory model of the geometry and physics of X-ray binaries and AGN ex-
plaining the spectra and variability we observe. We hope to make some progress on this issue
by using HEART to model different geometries and more complete physical situations, including
spectral and temporal variability.

2. The code

We use cubic cells to construct the geometry of the corona as practically any 3D shape can be
approximated in this way. The corona is in the vicinity of a central black hole and (an optically
thick, geometrically thin) accretion disc. Each cell knows its neighbours, allowing photons to
transfer from one to the next.

Figure 1 displays half of a spherical corona, with 24 cells adjacent to the disc from which
blackbody seed photons are injected into the corona. There are six possible photon distributions in
each cell, one travelling in each of the six directions parallel to its sides. Each cell contains a hybrid
electron distribution which can scatter the seed photons (and later, the scattered photons). While
the photons are in a cell, any of the physical processes described may occur, and new electrons
may be injected. In this way, the electron and photon distributions evolve simultaneously, and it
is possible to reach equilibrium simultaneously in both the photon and the electron distributions.
HEART can provide output at any point during a run, so it is possible to study the electron and
photon distributions evolving as they reach equilibrium, or how they evolve if no equilibrium is
reached.

Reprocessing is accounted for from the second timestep onwards (one timestep is the time
taken for a photon to cross a cell). After scattering has occurred the photons reflected off the
disc are injected together with the new blackbody seed photons. Finally when photons escape the
corona, they are added to the output flux.

3. Physical Processes

3.1 Radiative transfer

We model synchrotron radiation, inverse Compton scattering and bremsstrahlung similarly.
From [5] the radiative transfer equation for each process can be derived by calculating the emission
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and absorption coefficients:
Iν(τν) = Sν(1− e−τν ), (3.1)

where Iν is the intensity at frequency ν , τν is the optical depth and Sν = εν
κν

where εν and κν

are the emission coefficient and absorption coefficient respectively.

3.2 Synchrotron Radiation and Bremsstrahlung
The emissivity of synchrotron radiation is given in [5], but requires simplifying for efficient

modelling. There is no satisfactory simplification covering all the modelled electron and photon
energies, so we treat synchrotron radiation in 5 different cases, all of which can be simplified in
different ways:

1. relativistic electrons (γ ≥ 2) in the limit x � 1,
2. relativistic electrons (γ ≥ 2) in the limit x � 1,
3. relativistic electrons (γ ≥ 2) for all other values of x,
4. non-relativistic electrons (γ < 2) where ν > νg,
5. non-relativistic electrons (γ < 2) where ν ≤ νg.

where x is the emitted photon frequency divided by the critical frequency ( ν
νc

) and νg is the
gyro frequency.

For bremsstrahlung we only deal separately with the ultra relativistic (γ ≥ 2) and mildly rel-
ativistic cases in that we use different interaction cross sections. We use the treatments in [7],
[3].

3.3 Inverse Compton Scattering
Inverse Compton scattering is treated slightly differently as it does not have an absorption

coefficient. The radiative transfer equation is simplified based on the assumption that the corona
is optically thin (within each individual cell) so that it only depends on the emissivity. We then
consider three different cases to simplify the emissivity:

1. mildly relativistic electrons (γ < 10) interacting with high-energy photons (k > 10−2),
2. mildly relativistic electrons (γ < 10) interacting with low energy photons (k ≤ 10−2) and
3. relativistic electrons (γ ≥ 10), where k = γ hν0

mec2 .

3.4 Reprocessing
Some photons are scattered in the corona and return to the disc where they may be absorbed

or reflected. We use the treatment of [4] and [6] to model this reprocessing of photons. It adds an
excess between ∼ 10 and 100 keV.

4. Electron Distributions

We model hybrid electron distributions with thermal and power law components. However,
any arbitrary distribution of electrons can be modelled. The distribution is homogeneous in each

3



P
o
S
(
M
Q
W
6
)
0
9
1

The HEART code: modelling X-ray binaries and AGN Katrine Rogers

Figure 2: These are the best fits we have achieved so far with XSPEC. The soft state is on the left, with ∆χ
plotted beneath it, and the hard state with its ∆χ plot is on the right.

cell, but may be inhomogeneous overall. Coulomb interactions thermalise the distribution and the
kinetic equation takes account of energy losses due to interactions with photons. For more on
electrons see Jamil et al., these proceedings.

5. Results

We are using HEART to model the soft and hard states of Cyg X-1 observed by BeppoSAX
on June 22nd 1996 (in the low hard state) and on June 25th 1996 (in the high soft state). See [2]
for details. We aim to show that HEART is capable of reproducing observations, and to explain the
spectra with a more physical and complete model.

5.1 Cyg X-1 in the high soft state and in the low hard state

The best fits we have achieved in XSPEC so far are shown in figure 2. The fit parameters are:

High Soft State Low Hard State
nH 4.82×1021 cm−2 2.26×1021 cm−2

Fe line Energy 4.75 keV 6.64 keV
Fe line Sigma 1.58 keV 0.10 keV
Reduced chi-squared 2.55 7.41
Degrees of Freedom 190 222

All the physical processes described are used to model both states with HEART. In the high
soft state, a purely powerlaw electron distribution with slope 1.65 and number density 2×1020 m−3

4



P
o
S
(
M
Q
W
6
)
0
9
1

The HEART code: modelling X-ray binaries and AGN Katrine Rogers

s−1 is injected. The maximum temperature of the disc is 0.49 keV and it extends from 3 to 100
Schwarzschild radii. No systematic errors have been accounted for. The low hard state has proved
more challenging, and this is still a work in progress, but the best fit so far was achieved injecting a
purely thermal electron distribution of number density 1.8×1022 m−3 s−1 and temperature 650 keV.
The maximum temperature of the disc is 0.001 keV and it extends from 20 to 100 Schwarzschild
radii. A systematic error of 1.5% has been accounted for.

6. Future Work

The above examples are simply illustrations of what HEART can do in the steady-state, ho-
mogeneous case. The strength of the code lies in the possibility of modelling inhomogeneous and
time-dependent situations.

HEART is well suited to variability studies since we can easily study both spectral and tempo-
ral information as both the photon and electron distributions evolve in time. The geometry of the
corona may also vary in time.

For example, we intend to simulate random, spontaneous bursts of high energy electrons,
possibly caused by magnetic reconnection events. By using variability information to determine
the timing of reconnection events, we aim to reproduce observed lightcurves and simultaneously
study the effect on the spectrum.

HEART can be used similarly to investigate other possible physical explanations for variability
in lightcurves, including long term variability.

We also intend to do similar analysis to that done for the low hard and high soft state above
for the intermediate state. This should indicate which physical parameters reproduce the spectrum
of the intermediate state as well as how these parameters evolve between states.
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