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Neutrino Physics Grimus Walter

1. Introduction

Scope of the lecture notes: These notes comprise two hours of lecture. The style is rather ele-
mentary and detailed. Therefore, only a few subjects have been f@dsewl the choice of subjects
is rather subjective, reflecting the preferences of the author. The a@éntended to offer access to
some sections of model building for neutrino masses and lepton mixing fromewlneinterested
reader can go on with more advanced literature.

General introductions to neutrino physics, with emphasis on neutrino osciatoe found
in [fll. For recent developments in models for neutrino masses and mixirfgs&ef. [3] contains
aspects of both, phenomenology and theory, and could be used agreachplementary to the
present notes. In Refd][fl, @, 3] one can find extended bibliographieereas here we confine
ourselves to work closely related the presented subjects. For reviethe oésults of neutrino
oscillation experiments sef [4].

Introductory remarks:  The results of the neutrino oscillation experiments have shown that at
least two neutrinos are massive and lepton mixing exists in analogy to quarkgmbihat does

this important finding—one of the most spectacular discoveries in the rbésnoty of particle
physics—mean for model building? To obtain a reasonable perspectvehould take into ac-
count the following remarks. It is no problem to accommodate neutrino massesixing, the
problem is rather to explain its characteristic features. Note that in the gaeatér the mass and
mixing problem is still unsolved, after so many decennia and despite numatteaspts. It could
very well be that the mass problem is decoupled from mixing problem, i.e.apgrne can find
models which explain mixing but not the masses. The mass problem could bdundesnental
than the mixing problem in the following sense. Some mixing angles might find annaxjga

in mass ratios, see for instance the conjecture that the Cabibbo angle éxiagiely given by
sin@. ~ /my/ms wheremy andms are the masses of the down and strange quark, respecfijely [5].
Some of the mixing angles in the lepton sector might be, in a first approximaticependent of
fermion masses, for instance the atmospheric mixing afgiemight be 45 and thus maximal,
and the small anglé,3 could zero. The meaning of these angles will be explained in Sgdtion 2.

As for accommodating neutrino masses and mixing, one could add to the multiplts of
Standard Model right-handed neutrino singlegs just as one has right-handed quark singlets in
the SM, and require conservation of the total lepton nunib&ren one would have in the lepton
sector a complete analogy to the quark sector, with massive Dirac neutniddspon mixing.

Why are we not happy with this picture? Each of the three series of dhéegaions (up
quarks, down quarks and charged leptons) has a strong hierar¢hg masses. For instance,
in the up quark sector we hava /my ~ 4 x 10*. Moreover, the quark (CKM) mixing matrix is
not extremely far from the unit matrix. This is in accord with the idea that bothytlagk mass
hierarchy and the CKM matrix being close to unity are founded in hierarc$ticectures of the up
and down quark mass matrice$n the other hand, in the lepton sector it is true there is a strong
hierarchy in the charged lepton masses wit)yme ~ 3500, however, when compared with the
neutrino masses, experiments tell us that the largest neutrino mass is iabangtess magnitude
smaller than the electron mass. Thus the relation between charged leptors miadgseutrino

IThis could of course be merely a prejudice.



Neutrino Physics Grimus Walter

masses is very different from the relation between down and up quarkemasg-urthermore, it
came as a surprise that the lepton mixing or PMNS matrix is very far from undpnsé€qjuently,
one would like to understand the following issues:

1. Why are neutrino masses much smaller than charged lepton masses?
There are two generic “proposals” for a solution of this problem:

e The seesaw mechanism,
o radiative neutrino masses.

2. Can one reproduce the special features of neutrino masses andrggiog? The special
features are

F1: asolar mixing angle &, ~ 34°fgo , Which is large but non-maximal,

F2: an atmospheric mixing angle 6§, ~ 45° + 8°, which is large and perhaps maximal,
F3: asmall elements of the lepton mixing matrix, withUes|2 = 25 < 0.02,
F4: asmall ratio of neutrino mass-squared differera$ /Amg;,, ~ 0.03.

The approximate ranges for the mixing angles refer to 90% confidendaltevare taken fronf]4].
The framework: The framework of the lectures is defined by the following assumptions:

e We consider simple extensions of the lepton sector of the SM, i.e., the catsigauge
group isG = SU(2). x U (1)y.

e As for extensions of the fermion sector, we take into account the additioigttthanded
neutrino singlets.

e We discuss all possible extensions of the scalar sector, compatibl&with
o We use flavour symmetries for enforcing certain features of the PMNS matrix
¢ We assume Majorana nature of the neutrinos.

At this point we emphasize that an important question is whether the explawédtiba features
F1-4 is independent of the general fermion mass problem. Here we afisaintieis is the case.
Otherwise, one would necessarily have to start with Grand Unified Tteavigere quark masses
and the CKM matrix is inseparably connected with the problem of lepton masdebe PMNS
matrix. Another interesting question, to be solved by future experimentsniscluse to 45 is
the atmospheric mixing angle and how close to zero is the small #gleFor the time being,
sizeable deviations of these angles from these values are allowed. étovfiévturns out that the
atmospheric mixing angle is very close to maximal #aglvery close to zero, this could hint at a
non-abelian flavour symmetry.

The plan of the lecture notes is as follows. In Secfipn 2 we discuss Majonasa terms
and the parameterization of lepton mixing. Secfipn 3 introduces extensions 8Mt®y right-
handed neutrino singlets, together with the seesaw mechanism, and extbysaoiational scalar
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multiplets. In Sectiorj]4 we consider the so-calleer-symmetry in the neutrino mass matrix. A
model which realizes this symmetry is constructed in Sedfion 5. Finally, in Sd¢tn@esent
some general considerations about about multi-Higgs models, with salibgeof lepton numbers
in the mass terms of the right-handed neutrino singlets.

2. Majorana neutrinos and lepton mixing

Majorana mass terms: We begin with some algebra. All spinors used here are 4-spinors. In the
space of 4-spinors the charge-conjugation mairig defined by

Cl'yC=-y, (2.1)

where they, denote the Dirac matrices. We will always work in a representation of thecDira
matrices whergp is hermitian and the; (j = 1,2,3) are anti-hermitian. The properties©fare

c'=-c, cl=c (2.2)

Whereas the first property follows from Eq. {2.1) alone, the secordt@kes into account the
hermiticity assumption.
The charge-conjugation operation is defined by

Ye=CyT =Cyy. (2.3)
The projectors
R=(1-%)/2, R=(1+y)/2 (2.4)
produce so-called chiral 4-spinors. A spinfr is called left-handed iR ¢y = (.. Then, using
ClyC =W, itis easy to show that

Pr(gL)" = (yn)°. (2.5)

Thus, a charge-conjugate chiral spinor has the opposite chirality.

A mass term is a Lorentz-invarignbilinear in the Lagangian. A Dirac mass term has the
structurecﬁqu + H.c., with independent chiral spinogg, .. Note that in the mass term different
chiralities are necessary, otherwise the mass term would be identicallylzere have only one
chiral spinory_ at our disposal, we can use Efj. [2.3) to form a right-handed spindhisvay,
we obtain a Majorana mass term (see d$o [3])

1 /——= 1 a
—ém((wL)ch+H.c.> = émLpEC Yy +Hec. (2.6)
The spinors transform as

Y — exp(—iayyotV/4) g with ot¥ = l2 V'l (2.7)

2For fermions it is actually invariance undst(2,C), the covering group of the proper orthochronous Lorentz
group.
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under Lorentz transformations, where the transformations are paraedtby the six coefficients
of the real antisymmetric matrié@rw). Invariance of the tern{ (3.6) is guaranteed because

exp(—iawo“"/4)TC‘lexp<—ia,\po"p/4> =C! dueto C(o")'Cl=—0g". (2.8)

The factor ¥2 in Eq. (2.p) is necessary in order to interpmeas the mass appearing in the Dirac
equation because this factor is canceled in the functional derivative dfatprangian with respect
to Y since it occurs twice (see second part of q](2.6)).

Mass term for Majorana neutrinos: According to the discussion above, we write down a Ma-

jorana neutrino mass term
1

Lnej = 5, viCc i 4,v +H.c, (2.9)
wherev, contains an arbitrary number of left-handed neutrino fields. Since ferfietus are
anticommuting and is antisymmetric, we have], C v, = v, C1va., whereva, vy are 4-
spinor neutrino fields occurring in.. Therefore, the neutrino mass matri®, is a symmetric
matrix, i.e.

M =My, (2.10)

which is complex in general.
The diagonalization of this mass matrix proceeds according to a theorempriisstn by
Schur [6]: For any symmetric and complex matri%, there exists a unitary matri such that

V.2,V = m= diag(mg, mp, mg), (2.11)
where them;, the neutrino masses, are real and non-negative. The wat@n be decomposed as
VvV =€d®Udiag(eP, €, 1), (2.12)

with a diagonal phase matrg®. The neutrino mass eigenfield@s are then given by the relation
v = VU, with Majorana fields and mass term given by

n n 1. o~
=0+ ()%, Lnaj= 5 vICcimi +H.c, (2.13)

respectively. The Majorana fields fulfill (Uy)¢ = Oy.

Let us from now on assume that we work in a basis where the charged lewiss matrix is
diagonal. Then the phasesé are unphysical in lepton mixing because they can be absorbed
into the left-handed charged lepton fields in the following way. Considerlibeged-current La-
grangian

—gcc =

W fyH v+ Huc.= =~ W LAV DL+ Hec. (2.14)

9 9
V2 V2
The charged-lepton fields= ¢, + (g are Dirac fields, thus their mass ternf_lisﬁm_ +H.c., where
Ay is the diagonal mass matrix. Then, defining new figds- e "/, and(; = e 1% /g, €9 disap-
pears from¥%;c without making reappearance in the mass term.

Note that the phase factoe®, €7 of V arephysicalfor Majorana neutrinos and the phages
o are called Majorana phases. We cannot absorb them in the neutring jlisidss we absorbed
€? in the charged-lepton fields. If we absorb thenvin, U, , we shift the masses in Eq. (3.13)
according tany, — e 2Pmy, mp — e 49my, and the new fields are not in the mass eigenbasis.
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The lepton mixing matrix:  According to the discussion before, the lepton mixing matrix is given
by
Upuns=U diag(e'p,e'“, 1). (2.15)

Using the convention of 7], we decompose the unitary mafrixs

10 0 Ciz 0size ™ Ci2 S12 0
U=UzUidU12=| 0 C3 3 0O 1 0 —S12C120 |. (2.16)
0 —s23 C23 —513¢° 0 13 0 01

We use the abbreviatiorss = cosb,3, etc. The anglé.s is also called atmospheric mixing angle
because it is the protagonist in atmospheric and long-baselinre v; oscillations, with corre-
sponding mass-squared differen@?,,. The mixing angled;s, for which only an upper bound
exists, is responsible far, < v, oscillations. The anglé,, appears in solar or very long-baseline
oscillations; the latter are at present only realized in the KamLAND experiffiénfThe corre-
sponding mass-squared difference can always be chostméas- m3 — m? with m, > my. The
phase) is analogous to the CKM phase and can, in principle, be probed in neusdiitations [1].

With the conventionm, > my, there are two physically distinct cases fof: M < m, < mg,
the “normal” spectrum, andy < my < My, the “inverted” spectrum. In both casesnZ,, can be
chosen as the largest mass-squared difference.

3. Extensions of the SM

3.1 Right-handed neutrino singlets

Multiplets: In this section we extend the set of SM fields by right-handed neutrino singleus
we haveG-multiplets with the following quantum numbers:

) xU (1)
Y = —1 left-handed doublets,
Y = —2 right-handed charged lepton singlets,
Y = 0 right-handed neutrino singlets,
Y = 1 Higgs doublet,
Y = —1 Higgs doublet.

O

C
wn
ol ol (O 10 ok &
N

The irreducible representations 8t)(2) are denoted by weak isospivi,is the hypercharge. The
scalar doublep is not an independent degree of freedom. It is relatepl iy

+ 0%
QP=iT0" or (p—<(p0>@(p—((p>, (3.2)
@ —Q

whereT, is the second Pauli matrix and in the second part of the equation we haveetss-
without loss of generality—that the lower componentgns the one with zero electric charge.
Clearly, the hypercharge ap is opposite to the hypercharge @f but underSU(2) both fields
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transform in the same way: suppdde= SU(2) and@ — U @, then alsop — U . The reason is
that
UtinU* =i < UTinu =i, (3.2)

which is a speciabU(2) property.

There are two motivations for introducing thig. First of all, in the SM the left-handed quark
doublet fields have right-hand&lJ(2)-singlet partners. From that point of view there is no reason
for omitting thevg. Before the discovery of neutrino masses, the omissiarkafas fine because
in that way the neutrinos stayed massless. The second motivation come&Wds based on
the gauge grouQ(10). In such models all chiral fermions of one family are contained in the
16-dimensional irreducible spinor representatiobet us do the counting of the chiral fields per
family:

2 x 2 x 3 (quarks: up, down; L, R; colour) +22 (leptons:/, v; L, R) = 16

Thus, inSQ(10) GUTSs thevg is automatically included. For an introduction irfd®(10) GUTs
see for instancd]8].

The Lagrangian: Let us assume that we have the multiplets of the SM plusvaneger family;
in addition, we allow for violations of all lepton numbers, including the total leptomber_, and
an arbitrary number of Higgs doublets. Then the Lagrangian is given by

— _ o~ 1
R z [gRq)jTrj + quoTAj} DL +H.c.+ <2 vaC MEvR + H.c.> , (3.3)
]

where the dots indicate the gauge part. Themass term is of Majorana form and is present
because we allow fat-violation. The requirement df conservation would forbid that term and
lead to Dirac neutrinos. In analogy to E{. (2.10), we hilfe= M. Spontaneous symmetry
breaking of the SM gauge group induces the mass matrices

M =S ViTi, Mo=3via; with (¢)o=Vvj, (3.4)
] ]
whereM;, is the mass matrix of the charged leptons andvjhare the vacuum expectation values

(VEVSs) of the Higgs doublets. The matrMp goes together witiMg to form a Majorana mass
term for left-handed neutrino fieldg [9]:

1 _
ZYymass= ECUEC 1~%D+MQL+H-C-7 (3.5)

Mpim = 0 Mg and w = \iL . (3.6)
MD MR C(VR)T

Let us sketch the derivation of Eqs$. (3.5) apd](3.6). We have to refotenalamass terms
with (vg)C. For this purpose we reformulate Ef]. {2.3) as

with the 6x 6 matrix

VR =—C (V) (3.7)

3This is actually a representation of its covering gr&min(10).
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from (vg)®¢ = vgr we derive

Vr= (VR)® = —[(vr)]TC! (3.8)

and from Eq.[(2]1) we obtain
oClp=-Cct (3.9)

Using Eq. [38) we treat first the Dirac term:
— 1
—VrMpvVv = [(VR)C]TC_IMDVL = 5 {[(VR>C]TC_1MDVL + VEC_lMg [(VR)C]} . (310)

Dealing with the Majorana term, we first take its complex conjugate, then ug@Bjyand finally

Eq. (3:9):

1 T—1ypx f 1 T 1 -1 T -1 c
<2ch MRVR> = 5 VeCMrVg = 5 [-C Y’ (VR)¥]TCMg[-C 1P (vR)¢] =
2 )T (—/TC 1Y) Mi(ug)® = 3 [(vR)TTC M (i) (3.11)

Equations[(3.30) and (3]11) are in exactly the form we to have.

The seesaw mechanism: In the mass matrix| (3.6 Mp is generated by the VEVs of the Higgs
doublets, therefore, its elements are at most of the order of the eleckawale. On the other
hand, the scale d¥ir is not protected by the gauge symmetry and there is no reason why it cannot
be much larger. Indeed the basic assumption of the seesaw mecHanissmid 8k mg, wheremp
andmg are the scales d¥ip andMg, respectively. A more precise formulation of this assumption
is that the largest eigenvalue nggMD is much smaller than the smallest eigenvaIuQ/cM;MR.

To derive the seesaw mechanism, we are looking for a unitarg atrixW which disentan-
gles small from large scale. In the derivation we follow REf] [11] and nth&eansatz

V1 —BBf B
W= : (3.12)
-BY Vv1-BB
such that
M, 0
T 1%

W' 4 MW = ( 0 heavy) (3.13)

v

The right-hand side of this equation expresses the disentanglement obsithddirge scales. The
matrix W is modeled after a 2 2 rotation matrix. The square root is understood as Taylor expan-
siony1—x=1— %x— %xz —---. Before we go on we do some parameter counting. The matrix
B is a general complex 8 3 matrix and thus has 18 real parameters,\&hldas the same number
of parameters. A general unitary<6 matrix has 36 parameters. THishas 18 parameters less
and it is impossible to diagonalizeZp, » with W. The lack of 18 parameters agrees with the form
of the matrix on the right-hand side of E (3.13), and.#,"**" are both symmetric and would
need each a unitary>33 matrix for diagonalization, thus:29 = 18 further parameters.

Equation [[3.183) determindsas a function oMp andMg, by requiring disentanglement:

v 1-BTB*Mpv/1 —BBf—B"MSB'— /1 — BTB*MgB' = 0. (3.14)
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By expandingB in mp/mg, Eq. (3.14) allows for a recursive solution. One can shipy [11] that
B=B;+B3z+Bs+---, whereB, is of order(mp /mg)". The first term irB is easily obtained from

Eq. B.1) as

_ t
B1= (Mg'Mp) , (3.15)
and up to second orddr [12]
w 1-iBB! B .
~ Cat 1o1gtm | (3.16)
1 2P1R1

Then one finds the leading term of the light-neutrino mass mdtrjx [10]:
My = MMz Mp. (3.17)

This is the famous seesaw formula. In leading order, the mass matrix of heatynos is given
by
MY = Mg (3.18)

An interesting feature is that corrections.#, and.#,*®"Y suppressed b§mp /mg)2, i.e., by the
square of the small ratiop /mg [[LT]. This is a consequence of the zero in the upper left corner of
Mpim—see Eq.[(3]6).

We note that the whole procedure sketched here goes through with ignargrbumber of
right-handed neutrinos. We could choose for instance two or more theavar However, if we
chose only one right-handed neutrino, then two neutrino masses arendgcd, is in disagree-
ment with the two non-zero mass-squared differences; in this case #io@alccontribution to the
neutrino masses has to be supplied from elsewhere.

Let us for the moment assume that the charged-lepton mass matrix is nomaliagd it gets
diagonalized byU%)"™™M,U! = riy. In that case the lepton mixing matrix is given by = (U/)V
and there ar¢hree sources for mixing: MMp andMg. Thus the seesaw mechanism is a rich
playground for model building.

To conclude the seesaw part, we want make a scale consideration.eGsms/pical neutrino
massmy ~ \/Amé,, ~ 0.05 eV andmp ~ my ;. Then,mg ~ 108 - 10! GeV. This is fairly close
to the GUT scale. Could the seesaw saagebe identical with a GUT scale of typicalMgyT ~
2 x 10'® GeV? This is not possible without some amount of finetuning beaaysg v, where the
VEV v ~ 174 GeV represents the electroweak scale. Then, according to ttevseeshanism
my ~ V?/Mgut ~ 1.5 x 102 eV, which is too small. On the other hand, in the minimal SUSY
extension of the SM gauge coupling unification happeMdajT and the question is if in a certain
GUT model an intermediate scale like the seesaw scale is allowed. It hashHmyemthat the so-
called minimal SUSYSQ(10) GUT is ruled out for this reasofi [L3]. This problem is an interesting
research topic.

3.2 Additional scalar multiplets

The leptonic SM multiplets are characterized in the beginning of Seffipn 3.1. Wt th
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multiplets one can form leptonic bilinears with the following quantum numfipets [14]

DL@r 3©0= Y=-1 ¢ doublety =+1,

NI

n+ singletY = +2,
A triplet Y =42,
lR®Ir 0®0=0 Y=-4 k' singletY = +4.

DL®DL 3@5=001Y=-2 {

This is the complete SM list. One can adgl® vg with trivial quantum numbers@0=0,Y =0,
which tells us that this bilinear can couple to a real or complex scalar singleiNVet consider
this possibility in these lecture notes.

In the list above, apart from the trivial case with weak isospiB, There are three interesting
new scalar multiplets, which enable massive Majorana neutrinos. Threersdels, correspond-
ing to these multiplets, will be discussed in the following.

The Zee model: The essential ingredient of this model is the charged scatafflg, [16]. In
addition to the SM multiplets, it needs a second Higgs doublet. The relevasptre Lagrangian
are
L =+ oDy CYiDp Nt — H@f@nT +H.c, (3.19)

wherefgg is the Yukawa coupling matrix af *. Without loss of generality we can assume that the
charged-lepton mass matrix is diagonal and, therefmrand 8 indicate the flavour, i.eq, 3 =
e U, T. Then™ Yukawa interaction has a “Majorana” structure and is Lorentz-invajiestias the
Majorana mass term discussed in Secfion 2. The Pauli mataxts on thesSU(2) doubletsDg,
i.e., it hasSU(2) indices. Equation[(32) expresses the invariance oftherukawa interaction
underSU(2).

In Sectior[P we have derived that a Majorana mass matrix is symmetric—s¢g. Hp). We
can apply an analogous reasoning here, however, due to the antisynofnetrywe have

D¢ C tiToDp. = —Dp C Do and  fop = —fgq. (3.20)

Why does the Zee model need two Higgs doublets? The Zee model aims &itveaakatrino
mass generation. Since there isupg the neutrinos have to be of the Majorana type, with violation
of the total lepton numbdtr. Therefore, a necessary condition for non-zero neutrino masses in th
Zee model id -violation. Considering thg ™ Yukawa interaction in Eq{(3.19) and the Yukwawa
interactions of the Higgs doublets, leads us to the following lepton humbenassig:

‘DL lRont
L\l 1 0 -2

Clearly, such a lepton number is explicitly broken by tir¢derm in Eq. [3.19), and this is the
only term in the total Lagrangian which bredks Suppose we have only one Higgs doublet, i.e.,
® = @ = @. Then it follows that(pfcﬁz = ¢'@ = 0 and theu-term is absent and without it the
neutrinos remain massless.

A restricted version of Zee model has been proposed by Wolfen§tdin filthat version only
¢ couples to leptons. This is guaranteed if we introduce the symmetry

DL — iDL, R—ilg, =@, ®G——@® n"—-n". (3.21)

10
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Figure 1: The 1-loop Feynman diagram for the generation of neutrinss@siin the Zee model.

Note that in this case the Yukawa coupling matrixgpis proportional to the diagonal mass matrix

of the charged leptons. The 1-loop Feynman diagram which generatesnenasses is depicted

in Fig.[}. The vertex at the right corner of the diagram has a chargedrlenass from the Yukawa
coupling, another one comes from the mass insertion on the fermion line.iddyauch describes

a transitionv. — (v,), in accord with a Majorana mass term—see [Eq] (2.6). Taking into account
that.#, is symmetric, one find§ [15]

Oab
///VD((mg—n@)faB) o #,=|aoc]|. (3.22)
bcoO

Thus the restricted version of the Zee model generates the most gersgoahiv mass matrix with
zeros on the diagonal. After removal of unphysical phases, one eldai@al 3-parameter mass
matrix. However, the mass matrix (3}22) is not vialpld [18], because it fisettiiat solar mixing is,
for all practical purposes, maximal.

Thus the restricted version is ruled out. However, if both Higgs doubletalbowed to couple
in the lepton sector, i.e., there are two different coupling matrices at thecoghér of the diagram
in Fig.[1, then.#, has in general non-zero entries in the diagonal, non-maximal solar mixing is
allowed and there is no contradiction with experimental res[ilis [19]. On the btnd, though
neutrino masses are suppressed because they are generatecetgdiatither suppression is re-
quired to get neutrino masses of order 1 eV. If we perform such aresgipn by small Yukawa
couplings of they™, a rough estimate ify5| < 1074,

The Zee-Babu model: In this model [1p,[20], the SM multiplets are enriched by the scalar
singletsn™ andk™*. The relevant parts of the Lagrangian are given by

L=+ TapDg C DL N +haplarC Hark ™ —fin n k™ +H.c. (3.23)

Now we use arguments similar to those for the Zee model. The Yukawa couplimig wfak
has the property
hag = ga- (3.24)

If we assign lepton numbets thenL(k™*) = —2, butL is explicitly broken by thegi-term. Thus,
we obtain radiative neutrino masses, with neutrinos of the Majorana type.

11
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Figure 2: The 2-loop Feynman diagram for the generation of neutrinss@siin the Zee—Babu model.

The Zee—Babu model has only one Higgs doublet. According to the disouskthe Zee
model, at 1-loop the neutrino masses are still zero, but they appear aldbp vel. The relevant
Feynman diagram is depicted in F[§. 2. Examination of that diagram shows that

M, O fravhem (3.25)

with f = (f4p), h = (hep) andry, = diag(me, my, my).

The properties of the model are the following. Sirfcis antisymmetric, the lightest neutrino
mass is zero. Assuming neutrino mass hierarchy requires the fine-tQding 2| : [hyz| : [hee| ~
1:(my/mg) : (m,/mg)%. With scalar masses in the TeV range, small neutrino masses réfyite
Ihag| < 0.1. Thus, with 2-loop suppression, neutrino masses turn out to be natsmadly. As a
bonus, rare decays like— 3u andu — ey are within reach of forthcoming experiments.

We want to finish our discussion of the two models for radiative neutrino gerssration with
a remark. Via the loop diagrams the hierarchy of the charged-lepton madesmssferred into the
neutrino mass matrix, which is, therefore, naturally of hierarchical streicttihus, finetuning of
Yukawa couplings seems to be unavoidable in order to reproduce latge lgjxing.

The triplet model: That model is obtained by enlarging the SM by a scalar tripplethis triplet
is conveniently written as a2 2 matrix with SU(2) indices, parameterized by

3
A= Z 0jTj, (3.26)
=1

where ther; are the Pauli matrices. The relevant terms of the Lagrangian are gi@aby

1
2
The first dots indicate the gauge part, the second ones the missing termsschtaepotential
which are not relevant for our discussion. Observing thatfipare symmetric foj = 1,2,3, we
find

& =+ 04D ,C liToAD g +H.c.— M?TrATA — (ua @"A@+H.C) — -+ (3.27)

9aB = 9a- (3-28)

The triplet coupling isSSU(2)-invariant for the following reason. With € SU(2), the trans-
formation properties are
DL —UD,, A—uUAU™. (3.29)

Using the parameterizatioh (3}26), the latter equation demonstrate tifaaitsforms according to
the adjoint representation 8U(2), i.e., as arBU(2) triplet. Invariance undesU(2) of the triplet
term is again proved by using E. (3.2).

12
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Let us now determine the charge-eigenfields of the triplet. First we notadiipercharge is
Ya = 2. In general, the electric charge in a multiplet of the SM gauge group is biyé) = Tz +
%Y, whereTs is the thirdSU(2) generator, i.e., the third component of weak isospin. According to

Eqg. (3.29), we thus obtain

QA= % [13,A] + A (3.30)
or
( % 51—i62>g< % 2(61—i62>>_ (3.31)
S+id —d 0(&+id) —&
Therefore,
H+ \/§H++
oo () -

with HO = 25 (81 +i8), H" = &, H'" = 5 (81~ i&).

Assigning lepton numbers as in the previous models, welfidd = —2, andL is explicitly
broken by theua-term. However, according to Eq. (3]32), the triplet has a neutral coemevhich
can have a VEV 1

H% = ——vr. 3.33
(H o Vo (3.33)

Thus in the triplet model there is a tree-level neutrino mass métrix [22]
My =V1(dap)- (3.34)

Since the triplet VEV disturbs the famous tree level relatyp/Mz = cosBy for W massZ mass
and Weinberg angléy, there is an upper bourjur |/v < 0.03 from the LEP datd [23]. However,
in order to have small enough neutrino masses from a small VEMust be much smaller, namely
vr ~0.1+-1eV.

How to get a small? Mechanisms in analogy to the seesaw mechanism, where the order of
the neutrino masses is given by /mg with mp < mg, have been proposed such that the triplet
VEV is obtained by an analogous order of magnitude relation. Such meanisars usually called
type Il seesaw{[24] (see als{ [8]). In that context the original seesachanism is called type I.
Here we follow Ref.[[25]. We assume

M, |I'lA’ >V, (335)

wherev~ 174 GeV is the VEV of the Higgs doublet. Replacing in the scalar potential ofEE2j)
the fields by the VEVs, we obtain

(V)o = MAVivr +VPUpVr + VPV 4 - (3.36)

The dots contain terms of ordet andv2v2. The stability condition with respect tg requires

(9(\9/*<V>° = M?vr +V2u* + O(vrv?) =0, (3.37)
T

which results in
[vr| = |uV? /M2, (3.38)

13
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Indeed v is of the formv?/ms, wheremsis a large scale in the scalar sector. We want to emphasize
that the mechanism for generating a small non-zgrbas a peculiar feature. It requirb® > 0,

thus without the VEV of the Higgs doublet the triplet VEV would be zero. Onater hand, the
VEV of @ is non-zero because in the scalar potential the tetmhas anegativecoefficient.

In summary, in the triplet model, generation of small neutrino masses requsrealbtriplet
VEV v1, which in turn requires a new new heavy scale in scalar sector, in aneldbgg seesaw
mechanism of type |I. Seesaw mechanisms of type I+l are naturally obtiis€d10) GUTs, see
for instance[[8]. If both types are together, the mass mdtrik (3.6) looks like

M Mo M5 (3.39)
D4+M — 5 .
" Mp M
with the seesaw formula
My =ML —MIMz*Mp. (3.40)

Note that now all terms ifB = B; + B2+ Bz + -+ in an expansion in Amg appear—see for in-
stance[[1]1], for a thorough discussion. The malfixneed not necessarily be present at tree level,
as it the case in the triplet model, but can also appear via loop correctiommeraodels—see for
instance[[26].

4. The u—t-symmetric neutrino mass matrix

We depart from the Majorana mass tefm](2.9) and the basis where dHapgen mass matrix
is diagonal. We consider the mass matrix

Xyy
My=1yzW with x,y,zwe C, (4.2)

yw z

which is symmetric unden—t interchange—for early references on this mass matrix[s¢¢ [27, 28].
The p—t interchange symmetry i, can be defined a§ [R9]

100
S#,S=.#, with S=|001]. (4.2)
010

Let us now discuss the phenomenology of the mass métrik (4.1). We immediaésly gne
eigenvector:

Xyy
yzw 1| =(z—w) 1. (4.3)
ywW z -1 -1

Since this vector is real, it can be identified with one of the columns in the difigatan matrix
V, defined in Eq.[(2.31). The first component of this eigenvector is zkeus, we identify it with

14
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the third column ofV becausgVe| = s13 (see Egs.[(2.12) andl (2]16)) is compatible with zero.
Therefore, we also obtaimg = [z—w|. InspectingJ of Eq. (2.16) we find with the eigenvector

above that
6,3=45, 6,3=0° (4.4)

and the parameter measured in atmospheric and long-baseline experimentsrialpiae.,
SiN? 20atm = 4|Uu3|? (1 - |Upsl?) = 1. (4.5)
Because of Eq[(4.4), the matikis given by

cosf sinb 0
1

V = diag(é?%, &% —d?) —%%w%§ % diag(e®,€9,1). (4.6)
_sin cosf _ 1
V2 V2 V2

That the diagonal phase matrix to the lefl.bhas this specific form, can be proved from ther
interchange symmetry. Note we have slightly changed the conventidrcompared to Eq[(2.116):
the third line has been multiplied by1.

Equation [4.}4) represents the predictions of the mass métrix (4.1) and impliésisheom-
patible with all data. If one can generate such a mass matrix in a model by nfesymroetries,
on would have an explanation for large atmospheric mixing and s#qaallObviously, theu—t-
symmetric mass matrix is more specific than that and will be tested by future expaaireorts.

Sinces;3 = 0, the CP phasé is meaningless. The mass matfix]4.1) has no predictions for the
masses; they are free and all types of mass spectra are admitted—THsgmmetric mass matrix
is thus an example of what was mentioned in the introduction: there might beimgegendent
predictions for mixing angles and the mass problem is deferred to a morarmfiemdal theory.

In the neutrino sector, we have nine observables: three neutrino mtssesmixing angles
and three CP phases. If we remove the unphysical phases from thenataiss(4.1), for instance
by making the first row and first column real by a phase transformatioayevieft with six param-
eters. That mass matrix gives two predictions—see [Ed. (4.4)—and the Plizsps out fromJ.
Thus we are left with six observables, the masses, the solar mixing angllecalM@jorana phases,
which are not predicted by Ed. (}.1); this is in agreement with the six pHysicameters inz,
counted above.

One can ask the question if a small perturbation ofgthe-symmetric mass matrix destroys
the predictions[(4}4). It turns out that they stablerfar, 3 < /Amé,,, [B0]. The predictions are
unstable for a degenerate neutrino mass spectrum wimerg> /Amg,.

The matrixU in Eq. (4.6) may be further specified by fixing the solar mixing angle[bly [31]

gﬁe:}, (4.7)
3
which leads to the so-called tri-bimaximal mixing matrix
cosf sin@ 0 % % 0
_sin cosB 1 - -1 1 1 (4.8)
V2 V2 2 V6 V3 V2 '
_sinf cos® _ 1 ~1 1 1
V2 V2 V2 V6 V3 V2
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Here the solar mixing angle i8 ~ 35.3°, which is in good agreement with the experimentally
allowed range. Models which explain tri-bimaximal mixing exist, but they are guitaved [2].

5. A model for the u—t-symmetric neutrino mass matrix

Multiplets and symmetries: The model to be discussed here was publisheldJn [28]. Its multiplets
are those of the SM, however, it needs three Higgs doulp|ets= 1,2, 3), and the fermion sector
contains in addition three right-handed neutrino singlets, in order to genligifat neutrino masses

by the seesaw mechanism. The symmetries and symmetry breakings of the raddeffallowing:

>> Three groupd) (1), (o = e u, 1), associated with the family lepton numbeégs, which are
softlybroken by thevg mass term (note that a fermion mass term has dimension three);

. Zgr): DuL < DL, HR < TR, VuR < ViR, 3 — —@, Which is spontaneously broken by the
VEV of ¢s;

> Z8" : Ve Vur, Vir, @1, €k change sign, which is spontaneously broken the VEgof

These symmetries determine the Yukawa Lagrangian:

A = —y15eLveRcI>1 -y (IS[JLV[JR+ |5rL VTR) ch
—Y3DeLr® — Y4 (DpL R+ DL TR) @ — Y5 (Dpt Hr — DL TR) @3+ H.C. (5.1)

By virtue of the family lepton numbells,, all Yukawa coupling matrices are diagonal.

The neutrino mass matrix: Consider the mass term
1

L =3 veC MivR+H.c. (5.2)

of the right-handed neutrinos. According to the way we have stipulatedyoumetries, %y is
invariant undefZ\" but not under theJ (1),,. Thus we find

mnn
Mp =diag(a,b,b) and Mr=| npq]. (5.3)

nqgp
Using the matrixSof Eq. (4.2), thélgr) invariance translates into
SMbS=Mp, SMkS=Mg. (5.4)

But then we also hav& #,S = .#,, because#, is obtained fromMp and Mg by the seesaw
formula (3:1]). Thus the model discussed here provides us with-thesymmetric neutrino mass
matrix discussed in the previous section and has, therefore, the preslicfiq. (4.14).

Two remarks are at order. As mentioned in the previous section, the nagsse in this
model, therefore, we have no explanation Ao /Amé,, ~ 0.03. However, this ratio is not very
small and is a function of the elementshtp andMg. Due to the seesaw mechanism, the entries
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in .#, are sums over a product of four such elements times the common faetMg. Thus
the ratio of mass-squared differences can easily be reproduced letherds inMp r differ by no
more than factors of 2 3. The second remark refers to radiative corrections. [Ifeinvariance
of ., is expected to hold at the seesaw scale. EvolutiaZyfaccording to the renormalization
group from the high scale down to the low scale introduces deviations fremprédictions [(4]4);
however, one can check that this effect changésvery little [83]. Only for a degenerate spectrum
with a common masaey ~ 0.2 eV, 513 is at most 0.1 at the electroweak scale, wherea26in
remains very close to one. However, the correctiors;togoes roughly withmg and becomes
quickly small for smallemy.

The model and the groupO(2): The symmetries described before generate a non-abelian sym-
metry group becausd (1)., x U(1),, and Z(Ztr) do not commute, but they generate the group
O(2) [B3], as we will demonstrate now.

First we give an abstract characterizatiorQg®2), a symmetry group in the plane. It contains
rotationsg(w) (w € R) with the multiplication lawgy(w+ 21) = g(w), g(wr) g(awr) = 9(wr + wy).
Another element is the reflexiomat the x-axis with s> = e, wheree is the unit element. The
reflexions and the rotationg(w) generatéd(2), if we stipulate the relatiosg(w) = g(—w)s.

The irreducible representations ©f2) are easily found. There are two 1-dimensional repre-
sentations

1:g(w)—1,s—1 1:gw) —1 s—-1 (5.5)

and there is an infinite series of 2-dimensional irreducible representatianacterized by € N:

gnw 0 01
W = N
2V g(w) ( 0 eiﬂﬂ)), S (10>- (5.6)

Now we make the identifications
s 7y, gw) « b, (5.7)

Then(Dy,Dri), (UR, TR), (VuL, VrL) are in2Y, @ isin 1, the remaining fields transform trivially.
The full symmetry is group is then characterized oy [33]

U(L)L, xU (L), 1, % O(2) x Zg™. (5.8)

The problem of m, < m;:  Actually, theu—t interchange symmetry, as realized in the symme-
tries of the model, would rather suggest that,| ~ |ysvs| and, thereforemy, ~ m;. However, we
need

My = |YaV2 +YsV3| < My = |yaV2 — YsVa|. (5.9)

A technical solution of this finetuning problem was given[in [34].
It consists in introducing a new symmetry

K: Ur— —Hr, @< @, (5.10)
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without introducing new multiplets. This is an important point because this makemtiel
simpler, since the number of free parameters is reduced. Impleméftingthe Yukawa La-
grangian [G]1), we obtain

My

ya=—ys and o-=

Vo —V3

. 5.11
V2 + V3 ( )

As we want to show now, implementation kfin the Higgs potential leads @ = v3 and,
thereforem, = 0. If we are able to break softly by terms of dimension two in the Higgs potential,
we will havemy, # 0, and thusn, < m; in a technically natural way.

Since we need soK-breaking, we assume that the Higgs potential consists of two terms,

whereV, is K-invariant. It is easy to check that the séftbreaking term of dimension two is
unique:

Vsoft = “szoft <(P;(Pz - (P;(p&) : (5-13)

To proceed further we mention thall Z, symmetries listed in the beginning of this section, are
broken spontaneously. This means tas invariant under separate sign transformations ofalll
(j = 1,2,3). With this observation, we easily find

Vo = —tielor— 13 (Sl + el o)

(o) e (o) + (die) |

o5 (alo) (s o) + a (o) ()

+hs | (ol) () « (de) ()| +2s (o) (el e2)
[CORICHN

+As:(fpfrpz)z+(¢fcps)1+A§[(ca§<m)2+(fp§cm)2] (5.14)

+A7

All coupling constants are real excelyt. We make the ansat [34]
v, =ud%coso, vz=uédPsinc with v; >0, u>D0. (5.15)
DefiningF, = (Vy)o and using Eq.[(5.15), we obtain

Fp = —HVE — BSUP + A1V + Aou* + (A3 + As) Vil
- P\ —4A7sir? (a — B)} u‘codasirfo
+2|Ag|Viu? [cos 0 cos(€ + 2a) + sirf o cos(e +2B)] . (5.16)

In Fy we have defined = —2A2+ As+ Ag+ 2A7 ande = argAg. The following is easy to check:

If A < 0andA; < 0= the minimum offpisato =m/4,a =B = (m—¢€)/2.
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Consequently, the minimum &, has

Vo = V3 = \}éué(”‘f)/z (5.17)
andmy, = 0. If we include sofiK-breaking by adding
(Vsoft)o = o> COS 27 (5.18)
to Fp, we obtain
cos = 2;\15‘2’“ and %’: = 1+\’/%. (5.19)

If we chooseuZ , < u?, we enforcem, /m; < 1, which is technically natural because in the limit
uszoﬂ — 0 the symmetrK is conserved and fqrz_§0ft # 0 itis broken only softly.

6. A general framework: The seesaw mechanism with soft leptenumber breaking

The model we have introduced in the previous section has three Higgsetigutowever,
all Yukawa coupling matrices are diagonal. Thus the family lepton numhe(sr = e, T) are
conserved in all terms with dimension four in the Lagrangian, but they dtly fooken by the
vr mass term—see Eq_(5.2). One could, therefore, envisage the geaenalvork of a multi-
Higgs-doublet SM, witmy Higgs doublets, the seesaw mechanism andlsptireaking. It has
the following features[[35]:

x Itis a renormalizable theory. In particular, lepton-flavour-changinglitimaes are finite.

x  The family lepton numberk, (and the total lepton number) are softly broken by the mass
term of the right-handed neutrino singlets at tingh seesaw scaler.

x All Yukawa coupling matrices are diagonal and thus &fsandMp.
+ The mass matriMgr—see Eq.[(5]2)—is the only source of lepton mixing.

Apart from allowing for interesting models for neutrino masses and mixing byding further
symmetries, this framework is in itself interesting. It has flavour-changingralenteractions in-
duced byMg, nevertheless, some flavour-changing processes do not decouple-f- oo, provided
ny > 1. Itis the scalar sector which is responsible for this non-decoupling.

Decays of charged leptons which are unsuppressed/tmg are 3]y~ — e ete, 17 —
pu-ete, 17—y putu  andt- — e ete . In Fig. B we have depicted the Feynman diagrams
for the vertext™ — i~ (@)* where(ﬁ)* is a virtual neutral scalar; this is the vertex responsible
for the amplitudes (1~ — p~¢*¢~) (¢ = e, u) which does not vanish in the limitg — c. Also
the flavour-changing scalar decays of the tﬁﬁe—> et u~ are unsuppressed. On the other hand,
the decay amplitudes far — y~u~-e" andt~ — e e u™ stem from box diagrams and behave
like 1/m? for largemg. The amplitudes fopt — ey andZ — e~ u* have the same behaviour.

While the processes whose amplitudes are suppressednifydre completely invisible for
all practical purposes, the decay rateuof — e~ ete, although its amplitude is small because it
contains a product of four Yukawa couplings, could eventually be witkieemental reach.
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