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1. Introduction

Black holes (BH) are the most fascinating objects predictedby general relativity. There exist
about 20 confirmed candidates [1] for astrophysical BHs in the mass range 5 - 20M� and about
three dozen supermassive BH candidates [2] in the mass range106 - 109.5 M�.

Unfortunately, there exists as yet no direct evidence for astrophysical BHs1. At present we
only hope that the black-hole paradigm may be proved or ruledout by comparing BH candidates
with credible alternatives. Fortunately, BHs are dark and compact, which narrows the list of pos-
sible alternatives among standard astrophysical objects.For a stellar-mass BH, the only standard
astrophysical alternative isneutron stars(NS). It is therefore quite important to understand the
properties of NSs and their observational distinction to BHs. Therefore, considerable attention will
be devoted here to NSs.

These lecture notes are in large part based on the standard text books Misner, Thorne, and
Wheeler [3], Shapiro and Teukolsky [4], Wald [5], and Carroll and Ostlie [6], and on the review
articles by Townsend [7] and Narayan [8]. The exception is section 9 which is based on original
articles. Efforts are made to provide citations to originalpapers wherever appropriate but the list
of references is by no means complete. A number of interesting talks may be found at the site of a
recent conference on supermassive black holes [9].

We use the positive-time negative-space signature convention, i.e., (+,- - -) and we mostly
use the so-called natural units in whichc = h̄ = G = 1. In these units, the physical quantities are
expressed in powers of the Planck massmPl =

√

h̄c/G, Planck lengthlPl =
√

h̄G/c3, or Planck
time tPl = lPl/c.

2. Preliminaries

2.1 Spherical Configurations

Consider the space time metric

ds2 = gµνdxµ dxν , (2.1)

in which the metric tensorgµν is time independent. In general relativity we distingush between
static and stationary metric. Stationary configurations are described by the metric coefficients
that do not depend on time. For static configurations we also require the time reversal (t → −t)
invariance of the metric. In this case, the mixed componentsg0i must vanish.

Static fluid configurations are spherical. The most general metric generated by a spherical
mass distribution is of the form

ds2 = ξ 2dt2−λ 2dr2− r2(dθ2 +sin2 θdφ2), (2.2)

whereξ andλ are functions ofr only. The functionξ , called the “lapse function", may be repre-
sented in terms of the gravitational potential

ξ = eϕ(r), (2.3)

1See A. Müller’s lecture at this School
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and the functionλ is related to the enclosed massM (r)

λ =

(

1− 2M (r)
r

)−1/2

. (2.4)

It may be easily shown [10] that Einstein’s equations reduceto two nontrivial independent equa-
tions

2
ξ

dξ
dr

= −8πrλ 2Tr
r +

λ 2−1
r

, (2.5)

2
λ

dλ
dr

= 8πrλ 2T0
0−

λ 2−1
r

. (2.6)

For a perfect fluid
Tr

r = −p, T0
0 = ρ . (2.7)

Using (2.4), Einstein’s field equations take the form

dξ
dr

= ξ
M +4πr3p
r(r −2M )

, (2.8)

dM

dr
= 4πr2ρ . (2.9)

The latter may be written in the form

M (r) =

∫ r

0
dr′ 4πr ′2ρ(r ′) , (2.10)

which shows that the functionM may indeed be interpreted as an enclosed mass.
Finally, if we impose the particle number conservation constraint (C.1), we have

∫ R

0
dr4πr2(1−2M /r)−1/2 n(r) = N, (2.11)

where we have employed the spherical symmetry to replace theproper volume integral as
∫

Σ
uµdΣµ =

∫ R

0
dr4πr2λ . (2.12)

2.2 Schwarzschild Solution

Assume the absence of matter in the regionr > R. In this region equations (2.8) and (2.9) may
be easily solved. One finds

M (r) = M = const., (2.13)

ξ (r) =

(

1− 2M
r

)1/2

. (2.14)

The metric takes the form

ds2 =

(

1− 2M
r

)

dt2−
(

1− 2M
r

)−1

dr2− r2(dθ2 +sin2θdφ2). (2.15)

This is known as theSchwarzschild metric. The constantM is the mass of the source. In the weak
field limit r � M, we obtain the Newtonian potential

ϕ = lnξ ≈−M
r

. (2.16)

This metric describes the gravitational field outside of anyspherical object of massM, including a
black hole. The sphere with radiusr = 2M, at which the metric diverges, is the BHevent horizon.
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2.2.1 Birkhoff’s Theorem

Theorem 1. The exterior spacetime ofall spherical gravitating bodies (not necessarily static) is
described by the Schwarzschild metric.

The proof is simple. See, e.g., Misner et al. [3].

2.3 Spherical Stars

Generally, we assume thatρ and p satisfy an equation of state, e.g., in the form given by
(C.25) and (C.26), and are generally functions of localT andµ which in turn depend onξ through
the Tolman equations (C.10). Numerical integration of (2.8) and (2.9) fromr = 0 to some radiusR
with the boundary conditions

ξ (R) =

(

1− 2M (R)

R

)1/2

; M (0) = 0 (2.17)

is rather straightforward and, as a result, a nontrivial spherical distribution of matter is obtained.
The boundary is usually naturally provided at the radiusR whereρ = p = 0. In the case when the
ρ = p = 0 point does not exist, one must integrate up to infinity or up to a chosen cutoff radius.

It is often more convenient (e.g., if the equation of state isgiven in the formp = p(ρ)) to
express the field equations in the Tolman-Oppenheimer-Volkoff (TOV) form

dp
dr

= −(p+ ρ)
M +4πr3p
r(r −2M )

, (2.18)

dM

dr
= 4πr2ρ . (2.19)

Here, equation (2.18) is obtained from (2.8) with the help ofthe equation of hydrostatic equilibrium
(B.14) which may be written as

d lnξ
dr

= − 1
ρ + p

dp
dr

. (2.20)

The set of equations (2.18)-(2.20) is called theTOV equations.

2.4 Newtonian Limit

General relativity reduces to Newtonian theory in the limitof weak gravity and low velocities.
The Newtonian limit is achieved by the approximationξ = eϕ ' 1+ϕ , M /r � 1 , andp� ρ . In
this limit, the two equations, (2.18) and (2.19), can be combined to give one 2nd-order differential
equation

1
r2

d
dr

r2

ρ
dp
dr

= −4πρ . (2.21)

In this approximation, the relativistic energy densityρ is just the rest mass density

ρ = mn. (2.22)
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2.4.1 Polytropes

If the equation of state is in the polytropic form (C.32), theequilibrium configurations are
calledpolytropes. Owing to (2.22) we can rewrite the equation of state as

p = KρΓ, (2.23)

where

K =
K

mΓ . (2.24)

It is convenient to write
Γ = 1+1/n, (2.25)

wheren is called thepolytropic index. Then the Newtonian equation (2.21) can be reduced to a
simple form by writing

ρ = ρcθ ; r = αz, (2.26)

α =

[

(n+1)Kρ1/n−1
c

4π

]1/2

, (2.27)

whereρc is the central density. Then

1
z2

d
dz

z2 dθ
dz

= −θn. (2.28)

This is theLane-Emden equationfor the structure of a polytropic indexn. This equation can be
numerically integrated starting from the center with the initial conditions

θ(0) = 1; θ ′(0) = 0. (2.29)

For n < 5 (Γ > 6/5), the solutions decrease monotonically and have a zero at afinite valuez= z1;
θ(z1) = 0. This point corresponds to the surface of the star, whereρ = p = 0. The radius is

R= αz1 =

[

(n+1)K
4π

]1/2

ρ (1−n)/2n
c z1 , (2.30)

while the mass is

M =

∫

4πr2ρdr

=4πα3ρc

∫ z1

0
z2θndz

=−4πα3ρc

∫ z1

0

d
dz

z2 dθ
dz

dz

=4π
[

(n+1)K
4π

]3/2

ρ (3−n)/2n
c z2

1|θ ′
1| , (2.31)

where the absolute value|θ ′
1| has been introduced becauseθ ′

1 ≡ θ ′(z1) is negative. Eliminatingρc

between (2.30) and (2.31) gives the mass-radius relation for polytropes [4]:

M = 4πR(3−n)/(1−n)

[

(n+1)K
4π

]n/(n−1)

z(3−n)/(1−n)
1 z2

1|θ ′
1| . (2.32)

7



P
o
S
(
P
2
G
C
)
0
0
4

Black-Hole Phenomenology Neven Bilíc

The solutions we are particularly interested in are

Γ = 5/3, n = 3/2, z1 = 3.65375, z2
1|θ ′

1| = 2.71406, (2.33)

Γ = 4/3, n = 3, z1 = 6.89685, z2
1|θ ′

1| = 2.01824, (2.34)

where the values 5/3 and 4/3 ofΓ correspond to the nonrelativistic and ultrarelativistic regimes,
respectively (see appendices C.4 and C.5).

3. Compact Astrophysical Objects

Traditionally, compact astrophysical objects represent the final stages of stellar evolution:
white dwarfs (WD), neutron stars (NS), and black holes (BH).They differ from normal stars in
two basic ways.

First, since they do not burn nuclear fuel, they cannot support themselves against gravitational
collapse by generating thermal pressure. Instead, either they are prevented from collapsing by the
degeneracy pressure (WDs and NSs) or they are completely collapsed (BHs). With the exception
of the spontaneously radiating “mini" BHs with masses less than 1012 kg and radii smaller than a
fermi, all these objects are essentially static over the lifetime of the universe.

The second characteristic distinguishing compact objectsfrom normal stars is their exceed-
ingly small size. Relative to normal stars of comparable mass, compact objects have much smaller
radii and hence, much stronger surface gravity.

Mass Radius Mean Density Surface Potential
Object M R g cm−3 M/R

Sun M� R� 1 10−6

White dwarf ∼< M� ∼ 10−2R� ∼< 107 ∼ 10−4

Neutron star ∼ 1−3M� ∼ 10−5R� ∼< 1015 ∼ 10−1

Black hole Arbitrary 2M ∼ M/R3 ∼ 1

M� = 1.989×1030 kg; R� = 6.9599×105 km

3.1 White Dwarfs

White dwarfs are stars that no longer burn their nuclear fueland their gravitational collapse
is supported by the pressure of degenerate electrons. Theirmass and radius are about 1M� and
5000 km, respectively.

3.1.1 Equation of State

We assume that the interior of a WD is almost completely ionized plasma at a temperature
T � me. Hence, the electrons are assumed to be degenerate. The density ρ of a WD is basically
the density of barionic matter (neutrons end protons). The pressure is dominated by the pressure
of electrons. This may be seen as follows. In the nonrelativistic regime the pressure roughly
equals the average kinetic energy (see equation (C.14)). Owing to the momentum conservation,
the electron and proton average momenta are equal and hence,their average kinetic energies in the

8
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nonrelativistic regime are inverse proportional to their masses. Hence, the pressure of electrons is
roughly by a factor ofmn/me ' 2000 larger than the pressure due to nucleons.

To determine the equation of state, first assume that the electrons are nonrelativistic. The
density is related to the number density of electrons as

ρ = ηemnne, (3.1)

where the factorηe, to a good approximation, equals the number of nucleons per free electron, i.e.,
ηe = A/Z. For example, for completely ionized pure12C, ηe = 2. The number of electrons is given
by (C.24), withm= me. Hence,

ρ =
1

3π2 ηemB(meX)3, (3.2)

wheremeX = qF =
√

µ2−m2
e is the Fermi momentum of the electrons. We could now use the

relativistic expression (C.26) for the pressure together with (3.2) and numerically solve the TOV
equations to find the entire range of white-dwarf solutions.

However, it is instructive to consider the nonrelativisticand extreme relativistic regimes sep-
arately because, in these cases, the equation of state takesa polytropic form. The pressure in the
two regimes is given by (2.23) withΓ = 5/3 for the nonrelativistic andΓ = 4/3 for the extreme
relativistic regime. Using this and the solutions for the polytropes (2.30)-(2.34) we find the radius
and the mass of the WD:

• Low-density (nonrelativistic) regime.

Γ =
5
3

; K =
32/3π4/3

5mem
5/3
n η5/3

e

, (3.3)

R= 1.122×104
(

ρc

106gcm−3

)−1/6
(ηe

2

)−5/6
km, (3.4)

M =0.4964

(

ρc

106 gcm−3

)1/2
(ηe

2

)−5/2
M� ,

=0.7011

(

R
104km

)−3
(ηe

2

)−5
M� . (3.5)

• High-density (ultrarelativistic) regime.

Γ =
4
3

; K =
31/3π2/3

4m4/3
n η4/3

e

, (3.6)

R= 3.347×104
(

ρc

106 gcm−3

)−1/3
(ηe

2

)−2/3
km, (3.7)

M = 1.457
(ηe

2

)2
M� . (3.8)

9
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Note thatM is independent ofρc in the extreme relativistic limit. We conclude that asρc → ∞,
the electrons become more and more relativistic and the massasymptotically approaches the value
(3.8) asR→ 0. This mass limit is called theChandrasekhar limit, and represents the maximum
possible mass of a WD [11].

Of course, the limiting radius is not zero. The integration of the TOV equations using the exact
degenerate Fermi gas equation of state would also give the limiting value ofRof the order of

RCh ∼
mPl

mnme
∼ 5×103km. (3.9)

3.2 Neutron Stars

If the mass of the collapsing star is larger than the Chandrasekhar limit, the degeneracy pres-
sure of the electrons can no longer support the gravitational attraction and the collapse does not
stop. As the density increases, the Fermi energyEF = µ of the electrons increases according to
(3.2).

At a density of about 2×107 g cm−3, the Fermi energy of the electrons has risen tomn−mp =

1.29 MeV where electrons can now be absorbed by protons throughthe inverseβ decay

e− + p→ n+ νe (3.10)

This reaction cannot come to equilibrium with the reverse reaction

n+ νe → e− + p (3.11)

because the neutrinos escape from the star and the normalβ decay cannot occur because all electron
energy levels belowE = mn −mp are occupied whenEF > mn −mp. At a density in the range
107 ≤ ρ ≤ 4×1011 g cm−3 the medium is a composition of separated nuclei in equilibrium with a
relativistic electron gas. Atρ ∼ 4×1011 the ration/p reaches a critical level. Any further increase
leads to a “neutron drip" – that is , a two-phase system in which electrons, nuclei, and free neutrons
coexist. When the density exceeds about 4×1012 g cm−3, more pressure is provided by neutrons
than by electrons. The neutron gas so controls the situation; one can describe the medium as one
vast nucleus with lower-than-normal nuclear density.

As the density reaches the normal nuclear density of about

ρnucl =
1GeV
(2fm)3 = 2×1014gcm−3, (3.12)

there is a phase transition in which nuclei dissolve. The resulting fluid consists mostly of neutrons
with a small (∼< 5%) fraction of electrons and protons. The pressure is dominated by the degen-
erate (T = 0,µn > mn) gas of neutrons. Can the degeneracy pressure of neutrons support the star
against collapse?

Assuming that the Newtonian calculations are still valid ata density not very much higher than
ρnucl, we can use the high-density results obtained for WDs but with me → mn. The maximal mass
remains the same as in (3.9) but the value of the criticalR is of the order of

R∼ mPl

m2
n
∼ 2.5km, (3.13)

10
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Figure 1: Mass versus radius for fermion stars at zero temperature in the general-relativistic framework
(solid line) compared with the corresponding Newtonian approximation (dotted line). The dashed line is the
Schwarzschild BH limitM = R/2.

which is close to the Schwarzschild radius of the sun, so the neglect of GR effects is not justified.

We have to solve the TOV equations with the equation of statesof nuclear matter. The first
numerical calculation was performed by Oppenheimer and Volkoff [12] who used the relativistic
degenerate Fermi gas described by (C.24)-(C.26). In Fig. 1 we plot the mass of the NS as a function
of the radiusR. The maximum of the curve corresponds to the OV limit. The limiting values are
[13]

ROV = 3.357
mPl

m2

(

2
g

)1/2

= 9.6

(

1 GeV
m2

)2(2
g

km

)1/2

, (3.14)

MOV = 0.38426
m3

Pl

m2

(

2
g

)1/2

= 0.7

(

1 GeV
m2

)2(2
g

)1/2

M�, (3.15)

whereg is the fermion degeneracy factor. This limit is reached whenthe central density becomes
ρc = 5×1015gcm−3 with g = 2 for neutrons. The part of the curve left from the maximum rep-
resents unstable configurations that curl up around the point corresponding to the infinite central-
density limit.

However, the degenerate neutron gas equation of state is notrealistic because at such large
densities the effects of nuclear forces must be included. More realistic equations of state predict
the maximum NS mass in the range 1.5 - 2.7M�. Hence, the maximal mass is rather sensitive
to the not very well-known equation of state for nuclear matter. Since the density inside the star
varies from very large central values to zero at the surface,the equation of state is actually rather
complicated as the star may contain different phases of nuclear matter.

The possibility to identify some compact objects as BHs relies in part on being able to state
categorically that the observed object has a mass larger than the maximum allowed mass of a stable

11



P
o
S
(
P
2
G
C
)
0
0
4

Black-Hole Phenomenology Neven Bilíc

NS. It turns out that it is possible to set an upper limit to theNS mass based on rather general
assumptions (Rhodes and Ruffini [14]):

1. The TOV equation determines the equilibrium structure.

2. The equation of state satisfies the local stability condition

c2
s ≡

∂ p
∂ρ

≥ 0, (3.16)

that is, the speed of sound is real. If this condition were violated, small elements of matter
would spontaneously collapse.

3. The equation of state satisfies the causality condition

c2
s ≤ 1, (3.17)

that is, the speed of sound is less than the speed of light.

4. The equation of state below some “matching density"ρ0 is known.

Rhodes and Ruffini performed a variational calculation to determine which equation of state
aboveρ0 maximizes the mass. Then, the numerical integration of the TOV equations for a chosen
equation of state belowρ0 gives

Mmax' 3.2

(

ρ0

4.6×1014gcm−3

)−1/2

M� . (3.18)

A semianalytic treatment of Nauenberg and Chapline [15] with similar assumptions about the
equation of state gives

Mmax' 3.6M� . (3.19)

Abandoning the causality constraint still leads to a severemass limit, assuming general relativity
to be valid. One finds (see, e.g., Hartle and Sabbadini [16])

Mmax' 5.2M� . (3.20)

In their estimate, Rhodes and Ruffini took the the so-called Harrison-Wheeler equation of state
which accurately describes the nuclear matter densities below the neutron drip. In fact, it turns out
that the upper mass limit is not very sensitive to the equation of state used belowρ0. It is important
to note that even if a new physics exists at subnuclear and subquark level (preons, pre-preons etc.;
see, e.g., a black-hole sceptical paper [17]), it is reasonable to expect that the equation of state will
still satisfy the above conditions and hence, the above limits cannot be significantly altered.

3.3 Black Holes

What happens if the mass of the collapsing star is larger thanthe maximal allowed NS mass?
In such a case, there is nothing to prevent the star from further collapse ending in a BH2.

2It has been recently proposed that loop quantum gravity effects stop the collapse to a singularity by a bounce of
the infalling matter [18]

12
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Astrophysical BHs are macroscopic objects with masses ranging from severalM� (X-ray bina-
ries) to 106−109.5M� (in galactic nuclei). Being so massive, these BHs are described completely
by classical general relativity. As such, each BH is characterized by just three numbers: mass
M, spin parametera, defined such that the angular momentum of the BH isJ = aM, and electric
chargeQ [3, 4, 19] (see also J. Zanelli’s lectures at this School). Actually, an astrophysical BH is
not likely to have any significant electric charge because itwill usually be rapidly neutralized by
surrounding plasma. Therefore, the BH can be fully characterized by measuring just two parame-
ters,M anda, of which the latter is constrained to lie in the range from 0 (nonrotating BH) toM
(maximally-rotating BH).

3.3.1 Spherical Collapse

A useful toy model that illustrates the collapse is a self-gravitating spherically symmetric ball
of dust (i.e., zero pressure fluid). Birkhoff’s theorem (section 2.2.1) implies that the metric outside
the star is Schwarzschild (section 2.2, equation (2.15)). This is valid outside the star but also, by
continuity of the metric, on the surface. Ifr = R(t) on the surface, we have

ds2 =

[

(

1− 2M
R

)

−
(

1− 2M
R

)−1(dR
dt

)2
]

dt2−R2(dθ2 +sin2θdφ2). (3.21)

Zero pressure and spherical symmetry imply that a point on the surface follows a radial timelike
geodesic,dθ = dφ = 0 andds2 = dτ2 > 0, so

1 =

[

(

1− 2M
R

)

−
(

1− 2M
R

)−1(dR
dt

)2
]

ṫ 2, (3.22)

where

ṫ =
dt
dτ

. (3.23)

Sinceξ = ∂/∂ t is a Killing vector, by Proposition 1 in appendix A.5 the energy per unit mass

E = ξµ
dxµ

dτ
= g00ṫ =

(

1− 2M
R

)

ṫ . (3.24)

is a constant of motion. Note thatE > 0 for timelike and null geodesics as long asξ µ is timelike,
i.e., as long asR> 2M. The quantityE is constant along the geodesics andE < 1 for gravitationally
bound particles. Using (3.24) in (3.22) gives

(

dR
dt

)2

=
1

E2

(

1− 2M
R

)2(2M
R

−1+E2
)

. (3.25)

We plot this function in Fig. 2. The surface radial velocitydR/dt as a function ofR has a zero at
R = Rmax and a minimum atR = 2M. We consider the collapse to begin atR = Rmax with zero
velocity. The radiusR then decreases and approachesR= 2M asymptotically ast → ∞. This may
be seen by integrating

t = E
∫ Rmin

Rmax

dR(1−2M/R)−1(2M/R−1+E2)−1/2, (3.26)
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Rmax

=
2M

1−E2



....
...
....
....
...
.....
....
...
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

..
.
.
.
.
..
..
...
..
..............................

.....
..
..
..
...
..
..
..
..
...
..
.
..
.
..
...
.
.
.
...
.
..
.
..
..
.
.
.
..
.
.
.
.
.
..
.
..
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
..
.
.
.
..
.
..
.
.
.
...
.
.
.
.
.
.
..
..
.
.
.
...
..
..
..
..
..
.
.
...
..
..
...
..
..
...
..
..
...
..
.
...
..
..
...
...
....
....
...
......
...............................................................................

......
....
......
.....
...
...
...
..
..
..
...
.
..
.
..
...
..
.
..
..
...
..
..
.
...
...
..
..
...
..
...
...
...
..
....
.
..
.
..
..
..
.
..
...
.
..
..
...
..
..
..
...
..
..
...
...
..
...
...
...
...
.
..
.
...
.
..
.
...
..
..
...
..
..
..
..
..
....
..
...
...
....
..
..
...
..
...
..
..
.
..
...
...
..
...
...
..
..
..
..
...
..
.
..
...
..
..
...
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
..

(

dR
dt

)2

R
• •

2M

Figure 2: The surface radial velocity squared versusR for a spherically symmetric collapse of a ball of dust
(figure from [7]).
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Figure 3: The surface radial velocity as seen by the observer on the surface (figure from [7]).

whereRmin > 2M. Obviouslyt → ∞ asRmin → 2M. So an observer “sees” the star contract at most
to R= 2M but no further.

However, from the point of view of an observer on the surface of the star, the relevant time
variable is the proper time along a radial geodesic, so we use

d
dt

=
1
ṫ

d
dτ

=
1
E

(

1− 2M
R

)

d
dτ

(3.27)

to rewrite (3.25) as

(

dR
dτ

)2

=

(

2M
R

−1+E2
)

= (1−E2)

(

Rmax

R
−1

)

. (3.28)

The star surface falls fromR= Rmax throughR= 2M in finite proper time . In fact, it reaches the
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R= 0 singularity in the proper time

τ =
πM

(1−E)3/2
. (3.29)

So, for an observer following radial geodesics, the star collapses to a singularity in a finite proper
time of the order of 10−5 s (∼ RSch/c = 3km/300000km s−1).

Nothing special happens atR = 2M, which suggests that we investigate the spacetime near
R= 2M in coordinates adapted to infalling observers.

3.3.2 Eddington-Finkelstein Coordinates

A singularity of the metric is a point at which the determinant of either the metric tensor or
of its inverse vanishes, or at which some elements of the metric or its inverse diverge. However, a
singularity of the metric may be simply due to a failure of thecoordinate system. A simple two-
dimensional example is the origin in plane polar coordinates. Such singularities, usually referred
to ascoordinate singularities, are removable by a coordinate transformation.

If no coordinate system exists for which the singularity is removable, then it is irremovable,
i.e., a genuine singularity of spacetime. Any singularity for which some scalar constructed from
the curvature tensor blows up as it is approached, is irremovable. Such singularities are called
curvature singularitiesor true singularities. The singularity atr = 0 in the Schwarzschild metric
is an example.

We now show that the apparent singularity of the Schwarzschild metric at the Schwarzschild
radius is removable. On radial null geodesics in Schwarzschild spacetime

dt2 =
1

(1−2M/r)2 dr2 ≡ (dr∗)2 , (3.30)

where

r∗ = r +2M ln

∣

∣

∣

∣

r −2M
2M

∣

∣

∣

∣

(3.31)

is theRegge-Wheeleror tortoise radial coordinate. As r ranges from 2M to ∞, r∗ ranges from−∞
to ∞. Thus

d(t ± r∗) = 0 (3.32)

on radial null geodesics. Now, define a new time coordinate (ingoing radial null coordinate)v by

v = t + r∗, −∞ < v < ∞ (3.33)

and rewrite the Schwarzschild metric iningoing Eddington-Finkelstein coordinates[20] v, r, θ ,
andφ :

ds2 =

(

1− 2M
r

)

(

dt2−dr∗2
)

− r2dΩ2

=

(

1− 2M
r

)

dv2−2drdv− r2dΩ2. (3.34)

This metric is initially defined forr > 2M because the relationv = t + r∗(r) betweenv and r
is defined only forr > 2M, but it can now be analytically continued to allr > 0. Because of
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the drdv cross-term, the metric in EF coordinates is nonsingular atr = 2M, so the singularity in
Schwarzschild coordinates is really a coordinate singularity. There is nothing atr = 2M to prevent
the star from collapsing throughr = 2M.

However, no future-directed timelike or null worldline canreachr > 2M from r ≤ 2M. This
may be seen as follows. Whenr ≤ 2M, we have

2drdv= −ds2−
(

2M
r

−1

)

dv2− r2dΩ2 ≤ 0 whends2 ≥ 0. (3.35)

Hence, for all timelike or null worldlines,drdv≤ 0. The null coordinatedv> 0 for future-directed
worldlines, sodr ≤ 0 with equality whenr = 2M, dΩ = 0 (i.e., ingoing radial null geodesics at
r = 2M).

Thus, no signal from the star’s surface can escape to infinityonce the surface has passed
throughr = 2M. The star has collapsed to ablack hole. For the external observer, the surface
never actually reachesr = 2M, but asr → 2M, the redshift of light leaving the surface increases
exponentially fast [19] and the star effectively disappears from view within a time∼ M/m2

Pl '
5×10−6 s . The late time appearance is dominated by photons escapingfrom the unstable photon
orbit atr = 3M.

From the point of view of an outside observer, a star collapsing to a black hole never appears
to collapse, but rather freezes at the horizon. How then can it be said that the star collapses to a
singularity, if it never appears to collapse even till the end of the Universe?

The star does in fact collapse inside the horizon, even though an outside observer sees the star
freezing at the horizon. The freezing can be regarded as a light travel time effect. Space can be
regarded as falling into the black hole, reaching the speed of light at the horizon, and exceeding the
speed of light inside the horizon [21]. The photons that are exactly at the horizon and are pointed
radially upwards stay there for ever, their outward motion through space at the speed of light being
canceled by the inward flow of space at the speed of light. It follows that it takes an infinite time
for light to travel from the horizon to the external observer. The star does actually collapse: it just
takes an infinite time for the information that it has collapsed to get to the outside world!

4. Rotating Black Holes

The spacetime around a rotating black hole is described by the Kerr metric expressed in Boyer-
Lindquist coordinates [3, 4, 5]

ds2 =

(

1− 2Mr
Σ

)

dt2 +
4aMrsin2 θ

Σ
dt dφ

−
(

(

r2 +a2
)2−∆a2sin2θ

Σ

)

sin2θdφ2− Σ
∆

dr2−Σdθ2, (4.1)

with
∆ = r2−2Mr +a2, Σ = r2 +a2cos2 θ . (4.2)

The parametersa andM are related to the total angular momentumJ = aM. The horizon occurs at
those points where∆ = 0, i.e., at the roots of the quadratic equation∆ = 0

r± = M±
√

M2−a2 . (4.3)
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Note that|a| must be less thanM for a black hole to exist. Ifa exceededM, one would have
a gravitational field with a “naked" singularity, i.e., one not within an event horizon. A naked
singularity is forbidden by the so calledcosmic censor conjecture(for details, see Wald [5] and
references therein). A black hole with|a| = M is called a maximally rotating black hole.

Remarks

• Whena = 0, the Kerr solution reduces to the Schwarzschild solution.

• Taking φ →−φ effectively changes the sign ofa, so we may choosea≥ 0 without loss of
generality.

4.1 Geodesic Motion

A straightforward approach to finding all geodesics is to integrate the geodesic equation (A.12)
directly. However, it is often more economic to simplify theproblem by symmetry considerations.
The Kerr spacetime is stationary and axially symmetric so there exist two Killing vectorsξ andψ
which by Proposition 1 (appendix A.5) yield a conserved energy E and an angular momentumL
(per unit mass) along geodesics

E = uµξµ =

(

1− 2Mr
Σ

)

ṫ +
2Marsin2 θ

Σ
φ̇ , (4.4)

L = −uµψµ = −2Marsin2θ
Σ

ṫ +

(

(

r2 +a2
)2−∆a2sin2 θ

Σ

)

sin2θφ̇ , (4.5)

whereẋµ = uµ = dxµ/dτ . In addition we have

gµν ẋµ ẋν = κ , (4.6)

whereκ = 1, 0, and−1 for timelike, null, and spacelike geodesics, respectively. One may use
equations (4.4) and (4.5) to solve forṫ andφ̇ in terms ofE andL, and substituting the results into
(4.6) one obtains a differential equation for ˙r. In the case of equatorial geodesics,θ = π/2, one
finds

1
2

ṙ +V(r) = 0, (4.7)

where

V = −κ
M
r

+
L2

2r2 +
1
2
(κ −E2)

(

1+
a2

r2

)

− M
r3 (L−aE)2. (4.8)

Thus, the problem of obtaining the geodesics in the equatorial plane reduces to solving a problem
of ordinary, nonrelativistic, one-dimensional motion in an effective potential. The calculations are
relatively simple for circular orbits. Circular orbits occur where ˙r = 0, which requires

V = 0,
∂V
∂ r

= 0. (4.9)

For κ > 0, equations (4.9) have solutions̃E(r) and L̃(r) for all r > rph (for details, see [4, 22]),
wherer > rph is the radius of the photon circular orbit.
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4.1.1 Photon Circular Orbit

Photon circular orbits are possible only for particular radii rph. The requirements (4.9) for null
geodesics (κ = 0 in (4.8)) yield a cubic equation in

√
r

r2−2M±2a
√

Mr = 0 (4.10)

with the solution [22]

rph = 2M

{

1+cos

[

2
3

cos−1(∓a/M)

]}

. (4.11)

For a = 0, rph = 3M, while for a = M, rph = M (corotating) orrph = 4M (counterrotating orbit).
For κ = 0, equations (4.9) have a solution

L = ±E
√

3r2
ph+a2 . (4.12)

The photon orbit is the innermost boundary of the circular orbits for particles, i.e., for timelike
geodesics (κ > 0).

4.1.2 Angular Velocity

The angular velocity of an orbiting particle is defined as

Ω =
uφ

u0 =
φ̇
ṫ

. (4.13)

Using the parameterization (B.9) for the velocity components, it may be easily shown (exercise)
thatΩ can be expressed as

Ω = − g0φ + λg00

gφφ + λg0φ
, (4.14)

where

λ = − L
E

= −uφ

u0
. (4.15)

For equatorial circular orbits one finds [22]

Ω = ± M1/2

r3/2±aM1/2
. (4.16)

This is the general-relativistic form of Kepler’s third lawfor equatorial circular orbits. In this case,
the quantityΩ is called theKeplerian frequency.

4.1.3 Innermost Stable Circular Orbit

It is obvious that not all circular orbits will be stable because, in addition to (4.9), stability
requires

∂ 2V
∂ r2 ≥ 0. (4.17)

From (4.8) we obtain

1−E2 ≥ 2M
3r

. (4.18)
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Substituting the solutioñE(r) for timelike geodesics, we obtain a quartic equation in
√

r for the
limiting case of equality. The solutionr is is the radius of theinnermost stable circular orbit(ISCO)
also referred to as themarginally stable orbit[22]

r is = M
[

3+Z2∓ (3−Z1)
1/2(3+Z1+2Z2)

1/2
]

, (4.19)

with

Z1 = 1+

(

1− a2

M2

)1/3
[

(

1+
a2

M2

)1/3

+

(

1− a2

M2

)1/3
]

,

Z2 =

(

3
a2

M2 +Z2
1

)1/2

. (4.20)

For a = 0, r is = 6M; for a = M, r is = M (corotating)r is = 9M (counterrotating). Obviously, com-
pared with the photon circular orbit, the innermost stable circular orbit satisfiesr is ≥ rph.

A quantity of great interest for the potential efficiency of aBH accretion disk as an energy
source is the binding energy of the ISCO. Defining the efficiency η as the maximum binding
energy per unit rest mass, from (4.18) (with =) one finds

η ≡ 1− Ẽis = 1−
(

1− 2M
3r is

)1/2

. (4.21)

Plugging in the solution (4.19), one finds that the efficiencyη increases from 1−
√

8/9 (a=0) to
1−

√

1/3 (a=M) for corotating orbits, while it decreases from 1−
√

8/9 (a=0) to 1−
√

25/27
(a=M) for counterrotating orbits. The maximum binding energy for a maximally rotating BH is
42.3% of the rest-mass! This is the amount of energy that is released by matter spiraling in toward
the BH through a succession of almost circular equatorial orbits. A negligible amount of energy is
released during the final plunge fromr is into the BH.

4.2 Ergosphere

A curious property of rotating BHs is that there exist particle trajectories (i.e., timelike geode-
sics) with negative energies. The energy defined by (4.4) canbe negative only if the time translation
Killing vector ξ is spacelike. The vectorξ is normally timelike at∞ and in Schwarzschild space-
time it is timelike everywhere outside the horizon. However, in Kerr spacetime it need not be
timelike everywhere outside the horizon because

ξ µξµ = g00 =

(

1− 2Mr
r2 +a2cos2 θ

)

, (4.22)

soξ is timelike only if
r2 +a2cos2 θ −2Mr > 0. (4.23)

This implies

r < M−
√

M2−a2cos2θ ,

r > M +
√

M2−a2cos2θ . (4.24)
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The inner boundary of this region is not physically relevantas it is beyond the horizon. The outer
boundary , i.e.,the hypersurface

r = M +
√

M2−a2cos2 θ (4.25)

is called theergosphereor thestationary limit surface. The ergosphere intersects the event horizon
at θ = 0,π, but it liesoutsidethe horizon for other values ofθ . Thus,ξ can become spacelike in a
region outside the event horizon. This region is called theergoregion. Hence, a particle trajectory
inside the ergosphere may have negative energy!

4.2.1 Penrose Process

In 1969 Penrose exploited this property of Kerr BHs to designa mechanism for the extraction
of energy from a BH [23]. The mechanism proposed by Penrose can be understood as follows.
Suppose that a particle approaches a Kerr BH along a geodesic. If qµ is its 4-momentum, we can
identify the constant of motion

E = qµξµ (4.26)

as its energy (see section A.5). The trajectory is chosen so that it penetrates the ergosphere. Now
suppose that the particle decays into two others, one of which falls into the hole with energyEin,
while the other escapes to∞ with energyEout. By conservation of energy

Eout = E−Ein . (4.27)

Normally,Ein > 0, soEout < E, butEin = qµ
inξµ is not necessarily positive in the ergoregion because

ξ may be spacelike there. Thus, if the decay takes place in the ergoregion, we may haveEout > E,
soenergy has been extracted from the black hole.

The energy extraction by the Penrose process is limited by the area theorem of BH mechanics,
which states that the surface area of the BH horizon never decreases [24]. The area of the horizon
is

A =
∫

√

detgdθdφ = 8πM
(

M +
√

M2−a2
)

, (4.28)

where detg = gθ θ gφφ is the determinant of the metric on the horizon surface. The surface metric
is obtained from (4.1) by settingdt = dr = 0, r = r+ = M +

√
M2−a2. The maximum energy

extracted by the Penrose process is obtained if the BH spin reduces to zero, i.e., if the BH becomes
Schwarzschild. A Schwarzschild BH with the same area will have a massMirr (irreducible mass)
which satisfies

16πM2
irr = 8πM

(

M +
√

M2−a2
)

. (4.29)

This givesM2
irr = M/2 for a maximally rotating BH (a = M). Hence, the maximally extracted

energy from a BH of massM is M −Mirr = M(1− 1/
√

2). This represents≈ 29% of the mass
energy of the BH.

The Penrose process for extracting energy from a rotating BHrequires particular conditions
[22] which are very difficult to realize in nature. A more promising mechanism for extracting
energy from a rotating BH is via magnetic fields (Znajek and Blandford [25, 26],) because magnetic
fields are capable of connecting regions very close to the BH to regions farther out. Recent general-
relativistic magneto-hydrodynamics (MHD) simulations ofa magnetized plasma in the ergosphere
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of a rotating BH (Koide et al. [27, 28, 29], Semenov et al. [30], de Villiers et al. [31], McKinney
and Gammie [32]) show that, near the equatorial plane, the field lines are azimuthally twisted and
the twist then propagates outward and transports the energyalong the rotation axis. The process
is dubbed theMHD Penrose processbecause of a close analogy between this mechanism [29] and
Penrose’s original idea [23].

5. Stellar Mass BHs versus NSs

Astrophysical observation of NSs and BHs is difficult because they are dark and very compact.
Besides, a BH the mass of which is of the order of a few solar masses is not easily distingushed
from a NS because of their similar properties. So far, NSs andstellar mass BH candidates have
been identified only as the so-calledX-ray binaries.

5.1 X-ray Binaries

An X-ray binary is an X-ray source with an optical companion,usually a normal star. Most of
the Galactic X-ray sources are probably compact objects accreting gas from the companion star.

This interpretation of the observational data follows fromthese facts [4]:

1. The variability of X-ray emission on short timescales implies a small emitting region.

2. Many of the sources are positively confirmed to be in binarysystems, with optical primaries
orbiting optically invisible secondaries.

3. Mass accretion onto a compact object, especially a neutron star or a black hole, is an ex-
tremely efficient means of converting released gravitational potential energy into X-ray radi-
ation.

In general, the list of possible Galactic X-ray source candidates includes all three kinds of
compact objects: WDs, NSs, and BHs. But in special cases, thespecific nature of the compact
object can be identified.

5.1.1 Binary X-ray Pulsars

Binary X-ray sources displayingperiodicvariations are calledbinary X-ray pulsars. The pulse
periods are observed in the range 0.5 s∼< P∼< 1000 s. Those with short periods of about 1 s are
normally identified with rotating NS.

The standard model explains X-ray emission as due to the conversion of the kinetic energy
of the accreting matter (coming from the intense stellar wind of the companion optical star) into
radiation, because of the interactions with the strong magnetic field3 of the neutron star, of the order
of 107–109 T. The magnetic field of the compact object drives the accreted matter onto the magnetic
polar caps, and if the magnetic field axis is not aligned with the spin axis, then the compact object
acts as a “lighthouse”, giving rise to pulsed emission when the beam (or the beams, according to
the geometry) crosses our line of sight.

The reasons why WD and BHs cannot be pulsars are:

3Obtained from conservation of the magnetic flux during the process of collapse from a “normal” star (B∼ 10−3-
10−2 T, R∼ 106 km) to a neutron star (R∼ 10 km)
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• Rotating WD are excluded because they are too large and theirdensity too low to explain
such short periods.

• Rotating BH are excluded because they are axially symmetricand have no structure on which
to attach a periodic emitter. Any mechanism depending on accretion would not be periodic
to the observed precision. However, accretion disks round black holes could produce the
so-calledquasi periodic oscillations(see section 5.3)

5.1.2 Mass Measurements

The first important criteria that may be used to distinguish aBH from a NS are their masses. The
fact that there exists a maximum mass of a compact relativistic star such as a NS of the order
∼ 3M� (see section. 3.2) allows the following simple criteria foridentifying BH candidates [8]:
If a compact astrophysical object has the mass larger than about3M�, then the object is very likely
a black hole.

The most reliable means of determining astronomical massesare via Kepler’s Third Law.
Consider two spherical massesM1 andM2 in a circular orbit about their center of mass (CM). The
separation of the two masses isa and their distances from the CM area1 anda2. Clearly,a= a1+a2

andM1a1 = M2a2 by the definition of the CM. Any spectra emitted from, e.g.,M2 will be Doppler
shifted, depending on the orbital velocity projectionv2 of M2 along the line of sight:

v2 =
2π
Porb

a2 sini , (5.1)

wherePorb is the orbital period andi the inclination of the orbital plane to the line of sight. Thus, if
the spectrum ofM1 shows periodic variations, thenPorb andv2 can be measured and hence one gets
a2 sini. Alternatively, for X-ray pulses one can measure periodic variations in the time of arrival of
pulses. The amplitude of these variations is simply the light travel time across the projected orbit –
that is,a2 sini/c.

Now, Kepler’s Third Law states

G(M1 +M2)

a3 =

(

2π
Porb

)2

. (5.2)

Note that this is valid also for elliptical orbits in which casea is the semimajor axis of the ellipse.
Using this and

a =
M1+M2

M1
a2 , (5.3)

we obtain

f (M1) ≡
(M1sini)3

(M1+M2)2 =
Porbv3

2

2πG
. (5.4)

The quantityf is called the “mass function" and depends only on the observable quantitiesPorb and
v2 (or a2 sini).

For several X-ray binaries, it has been possible to measure the mass functionsfO = f (MO) and
fX = f (MX) for both the optical companion and the X-ray source, respectively. The ratio fO/ fX
gives th mass ratio

q≡ MO

MX
=

(

fO
fX

)1/3

(5.5)
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and then from (5.4) we can write

MX = fX
(1+q)2

sin3 i
. (5.6)

A unique value forMX still depends on knowing sini. In practice, the X-ray eclipse duration and/or
variation in the optical light curve are used to set geometrical constraints on sini.

In this way a complete description of the binary system has been obtained for six eclipsing X-
ray pulsars with optical companions [4]. Their masses rangefrom 1 to 2.3M�, with error bars such
that all the data fit in the range 1.2 - 1.6M�, which is expected on the basis of current theoretical
scenarios for NS formation. One of these X-ray pulsars is thefamous Hercules X-1 neutron star
discovered in 1972 [33] in the data of the first astronomy satellite, Uhuru launched by NASA off
the coast of Kenya.4

5.2 Black-Hole Binaries

Black hole X-ray binaries, or short,BH binariesare the binary X-ray sources with observed
masses larger than 3M� with nonperiodic time variability. As of today there are a total of 20
confirmed BH binaries (Remillard and McClintock [1]) Their large masses makes them strong can-
didates for BHs. However, the mass estimates are reliable only for those for which the inclination
anglei is well known, which is not always the case. Fortunately, according to (5.6),M > f (M).
The mass functionf (M), which depends only on the two accurately measured quantitiesv2 and
Porb, is a strict lower bound onM. Most of the 20 X-ray binaries havef (M) itself larger than or of
the order 3M�. Therefore, these systems are excellent BH candidates, regardless of uncertainties
in their inclinations and companion star masses.

5.2.1 Cygnus X-1: A Black-Hole Candidate

Cygnus X-1 is a typical BH binary discovered in 1972 (Websterand Murdin [34], Bolton [35])
as a first stellar-mass BH candidate. The X-ray source (X) of Cyg X-1 is variable on all timescales
varying from ms to months and years. Recent observations show that Cyg X-1 periodically cycles
through two accretion or spectral states:hard and low X-ray states [36]. The most dramatic vari-
ability is the 1-ms bursts, which set a maximum size for X of the orderR∼< 300 km and establish
the object to be highly compact.

The optical companion star (O) in the Cyg X-1 system is a typical supergiant star with a well-
known spectrum and the mass of at leastMO ∼ 8.5M� [4]. From the measurements of the orbital
elements,Porb = 5.6 days andaOsini = (5.82±0.08)×106 km, one obtains the mass function of
X, fX = (0.252±0.010)M�. Setting sini = 1 in (5.6), one obtains a minimum value for the mass

MX ∼> 3.3M� . (5.7)

It is possible to set a convincing lower limit assumingnothingabout the mass of O and using
only the absence of a prominent X-ray eclipse and the estimate of the radius of O [37]. The absence
of eclipse implies

cosi ≥ R
a

, (5.8)

4“Uhuru" means “freedom" in Swahili; the launch occurred on the anniversary of Kenya’s independence.
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whereR is the radius of O anda = aX + aO is the separation of the two objects. Using (5.3), we
can write this as

cosi ≥ R
aO sini

MX sini
MX +MO

. (5.9)

Hence,

MX sini cos2 i ≥ fXR2

(aO sini)2 . (5.10)

The function sinxcosx2 has a maximum value of 2/(3
√

3), and so

MX ≥ 3
√

3 fXR2

2(aO sini)2 . (5.11)

EstimatingR from luminosity and the effective temperature, one finds [4]

R= 6.62×106
(

d
1kpc

)

km. (5.12)

From (5.12) with knownfX andaOsini one finds

MX ≥ 3.4

(

d
2kpc

)2

M� . (5.13)

The distanced to Cyg X-1 is determined using two methods: a) from the assumed luminosity com-
pared with the apparent luminosity of O and b) from the absorption vs. distance curve calibrated
from a large sample of stars in the same direction. The estimated distance for O isd ' 2.5 kpc with
an absolute minimum of 2 kpc in order to produce the observed absorption.

We can summarize the situation as follows: the lower limit (5.13) of 3.4M� is very solid.
Adopting the more reasonable value ofd ' 2.5 kpc increases this to 5.3M�. Various other less
rigorous but more realistic arguments, as well as more recent measurements ofR, d, and fX give
even larger values. The currently accepted mass range of CygX-1 is 6.8-13.3M� [1].

5.3 Spin Estimates

Measuring the BH spin amounts to measuring the Kerr-spacetime parametera. In contrast
to BH mass estimates where Newtonian gravity applies, the spin of a BH or of any other rotating
astrophysical object does not have any Newtonian effect on the surrounding objects. Only for
relativistic orbits does spin have measurable effects. Therefore, to measurea, we need test particles
orbiting very close to the innermost stable circular orbit (ISCO) (see section 4.1.3). Such test
particles are provided by the accretion disk.

The gas in an accretion disk starts from large radii and spirals in through a sequence of nearly
circular orbits as it viscously loses angular momentum. Themain source of instability and loss of
angular momentum are MHD effects, e.g., magnetorotationalinstability [38] and magnetoviscous
instability [39]. When the gas reaches the ISCO, no more stable circular orbits are available, so the
gas accelerates radially and free-falls into the BH. Thus, the ISCO serves effectively as the inner
edge5 of the accretion disk. A variety of observational methods have been proposed for estimating

5The inner edge may not be very pronounced; compare, e.g., thetruncated disk model [40]
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the radiusr in (spectral fitting method; relativistic iron line method), the Keplerian frequencyΩ
(quasiperiodic oscillations method), or the binding energy η at r is. Next, we briefly describe some
of these methods. For more details and for references, see [8].

Spectral Fitting

When a BH has a large mass accretion rateṀ, corresponding to an accretion luminosityLacc

above a few per cent ofLEdd (see section 6.3.1), the accreting gas tends to radiate approximately as
a blackbody. In this spectral state one can theoretically calculate the flux of radiationF(r) emitted
by the accretion disk, and hence obtain the effective temperature profileTeff(r) ≡ [F(r)/σ ]1/4,
whereσ is the Stefan-Boltzmann constant. If the disk emits as a trueblackbody at each radius,
it is a simple matter to calculate the total spectral luminosity Lνdν . By comparing this quantity
with the spectral fluxFνdν received at Earth, one obtains an estimate ofr2

in cosi/d2 (essentially
the projected solid angle of the disk), wherei is the inclination angle andd is the distance to the
source. In a few BH binaries, sufficiently reliable estimates of i, d andM are available, and thus an
estimate ofr in is obtained. Identifyingr in with r is, one then obtainsa.

A major weakness of this method is that a number of effects will cause the spectrum of an
accretion disk to deviate from a blackbody. Besides, the method requires accurate estimates ofM,
i, andd. Therefore, spin estimates obtained by this method should be treated with caution.

Quasiperiodic Oscillations

For some BH binaries, the power spectrum of intensity variations shows one or two peaks
(more like bumps in some cases) at frequencies of a few hundred Hz. The peaks are relatively
broad, indicating that they do not correspond to coherent oscillations but rather to quasiperiodic
oscillations (QPOs).

One possibility is that the QPO with the highest frequency ineach BH binary corresponds to
the circular Keplerian frequency of gas blobs at some characteristic radius; it is plausible that this
radius corresponds to the inner edge of the disk. Using equations (4.16) and (4.19), one can express
the Keplerian frequency of the ISCO as

Ωis =
1
M

F(a/M), (5.14)

whereF(x) is a known function ofx = a/M. Assuming thatr in = r is, one can use this method
to estimatea provided an estimate ofM is available. The method has been applied to a few BH
binaries (for references, see [8]). Recently, there has been tentative evidence for QPOs with a period
of 17 minutes in the infrared emission (Genzel et al. [41]) from Sgr A*, the supermassive BH in
the Galactic Center . If the QPOs correspond to the Keplerianfrequency at any radiusr > r is, then
the BH must be rotating witha > 0.5 [8]. A number of QPO frequencies in the X-ray flares from
Sgr A* have been identified by Aschenbach et al. [42]. Their analysis reveals that the emission
from the inner parts of the accretion disk is quite close to the BH horizon and they finda' 0.99.

Relativistic Iron line
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A strong broad spectral line in the X-ray spectrum of the active galactic nucleus (AGN) MCG-
6-30-15 was recently discovered [43]. They interpreted theline as fluorescent iron Kα emission
from cool gas in the accretion disk. Similar broad lines wereseen in a few other AGN and X-ray
binaries. Whereas the rest energy of the iron line is 6.4 keV,the observed line extends from about
4 to 7 keV. This broadening is due to Doppler blue- and red-shifts as well as to the gravitational
redshift.

The line width and its shape, among other factors, depend on the radius range over which the
emission occurs and in particular on the position of the innermost radius of the disk which in turn
depends ona (sincer in = r is).

Given a system with a broad iron line, and assuming that the radiating gas follows Keplerian
orbits with radiir ≥ r is, one can fit the shape of the line profile by adjustinga, i, and the emissivity
function; the latter is usually modeled as a power law in radius,r−β , motivated by the standard disk
model [44]. The effect ofa is particularly dramatic. As the BH spin increases, the inner edge of
the disk comes closer to the horizon and the velocity of the gas increases substantially. This gives
a wider range of Doppler shifts, as well as a larger gravitational redshift. The detection of such
extreme levels of broadening may be taken as a strong indication of a rapidly spinning BH.

In the case of MCG-6-30-15, the data confirm that the emissioncomes from a relativistic disk
and at least some of the data sets can be interpreted in terms of a rapidly spinning BH. Assuming
that there is no emission from within the ISCO, Reynolds et al. [45] estimatea> 0.93. Among BH
binaries, the source GX 339-4 shows a broad iron line which seems to indicatea > 0.8 (Miller et
al. [46]).

In spite of some weaknesses, the method has the advantage that it requires no knowledge of
the BH mass or of the distance, and it solves for the disk inclinationi using the same line data from
which a is estimated.

The variability of the line with time means that it will be challenging to make fundamental
tests of gravity with this method. On the other hand, the variability could provide interesting
opportunities to study disk dynamics and turbulence [47, 48] (movies courtesy P. Armitage).

6. Supermassive Black Holes

It is now widely accepted that quasars and active galactic nuclei are powered by accretion onto
massive black holes [49, 50, 51]. Further, over the last few years there has been increasing evidence
that massive dark objects may reside at the centers of most, if not all, galaxies [52, 53]. In several
cases, the best explanation for the nature of these objects is that they are supermassive black holes,
with masses ranging from 106 to 1010 solar masses. Comprehensive lists of about 30 supermassive
BHs at galactic centers may be found in [2, 54, 55, 56].

6.1 Masses and Radii

The main criterion for finding candidates for such black holes is the presence of a large mass
within a small region. The mass and the size are estimated using mostly the following three meth-
ods: gas spectroscopy, maser interferometry, and measuring the motion of stars orbiting around the
galactic nucleus.
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6.1.1 Gas Spectroscopy

An example of measurements via gas spectrography is given bythe analysis of the Hubble
Space Telescope observations of the radio galaxy M 87 [57, 58].

A spectral analysis shows the presence of a disklike structure of ionized gas in the innermost
few arc seconds in the vicinity of the nucleus of M 87. The velocity of the gas measured by
spectroscopy at a distance from the nucleus of the order 20 pc≈ 6×1014 km, shows that the gas
recedes from us on one side, and approaches us on the other, with a velocity difference of about
920 km s−1 . This leads to a mass of the central object of∼ 3× 109 M�, and no form of matter
can occupy such a small region except for a black hole. This isthe most massive black hole ever
observed.

6.1.2 Maser Interferometry

A clear and compelling evidence for black holes has recentlybeen discovered in the radio
regime: H2O masers orbiting compact supermassive central objects. The structure of accreting
material around the nearby galaxy NGC 4258 (d' 6.4 Mpc) has been studied in detail [59, 60, 61].
with the aid of very long baseline interferometry (VLBI), which provides an angular resolution as
fine as 200µas (microarcseconds) at a wavelength of 1.3 cm and a spectralresolution of 0.1 kms−1

or less, radio interferometry measurements have shown thatthe gas follows circular orbits with a
nearly perfect Keplerian velocity profile (v∝ r−1/2, see Fig. 1 in [8]). Furthermore, the acceleration
of the gas has been measured and it too is consistent with Keplerian dynamics (Bragg et al. [62]).
From these measurements it is inferred that there is a dark object with a mass of 3.5× 107M�
confined within∼ 0.13 pc= 4×1012 km of the center of NGC 4258. The case for this dark mass
being a BH is quite strong.

6.1.3 Virial Mass

A simple method to obtain a mass estimate is based on the virial theorem. It uses the measured
velocity dispersion of stars in the central region (ref. [6], p. 1007). For simplicity, we restrict
attention to a spherical cluster of radiusR with N stars, each of massm, so the total mass of the
bulge isM = Nm.

The time-averaged kinetic and potential energies of stars in the galaxy’s central region are
related by the equation (ref. [6], p. 54-56)

1
2

〈

d2I
dt2

〉

−2〈K〉 = 〈U〉 , (6.1)

where I is the region’s moment of inertia. If the galaxy is in equilibrium, then
〈

d2I/dt2
〉

= 0,
resulting in the usual statement of the virial theorem

−2〈K〉 = 〈U〉 . (6.2)

Furthermore, for a large number of stars, the central bulge will look the same (in statistical sense)
at any time, and the time averaging can be dropped. So forN stars of equal mass, we find

−m
N ∑v2

i =
U
N

. (6.3)
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The average velocity squared is

− 1
N ∑v2

i =
〈

v2〉=
〈

v2
r

〉

+
〈

v2
θ
〉

+
〈

v2
φ
〉

= 3
〈

v2
r

〉

= 3σ2
r , (6.4)

whereσr is the dispersion in the radial velocity.

Velocity dispersion —————————————————————————————–
For a region in space with a large number of starsN, σx measures the spread in thex-
component of the peculiar velocities of stars and is defined as

σx =
1
N

[

∑
i

v2
ix

]1/2

. (6.5)

It is equal to the standard deviation of the velocity distribution in the special case when
〈vx〉 = 0.
———————————————————————————————————

Using the (approximate) gravitational potential energy ofa spherical distribution of the total mass
(exercise)

U = −3
5

GM2

R
, (6.6)

equations (6.2) and (6.3) yield

Mvirial =
5Rσ2

r

G
, (6.7)

where the mass obtained in this way is called thevirial mass.
This equation can be used to estimate a virial mass for the central BH of M31 (Andromeda).

The central radial velocity dispersion is measured to be approximately 240 km/s within 0.2 as
(arcseconds). Given the distance to Andromeda of 770 kpc, 0.2 as corresponds toR' 0.8 pc. This
gives a total mass of roughly

Mvirial = 6×107M� , (6.8)

within a sphere of radius 0.8 pc.
This is, of course, just an order of magnitude estimate. Other estimates for the mass of the

supermassive BH of M31 range from about 106 to 107M�.

6.2 Sagittarius A∗

Perhaps the most convincing evidence for a black hole comes from the center of our own
galaxy that coincides with the enigmatic strong radiosource Sgr A∗. The existence of a dark massive
object at the center of the Galaxy has been inferred from the motions of stars and gas in its vicinity.
The motions of the stars were observed and recorded for many years by two independent groups
[63, 64, 65, 66, 67]. High-resolution infrared observations made it possible to follow the orbits of
individual stars around this object (Schödel et al. [63, 64]; Ghez et al. [66, 67]). The movies (1st
movie courtesy R. Genzel; 2nd movie courtesy A. Ghez [68]) show time-elapsed images of the
Galactic Center region revealing the (eccentric) orbits ofseveral stars.
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The projected positions of the star S2(S0-2) that was observed during the last decade [63, 64]
suggest that S2(S0-2) is moving on a Keplerian orbit with a period P of 15.2 yr around Sgr A∗ and
the estimated semimajor axisa of the order of 4.62 mpc.

Then, neglecting the star mass, Kepler’s third law (5.2) gives

MSgrA∗ =
4π2a3

GP2 = 3.7×106M� . (6.9)

The salient feature of the new adaptive optics data is that, between April and May 2002, S2(S0-
2) apparently sped past the point of closest approach with a velocity v ∼ 6000 km/s at a distance
of about 17 light-hours [63] or 123 AU from Sgr A∗. This implies that an enormous mass of the
central object is concentrated in a very small volume, strongly suggesting that the object is a BH.

Another star, S0-16 (S14), which was observed during the last few years by Ghez et al. [67]
with the Keck telescope in Hawaii, recently made a spectacular U-turn, crossing the point of closest
approach at an even smaller distance of 8.32 light-hours or 60 AU from Sgr A∗ with a velocityv
∼ 9000 km/s. Ghez et al. thus conclude that the gravitational potential around Sgr A∗ has an
approximatelyr−1 form, for radii larger than 60 AU, corresponding to 1169RSCH, whereRSCH =

2M = 0.051 AU forM = 2.6×106M�.

6.3 Supermassive BHs in Active Galactic Nuclei

Many galaxies possess extremely luminous central regions,with luminosity (in particular the
luminosity of X-ray radiation) exceeding the luminosity ofordinary galaxies by several orders of
magnitude. These luminous central regions are calledactive galactic nuclei(AGN). To this class
belong the so-calledquasistellar objects(QSO) andquasars6.

What makes these galaxies “active” is the emission of enormous amounts of energy from their
nuclei. Moreover, the luminosities of active galactic nuclei fluctuate on very short time scales –
within days or sometimes even minutes. The time variation sets an upper limit to the size of the
emitting region. For this reason, we know that the emitting regions of active galactic nuclei are
only light-minutes or light-days across, making them less than one ten-millionth the size of the
galaxy in which they sit.

How could a luminosity hundreds of times that of an entire galaxy be emitted from a volume
billions of times smaller? Of all proposed explanations, only one has survived close scrutiny: the
release of gravitational energy by matter falling towards ablack hole [49, 69]. Even using an
energy source as efficient as gravity, the black holes in active galactic nuclei would need to be
supermassive in order to produce the luminosities of quasars.

6.3.1 Eddington Limit

The most efficient way of generating energy is by the release of gravitational potential energy
through mass accretion. For example, a simple calculation shows that for matter falling straight
down onto the surface of a 1.4M� neutron star, about 21% of the rest mass is released. This is
almost 30 times larger than the energy that hydrogen fusion can provide.

6Quasar is short forquasistellar radio source. Quasars are radio-loud whereas QSOs are radio-quiet . These names
are sometimes confused in the literature. Both terms,QSOandquasar, are often used to refer to both types of objects
[6].
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The efficiency may be even larger if the matter is accreted through an accretion disk of a
rotating black hole. Theaccretion luminosity(i.e., the radiation energy released per unit of time)
generated by a mass accretion rate,Ṁ, through the disk may be written as

Ldisk = ηṀ, (6.10)

whereη is the radiative efficiency of the disc equal to the binding energy of the innermost stable
circular orbit per unit rest mass. As we have shown in section4.1.3, 0.0572< η < 0.423, with the
lower and upper bounds for a nonrotating and for a maximally rotating BH, respectively.

However, the radiation is interacting with the accreting gas and there is a limit to the luminosity
above which the radiation pressure, acting against gravitational attraction, exceeds gravity and
thereby stops the accretion.

Consider a fully ionized hydrogen plasma accreting near thesurface of a compact object of
massM. The upward force on the infalling matter is mainly due to theinteraction of radiating
photons with electrons in the plasma. If the photon luminosity is L, the number of photonsNγ

crossing unit area per unit time at radiusr is

Nγ =
L

εr4πr2 , (6.11)

whereεr is the mean energy transferred radially per collision. The number of collisions per electron
per unit time isσNγ , whereσ is the photon-electron scattering cross section. The forceper electron
is just the rate at which the momentum is deposited radially per unit time, so we multiply bypr = εr

to obtain

F = σNγ pr =
Lσ

4πr2 . (6.12)

In order for accretion to occur, the gravitational force perelectron (acting via the proton)

Fgrav = −Mmp

r2 (6.13)

must exceed the radiation force (6.12). Here,M 'M is the enclosed mass at radiusr. Equating the
radiation force (6.12) with the gravitational force (6.13)sets an upper bound to accretion luminosity
known as theEddington limit

LEdd = 4π
Mmp

σ
. (6.14)

The dominant electron-photon process in a highly ionized hydrogen gas is the scattering of photons
by free electrons (Thomson scattering) with the cross section

σT =
8π
3

(

e2

me

)2

= 6.65×10−25cm2. (6.15)

This gives

LEdd = 1.3×1038
(

M
M�

)

erg s−1. (6.16)
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Relativistic Eddington Limit

In a strong gravitational field the expression (6.13) for thegravitational force is no longer valid.
Here we derive the general relativistic expression for the force per electron (acting via the proton)
under the assumption that the energy density of the fluid is still nonrelativistic, i.e.,ρ = mpn and
p� ρ .

Consider a spherical shell of radiusr with thicknessdr. The force acting on the shell element
of surface areadSis

dF = dSdp= dV (1−2M /r)1/2 dp
dr

, (6.17)

where
dV = drdS(1−2M /r)−1/2 (6.18)

is the proper volume element anddp is the difference between radial pressures atr and r + dr.
Next, we substitutedp/dr by the right-hand side of the TOV equation (2.18) in which we neglect
the pressure (sincep� ρ by assumption). According to (2.11), the number of particles in the shell
element isdN = ndV . Then, the gravitational force per particle is

Fgrav =
dF
dN

= −mpM

r2 (1−2M /r)−1/2. (6.19)

Equating|Fgrav| thus obtained with the photon force (6.12), we find

LEdd=
4πmpM

σ
(1−2M /r)−1/2. (6.20)

Hence, compared with (6.14), the Eddington limit in the strong gravitational field is larger by a
relativistic correction factor.

6.3.2 Radius and Mass Estimate

The luminosity of a typical quasar varies in time with a typical period of 1 hr. This sets the
upper limit to the radius of about

R' 7AU = 1.1×109 km. (6.21)

Considering that AGNs are the most luminous objects known, this is an incredibly small size.
The typical quasar luminosity of 5×1046 erg s−1 is equivalent to more than 500 galaxies of

the Milky Way size! Now, the constraint that the luminosity must be less than the Eddington limit,
L < LEdd, provides a lower limit for the mass of the central object

M > M0 = 3.3×108M� . (6.22)

The mass limitM0 is quite close to the massMBH = R/(2G) = 3.7×108M� of a BH the Schwarz-
schild radius of which is equal to the radius of the quasarRestimated above. This fact supports the
idea that supermassive BHs are responsible for powering AGNs. (Carroll and Ostlie [6], p. 1181)

The estimated value of the lower mass limit is somewhat smaller if the general relativistic
correction to the Eddington limit is taken into account. Using the relativistic expression (6.20), we
find

M > M0

(
√

1+
M2

0

4M2
BH

− M0

2MBH

)

= 2.14×108M� . (6.23)

31



P
o
S
(
P
2
G
C
)
0
0
4

Black-Hole Phenomenology Neven Bilíc

6.3.3 Estimate of the AGN Efficiency

According to equation (6.10), the radiative efficiencyη of an accretion disk is defined as the
energy it radiates per unit accreted mass. As shown in section 4.1.3,η equals the binding energy
of gas at the ISCO, which in turn depends on the BH spin parameter a.

In a typical accretion system, one can easily measure the accretion luminosityLdisc (provided
the distance is known), but one practically never has an accurate estimate of the mass accretion
rateṀ, so one cannot calculateη for an individual AGN with the precision needed to estimatea.
However, a rough estimate can be made for an average AGN. Fromobservations of high redshift
AGN, one can estimate the mean energy radiated by supermassive BHs per unit volume of the
universe. Similarly, by taking a sample of supermassive BHsin nearby galaxies, one can estimate
the mean mass in BHs per unit volume of the universe at present. Assuming that supermassive BHs
acquire most of their mass via accretion (a not unreasonablehypothesis), one can divide the two
quantities to obtain the mean radiative efficiency of AGN. The current data suggest an efficiency
η ∼ 0.1−0.15 for supermassive BHs on average (Elvis et al [70], Yu and Tremaine [71]). Such
large values ofη are possible only if supermassive BHs have significant rotation.

It should be noted that this is only a statistical result for the population of AGN as a whole,
and the method does not say anything about the rotation of anyspecific BH.

7. Intermediate Mass BHs

So far we have been concerned with either the stellar mass BHs(M ∼ 3.5− 20M�) or the
supermassive BHs (M > 106M�). Are there BHs in the intermediate mass range 102 − 104M�?
There isa priori no reason for such BHs not to exist.

There is a tentative evidence based on the Eddington limit that the intermediate mass BHs do
exist. In several nearby galaxies a number of ultraluminousX-ray sources have been detected [72].
As their luminosities of the order of 1040 or more exceed the Eddington limit (6.16) of 10M�
BHs, these objects are argued to be good candidates for the intermediate mass BHs [73]. However,
large apparent luminosity may, under special conditions, be produced by stellar mass BHs, e.g, by
a supercritical accretion (for details and references, seePoutanen et al. [74]). Hence, it is at present
unclear what exactly the ultraluminous X-ray sources are. Dynamical mass measurements would
settle the issue but, unfortunately, none of the sources hasa binary companion to provide a robust
mass estimate.

8. Observational Evidence for the Horizon

To prove that a BH-like object is indeed a BH, one needs to demonstrate that it possesses an
event horizon. The major tests for a BH horizon are based on i)advection-dominated accretion
flows (ADAF), ii) X-ray bursts, and iii) direct imaging [8, 75, 76]

8.1 ADAF

Advection dominated accretion flows [77, 78] describe accretion with very low radiative ef-
ficiency in which the energy released by viscosity friction removing the angular momentum from
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the accreting matter is not radiated away but stored in the flow. If an ADAF forms around a BH,
the stored energy will be lost forever under the event horizon, whereas if the accreting object is a
NS, this energy must be radiated away once matter lands on itssurface. Therefore, the argument
goes, BHs should be dimmer than NSs if an ADAF is present in both cases.

Narayan, Garcia, and McClintock [79] suggested that precisely such a comparison could be
done using X-ray binaries. Most of the known stellar-mass BHcandidates are in a class of X-ray
binaries called X-ray novae. These systems are characterized by a variable mass accretion rate, and
tend to spend most of their time in a quiescent state with a very low accretion rateṀ and accretion
luminosity Lacc. Only occasionally do they go into outburst, when they accrete with highṀ and
become bright. Spectral observations of quiescent BH binaries can be explained in terms of an
ADAF. Narayan et al. [79] compared quiescent luminosities of X-ray binaries supposed to contain
BHs with those of neutron-star X-ray binaries and realized that, in accordance with the prediction
of the ADAF model, systems containing black-hole “candidates" are dimmer. They came to the
conclusion that they found evidence for the presence of event horizons. However, this conclusion
has been challenged (for details and references, see [8, 75]).

8.2 X-ray Bursts

In some X-ray binaries, X-ray bursts are observed in addition to the quiescent X-ray luminos-
ity. In a typical X-ray burst luminosity increases up to nearly the Eddington limit in less than a
second, and the flux then declines over a period of a few seconds or a few tens of seconds. Remark-
ably, no X-ray bursts of this kind were observed in any BH binary. Narayan and Heyl [80] argued
that the lack of bursts is a strong evidence for the horizon inBH candidates.

The explanation for such an absence of X-ray bursts is quite simple. At present, it is widely
accepted that X-ray bursts arise from thermonuclear detonation of accreted material [80, 81]. Ac-
creted material builds up on the surface of the compact object and is compressed by the object’s
gravity. After sufficient material accumulates, it undergoes unstable thermonuclear burning, which
we observe as an X-ray burst.

A key point is that the compact objectmust have a surface. Material cannot accumulate on an
event horizon, and so no bursts can come from an X-ray binary whose compact object is a BH. For
more details, references, and critical discussion, see [8,75]

8.3 Direct Imaging

The most promising line of search for a direct evidence is to construct an image of the region
near the event horizon using interferometry.

For definiteness, consider a nonrotating BH with a horizon atradiusR. Because of strong
gravitational lensing in the vicinity of the BH, a distant observer will see an apparent boundary of
the BH at a radius of 3

√
3R/2 [82]. Rays with impact parameters inside this boundary intersect

the horizon, while rays outside the boundary miss the horizon. The angular size of the boundary,
e.g., for Sgr A∗ with M ∼ 4×106M� and at a distance of 8 kpc, is∼ 0.02 mas which is not beyond
reach. The supermassive BH in the nucleus of the nearby (15 Mpc) giant elliptical galaxy M87,
with a mass of 3×109M� and an expected angular size of∼ 0.01 mas, is another object of interest
[83].

33



P
o
S
(
P
2
G
C
)
0
0
4

Black-Hole Phenomenology Neven Bilíc

The best angular resolution achievable today is with radio interferometry, where angles less
than 1 mas are routinely resolved. In the not too distant future, it should be possible to operate
interferometers at wavelengthsλ < 1 mm and with baselines as large as the diameter of the Earth
b∼ 104 km. For details, see Falcke et al. [82].

9. Alternatives to Supermassive BHs

Given the accumulated evidence for supermassive compact objects ranging from a few 106M�
to a few 109 M�, the existence of black-hole-like objects is beyond doubt [53, 56]. What still
remains an issue is whether these supermassive objects are BHs with the Schwarzschild (or Kerr)
metric describing the physics of the interior, or some otherobjects built out of more or less exotic
substance but with a regular behavior in the interior. A standard astrophysical scenario in the
form of a compact cluster of dark stars (e.g., neutron stars or brown dwarfs) although not entirely
excluded, is quite unlikely. It has been demonstrated that,in the case of NGC 4258 and our Galaxy,
such a cluster would be short-lived and would either “evaporate" or become a BH in much less time
than the age of the Galaxy [84].

A number of alternatives to classical BHs have been proposedwith no singularities in the
interior. The three representative models are: 1) Neutrino(or neutralino) stars, 2) Boson stars, 3)
Dark energy stars

9.1 Neutrino Stars

Here we use the termneutrino starsas a generic name for any degenerate fermion star com-
posed of neutral weakly interacting fermions, e.g., neutrinos or supersymmetric fermionic partners
such as neutralinos, gravitinos, and axinos. The simplest model proposed for supermassive com-
pact objects at the galactic centers is a self-gravitating degenerate fermion gas composed of, e.g.,
heavy sterile neutrinos [85, 86, 87, 88, 89]. Sterile neutrinos in the keV mass range have recently
been extensively discussed as dark-matter candidates [90,91]

As we have seen in the example of a neutron star, a self-gravitating ball of degenerate fermionic
matter is supported against gravitational collapse by the degeneracy pressure of fermions due to
the Pauli exclusion principle, provided the total mass is below the OV limit (3.14), with anm−2

functional dependence on the fermion massm.
Let us assume that the most massive objects are sterile neutrino stars at the OV limit with

MOV ' 3×109 M�, such as the supermassive compact dark object at the center of the radio-galaxy
M87 [57]. Using (3.14) we find that the neutrino mass requiredfor this scenario is

m ' 14keV forg = 2,

m ' 12keV forg = 4. (9.1)

From (3.14) and (3.15) it follows that a neutrino star of massMOV = 3× 109 M� would have
a radiusROV = 4.4466RSch = 3.9396× 1010 km = 1.52 light-days, whereRSch = 2GMOV is the
Schwarzschild radius forMOV. Thus, at a distance of a few Schwarzschild radii away from the
supermassive object, there is little difference between a neutrino star at the OV limit and a BH, in
particular since the last stable orbit around a BH already has a radius of 3RSch.
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Now, we wish to investigate the possibility that this scenario can be extrapolated to explain all
observed supermassive BH, and in particular Sgr A∗, the supermassive compact dark object at the
Galactic center. As the mass of Sgr A∗ is by about a factor of 103 lower than the OV limit above, we
can use the Newtonian mass-radius scaling relation (2.32) derived from the Lane-Emden equation
(2.28) with the polytropic indexn = 3/2. We find

R= 4.51
m2

Pl

m8/3M1/3

(

2
g

)2/3

= 7.1406×105
(

12keV
m

)8/3(4
g

)2/3(M�
M

)1/3

AU. (9.2)

Here, 1 mpc = 206.265 AU. The degeneracy factorg = 2 describes either spin 1/2 fermions (without
antifermions) or spin 1/2 Majorana fermions. For Dirac fermions (or spin 3/2 Majorana fermions),
we haveg = 4. Using the canonical valueM = 2.6×106M�, we findR' 5200AU to be compared
with the observational upper limit [67]R ≤ 60 AU for Sgr A∗. Hence, a neutrino star made of
m= 12−15 keV neutrinos is ruled out as an explanation for Sgr A∗.

To be able to explain Sgr A∗ as a neutrino star, we need a minimal fermion massmmin = 63.9
keV/c2 for g = 4. The maximal mass of a neutrino star made of these fermions, as given by the OV
limit (3.14), is [92]

Mmax
OV = 1.083×108M� . (9.3)

Clearly, a neutrino star scenario which would cover the whole mass-radius range of compact
supermassive galactic centers is ruled out. However, a “hybrid” scenario [92] in which all super-
massive compact dark objects with massesM > Mmax

OV are black holes, while those withM ≤ Mmax
OV

are neutrino stars, is not excluded.
At first sight, such a hybrid scenario does not seem to be particularly appealing. However, it

is important to note that a similar scenario is actually realized in nature, with the co-existence of
neutron stars with massesM ∼< 3M�, and stellar-mass BHs with massM ∼> 3M�, as observed in
binary systems in the Galaxy.

An indirect support for this scenario is the absence of clearevidence for intermediate mass
BH candidates, which is difficult to explain in the conventional BH scenario (in which BHs are
all baryonic). If the hybrid scenario were realized in nature, the intermediate mass neutrino stars
would exist but having very large radii would be rather dilute and hence difficult to detect.

9.2 Boson Stars

Boson stars are static configurations of self-gravitating (with or without self-interaction) com-
plex scalar fields. In self-interacting scalar field theories, such asφ4 theory, there are cases where
a homogeneous condensate is a stable ground state, known as the Bose-Einstein (BE) condensate.
Hence, a boson star being basically a self-gravitating BE condensate may be regarded as aT → 0
limit of a self-gravitating boson gas [93]. The ground stateof a condensed cloud of charged bosons
of massm, interacting only gravitationally and having a total massM below a certain limit of the
orderM2

Pl/m, is a stable spherically symmetric configuration [94] whichis usually referred to as
mini-soliton star [95] or mini-boson star [96]. For a recentreview and a comprehensive list of
references, see Schunck and Mielke [97].

The gravitational collapse of a self-interacting BE condensate is prevented by a repulsive self-
interaction, e.g., in the form ofλ |Φ|4. That makes it astrophysically interesting as its maximal
mass is∼ m3

Pl/m2
B, hence comparable with the mass of a neutron star or a neutrino star.
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Seidel and Suen have demonstrated that boson stars may be formed through a dissipationless
mechanism, called gravitational cooling [98]. Boson starshave recently attracted some attention as
they may well be candidates for nonbaryonic dark matter [99].

The action of the gravitationally coupled complex scalar field Φ reads

SBS =

∫

d4x
√

−detg

(

− R
16π

+LKG

)

, (9.4)

with the Klein-Gordon Lagrangian

LKG = gµν(∂µΦ∗)(∂ν Φ)−m2|Φ|2−U(|Φ|2) . (9.5)

By varying the action with respect toΦ one obtains the Klein–Gordon equation
(

2+
dU

d|Φ|2
)

Φ = 0, (9.6)

and the variation with respect togµν yields Einstein’s equations (A.24) in which

Tµν = (∂µΦ∗)(∂ν Φ)+ (∂µΦ)(∂ν Φ∗)−gµνLKG, . (9.7)

Although this energy-momentum tensor is not in the perfect fluid form (B.1, we can still identify
the radial pressurep and the densityρ with −Tr

r andT0
0 , respectively.

Given the interaction potentialU , one has to solve a coupled system of Klein-Gordon and
Einstein equations in spherically symmetric static spacetime. Unlike in the case of a fermion
star, where the information about matter was provided by theequation of state, the matter here is
described by the KG equation (9.6). The stationarity ansatz

Φ(r, t) =
1√
2

ϕ(r)e−iωt (9.8)

describes a spherically symmetric bound state of the scalarfield, where the frequencyω is deter-
mined by the asymptotic conditionϕ(r) → 0 asr → ∞.

It turns out that even the simplest caseU = 0 has a nontrivial ground-state solution, called
a mini-boson star. The gravitational collapse of a mini-boson star is prevented by Heisenberg’s
uncertainty principle. This provides us also with crude mass estimates: For a boson to be confined
within the star of radiusR0, the Compton wavelength has to satisfyλΦ = 2π/m' 2R0. On the other
hand, the star’s radius should be larger than the Schwarzschild radius,R0 > RSch= 2M/m2

Pl in order
to avoid instability against complete gravitational collapse. In this way we obtain an estimate

M <
π
2

m2
Pl/m. (9.9)

This upper bound is slightly larger than the so-calledKaup limit,

Mmax = 0.633m2
Pl/m= 8.4639×10−10

(

1eV
m

)

M� (9.10)

obtained numerically [96]. Clearly, mini-boson stars are irrelevant to astrophysical context, unless
the boson massm is ridiculously small.
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This result was later extended by Colpi et al. [100] for interacting bosons with a quartic self-
interaction

U = λ |Φ|4 . (9.11)

In this case, the maximal mass is obtained as [100, 101]

Mmax =
1√
8π3

√
λ

m3
Pl

m2 = 0.1
√

λ
(

1GeV
m

)2

M� (9.12)

quite similar to the fermion star mass limit. The effective radius of an interacting boson star in the
Newtonian regime turns out to be independent of central density and in a good approximation is
equal to

Reff =
π√
8π

√
λ

mPl

m2 = 1.5096
√

λ
(

1GeV
m

)2

km. (9.13)

Hence, boson stars with a quartic self-interaction all havethe same radius. This behavior is quite
different from the fermion star case, where the radius scales with the star mass asR∼ M1/3 (see
equation (9.2)).

The results are summarized in the table

Maximum Effective
Object Mass Radius

Fermion Star MOV = 0.384m3
PL/m2 ROV = 3.36mPl/m2

Mini-Boson Star MKaup = 0.633m2
PL/m R∼ 1/m

Boson Star Mmax = 1/(
√

8π3)
√

λm3
Pl/m2 Reff = π/(

√
8π)

√
λmPl/m2

Could boson stars fit the whole range of compact supermassivegalactic centers? To answer
this question, we proceed as in the case of neutrino stars. Weassume that the most massive objects
are boson stars with maximal mass, i.e.,Mmax' 3×109 M�, for the supermassive compact dark
object at the center M87. From this we find

√
λ
(

1GeV
m

)2

= 3×1010, (9.14)

which also fixes the radius given by (9.13)

R= 4.53×1010km = 303AU, (9.15)

quite close to the radiusROV of the neutrino star discussed in section 9.1. Since the radius of a
boson star does not depend on its mass, this value should alsofit the radii of all supermassive BHs.
However, it obviously does not fit the observed radius limit of Sgr A∗, R< 60 AU, and even less it
fits the radius of a typical AGN of 7 AU (section 6.3.2).

Hence, boson stars with a quartic self-interaction are ruled out as a unique explanation for
compact supermassive objects at galactic centers and AGN. Again, it is not excluded that some of
the galactic centers harbor a boson star.
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9.3 Dark-Energy Stars

Dark energy (DE) is a substance of negative pressure needed for an accelerated cosmology. In
order to achieve acceleration, DE must satisfy an equation of statepde= wρde, wherew may depend
on the cosmological scalea but at present (a = 1) w < −1/3. In addition, one also expects that
DE satisfies the dominant energy condition, in which case theequation of state satisfiesw≥ −1.
Nevertheless, matter withw < −1 dubbed “phantom energy" [102, 103] has recently received
attention as it might fit the most recent SN 1a data slightly better than the usual DE.

In cosmological context,ρde is homogeneous and it is normally assumed that DE does not
cluster. However, it is not excluded that owing to gravitational instability, small inhomogeneities
(analogous to dark-matter inhomogeneities) grow and buildstructure, e.g., in the form of spherical
configurations. Hence, we definedark-energy starsas spherical solutions to Einstein’s equation
with matter described by the DE equation of state [104, 105].It is worth noting that DE could
be described by a scalar field theory (quintessence) with a suitably chosen interaction potential
and/or with a noncanonical kinetic energy term in the Lagrangian. This scalar field theory would
correspond to an effective equation of state with desirableproperties [106]. In this way, DE stars
could be regarded as boson stars but with a rather unusual self-interaction.

Here, we briefly discuss two examples of DE stars: de Sitter gravastars and Chaplygin gravas-
tars.

9.3.1 De Sitter Gravastars

The simplest example of DE star is a gravitating vacuum star or a gravastar. Chapline et
al. [107, 108] put forth an interesting proposal based on analogies to condensed matter systems
where the effective general relativity was an emergent phenomenon. Specifically, assuming the
Schwarzschild exterior, they suggested that the sphere where the lapse functionξ = g1/2

00 vanished
marked a quantum phase transition,ξ increasing again atr < 2GM. As this required negative
pressure, the authors of [108] assumed the interior vacuum condensate to be described by de Sitter
space with the equation of statep = −ρ .

Subsequently, the idea of gravitational vacuum condensate, or ‘gravastar’, was taken up by
Mazur and Mottola [109, 110] and Dymnikova [111], replacingthe horizon with a shell of stiff
matter astride the surface atr = 2GM. Visser and Wiltshire [112] and recently Carter [113] also
examined the stability of the gravastar using the Israel thin-shell formalism [114].

Given the mass M, the interior is described by a solution, similar to the the Einstein-de Sitter
universe, with constant densityρ = ρ0 up to the de Sitter radiusRdS= 2M (actually slightly further
out). Hence, the interior is de Sitter,ρ0 being the vacuum energy density. The lapse function is
given by

ξ =

(

1− r2

R2
dS

)1/2

, (9.16)

with

RdS =

√

3
8π

ρ−1/2
0 . (9.17)

In order to join the interior solutions to a Schwarzschild exterior at a spherical boundary of
radiusR, it is necessary to put a thin spherical shell at the boundarywith a surface density and a
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surface tension satisfying Israel’s junction conditions [114]. As the pressure does not vanish at the
boundary, it must be compensated by a negative surface tension of the shell.

The gravastar has no horizon or singularity! Its surface is located at a radius just slightly larger
than the Schwarzschild radiusR= 2M + ε , ε ∼ 2lPl. Hence, there is practically no observational
way to distinguish a Schwarzschild BH from a gravastar. Basically, any BH-like object observed
in nature may be a gravastar.

In spite of these attractive features the gravastar has beenmet with a cool reception. Certainly,
the assumption of a de Sitter interior presents a quandary: on the one hand, the quantum phase
transition would suggest that the associated cosmologicalconstant is a fundamental parameter; on
the other hand, to accommodate the mass range of supermassive black-hole candidates, it must vary
over some six orders of magnitude. In addition, the notorious cosmological constant problem is
reversed for gravastars: why is the vacuum energy in the interior of a gravastar so much larger than
the observed vacuum energy density in the universe? If we identify the most massive black-hole
candidate observed at the center of M87, with massMmax= 3×109M�, with the de Sitter gravastar,
thenρ0 = (9.7keV)4, to be contrasted with the(10−3eV)4 values wanted for cosmology. Another
question is how does a gravastar form? The entropy of a stellar mass gravastar is much less than
the entropy of an ordinary star and this would require an extremely efficient cooling mechanism
before gravastars could form during stellar collapse [75].

9.3.2 Chaplygin Gravastars

Consider a particular form of DE with a rather peculiar equation of state

p = − A
ρ

. (9.18)

Equation (9.18) describes the Chaplygin gas which, forρ ≥
√

A, has attracted some attention as
a dark-energy candidate [106, 115]. Consider a self-gravitating Chaplygin gas and look for static
solutions. In particular, we look for static Chaplygin gas configurations in the phantom (w < −1)
regime, i.e., when

ρ <
√

A. (9.19)

We show that these configurations could provide an alternative scenario for compact massive ob-
jects at galactic centers [116]. Moreover, equation (9.18)yields the de Sitter gravastar solution in
the limit when the central density of the static solution approaches the value

√
A.

Combining (9.18) with the TOV equations (2.18), and (2.19),one has

ρ ′ =

(

1− ρ2

A

)(

ρM −4πAr3

r(r −2M )

)

, (9.20)

dM

dr
= 4πr2ρ . (9.21)

In Fig. 4 we exhibit the resultingρ(r) for selected values ofρ0/
√

A. The solutions depend
essentially on the magnitude ofρ0 relative to

√
A. In the following we summarize the properties of

three classes of solutions corresponding to whetherρ0 is larger, smaller, or equal to
√

A.
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Figure 4: Density profile of the Chaplygin gravastar forρ0/
√

A= 1.2 (short dashed), 0.98 (dotted), 0.9 (long
dashed). The limiting singular solution with ther−2/3 behavior at smallr is represented by the dot-dashed
and the de Sitter gravastar by the solid line.

i) Forρ0 >
√

A, the densityρ increases and the lapse functionξ decreases withr starting from
the origin up to the black-hole horizon radiusRbh, where 2GM (Rbh) = Rbh. In the limit ρ0 → ∞, a
limiting solution exists with a singular behavior

ρ(r) ' (
7A

18πGr2 )1/3 (9.22)

near the origin.

ii) For ρ0 <
√

A, bothρ andξ decrease withr up to the radiusR0 where they vanish. At that
point the pressurep blows up to−∞ owing to (9.18). The enclosed massM is always less than
r/(2), never reaching the black-hole horizon, i.e., the radius where 2M (r) = r.

iii) For ρ0 =
√

A, the densityρ remains constant equal to
√

A up to the de Sitter radiusRdS =

2M. Hence, we recover the de Sitter solution precisely as in thegravastar case.

As ρ0 →
√

A from above or from below, solutionsi) or ii) , respectively, converge toiii) except
at the endpoint. The lapse function iniii) joins the Schwarzschild solution outside continuously,
whereas ini) andii) it happens discontinuously.

As in the case of a de Sitter gravastar, in order to join our interior solutions to a Schwarzschild
exterior at a spherical boundary of radiusR, it is necessary to put a thin spherical shell7 at the
boundary with a surface density and a surface tension satisfying Israel’s junction conditions [114].

Caseii) , together withiii) , is of particular interest as we would like to interpret the supermas-
sive compact dark objects at the galactic centers in terms ofphantom energy rather than in terms
of a classical black hole. It is natural to assume that the most massive such object is described by

7It has recently been demonstrated that the joining can be made continuous without the presence of a thin shell for
a gravastar made of the fluid with an anisotropic pressure [117, 118].
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the de Sitter gravastar, i.e., solutioniii) (depicted by the solid line in Fig. 4). The radius of this
object isRdS equal to the Schwarzschild radius 2Mmax. Clearly, solutions belonging to classii) , can
fit all massesM < Mmax. However, for the phenomenology of supermassive galactic centers it is
important to find, at least approximately, the mass-radius relationship for these solutions. This may
be done in the low central density approximation, i.e.,ρ0 �

√
A, which is similar to the Newtonian

approximation but, in contrast to the Newtonian approximation, one cannot neglect the pressure
term in (2.18). Moreover, as may be easily shown, in this approximationM � r3p, so that the
pressure term becomes dominant. Next, neglecting 2M with respect tor, as in the usual Newtonian
approximation, equation (9.20) simplifies toρ ′ = 4πAr, with the solution

ρ = ρ0

(

1− r2

R2
0

)

; R2
0 =

ρ0

2πA
, (9.23)

which gives a mass-radius relation

M

R5
0

=
16π2

15
A = constant. (9.24)

The mass-radius relationshipM ∝ R5
0 which phantom gravastars obey, offers the prospect of unify-

ing the description of all supermassive compact dark objects at the galactic centers, as Chaplygin-
gas phantom gravastars with masses ranging fromMmin = 106M� to Mmax = 3×109M�. Indeed,
assuming that the most massive compact dark object, observed at the center of M87, is a Chaplygin
phantom gravastar near the de Sitter gravastar limit, withRmax= 2Mmax= 8.86×109km= 8.21 lhr,
the compact dark object at the center of our Galaxy, with massMGC = 3×106M�, would have a
radiusRGC = 2.06 lhr if the scaling law (9.24) holds. This radius is wellbelow the distances of
the closest approach to Sgr A∗ which the stars SO-2 (Rmin = 17 lhr = 123 AU, [63, 64]) and SO-16
(Rmin = 8.32 lhr = 60 AU [66, 67]) recently had and beyond which the Keplerian nature of the
gravitational potential of Sgr A∗ is well established.

A. Basic General Relativity

A.1 Geometry

The geometry of spacetime is described by the metric

ds2 = gµνdxµ dxν , (A.1)

wheregµν is the metric tensor. The spacetime curvature is defined through the Riemann curvature
tensor

Rτσβγ = gταRα
σβγ , (A.2)

defined by

Rα
δβγ = ∂γΓα

βδ −∂β Γα
δγ + Γα

ργΓρ
βδ −Γα

ρβ Γρ
γδ , (A.3)

where

Γσ
µν =

1
2

gλσ [∂µgνλ + ∂νgµλ −∂λ gµν ] (A.4)
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are the Christoffel symbols. A contraction of two indices gives theRicci tensor

Rαβ = gλν Rλανβ (A.5)

and a further contraction of the Ricci tensor gives thescalar curvature

R = gαβ Rαβ . (A.6)

A.2 Covariant Derivative

A covariant derivative∇µ of a fieldY (in general,Y may be a tensor of any rank) is defined by

DY = (∇µY)dxµ ≡Y;µdxµ , (A.7)

whereDY is an infinitesimal difference between the value of the fieldY at the pointxµ +dxµ and
the quantityY(xµ) parallelly displaced fromxµ to xµ +dxµ . Hence,DY consists of two parts: one
is the change ofY due to the parallel displacement and the other is the differencedY = Y(xµ +

dxµ )−Y(xµ ) due to the functional dependence onxµ . The latter part is basically related to the
ordinary partial differentiation. The difference due to the parallel displacement is related to the
curvature of spacetime and depends on the tensor nature ofY. For a scalar, vector, and second-rank
tensor one finds: [119]

• scalarϕ
ϕ;µ = ϕ,µ , (A.8)

• vectorVµ

Vµ ;ν = Vµ ,ν −Γρ
µνVρ , Vµ

;ν = Vµ
,ν + Γµ

ρνVρ . (A.9)

• tensorAµν

Aµν ;ρ = Aµν ,ρ −Γσ
µρAσν −Γσ

νρAµσ , Aµν
;ρ = Aµν

,ρ + Γµ
σρAσν + Γν

σρAµσ . (A.10)

The covariant d’Alembertian is given by

2≡ gµν ∇µ∇ν =
1√−detg

∂µ

(

√

−detggµν∂ν

)

. (A.11)

Here we have used the usual convention in which a subscript,µ denotes an ordinary partial
derivative and ;µ denotes the covariant derivative.

A.3 Geodesics

Geodesics are the “shortest possible lines” one can draw in curved geometry. Given a covari-
ant derivative operator∇µ , we define ageodesicto be a curve whose tangent vector is parallel
propagated along itself, i.e., a curve whose tangentuµ satisfies the equation

uνuµ
;ν = 0. (A.12)

A massive particle moves along a timelike geodesic,uµ being its velocity. A massless particle
moves along a null geodesic in which case the vectoruµ is null.
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A.4 Isometries and Killing Vectors

A vector fieldkµ that generates one parameter group of isometries, i.e., oneparameter group
of transformations that leave the metric invariant, is called aKilling vector. A Killing vector kµ

satisfies the Killing equation
k(µ ;ν) ≡ kµ ;ν +kν ;µ = 0. (A.13)

It is convenient to represent the Killing vectorkµ as a differential operatork,

k = kµ∂µ . (A.14)

For a vector fieldk, local coordinates can be found such that

k =
∂
∂x

, (A.15)

wherex is one of these coordinates, e.g.,x4 ≡ x. In such a coordinate system,kµ = δ µ
4 and

k(µ ;ν) =
∂gµν

∂x
= 0. (A.16)

Hence, one can say thatkµ is Killing if gµν is independent ofx.

Examples

Consider the spherical coordinate system(t, r,θ ,φ). Suppose the metric components are inde-
pendent oft andφ . Then there exist two Killing vectors:

• the generator of time translationsξ = ∂/∂ t

ξ µ = δ µ
0 ; ξµ = gµ0 , (A.17)

• the generator of axial isometriesψ = ∂/∂φ . In spherical coordinates

ψµ = δ µ
φ ; ψµ = gµφ . (A.18)

A.5 Constants of Motion

The following proposition relates Killing vectors to constants of motion.

Proposition 1. Let χ µ be a Killing vector field and letγ be a geodesic with tangent uµ . Then the
quantityχµuµ is constant alongγ .

Proof: We have
uν(χµuµ);ν = uµuν χµ ;ν + χµuνuµ

;ν = 0. (A.19)

The first term vanishes by the Killing equation (A.13) and thesecond term vanishes by the geodesic
equation (A.12) . Hence

uν(χ µuµ);ν = 0, (A.20)

as was to be proved.2
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Examples

Consider a stationary axially symmetric space, as in the example discussed in appendix A.4
with two Killing vectors,ξ = ∂/∂ t andψ = ∂/∂φ , corresponding to time translation and axial
isometries, respectively. In addition, assume the asymptotic flatness, i.e.,

gµν → diag(1,−1,−r2,−r2sin2 θ) as r → ∞ . (A.21)

For a particle of massm moving along a timelike geodesic, the two conserved quantities along the
geodesics are

• the energy
E = muµξµ = ξµqµ = g0µqµ = q0

∣

∣

∞ , (A.22)

• the z-component of the angular momentum

L = −muµψµ = −ψµqµ = −gφ µqµ = r2 sin2θqφ ∣
∣

∞ . (A.23)

A.6 Einstein’s Equations

General relativity relates the geometry of spacetime to matter through Einstein’s field equa-
tions

Rµν −
1
2

gµνR = −8πTµν , (A.24)

whereTµν is theenergy-momentum tensor.

B. Basic Fluid Dynamics

Consider a perfect gravitating relativistic fluid. We denote byuµ , p, ρ , n, andσ the velocity,
pressure, energy density, particle number density, and entropy density of the fluid. The energy-
momentum tensor of a perfect fluid is given by

Tµν = (p+ ρ)uµuν − pgµν , (B.1)

wheregµν is the metric tensor with the Lorentzian signature(+−−−). Hence, in this convention,
we have

uµuµ = gµνuµuν = 1. (B.2)

The particle number conservation is described by the continuity equation

(nuµ );µ =
1√−g

∂µ(
√−gnuµ ) = 0. (B.3)

The energy-momentum conservation
Tµν

;ν = 0 (B.4)

applied to (B.1) yields the relativistic generalization ofEuler’s equation [120]

(p+ ρ)uνuµ ;ν −∂µ p+uµuν ∂ν p = 0. (B.5)
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B.1 Fluid Velocity

It is convenient to parameterize the four-velocity of the fluid in terms of three-velocity com-
ponents. To do this, we use the projection operatorgµν − tµ tν , which projects a vector into the
subspace orthogonal to the time-translation Killing vector ξ µ = (1;~0) , wheretµ is the unit vector

tµ =
ξ µ

√

ξ νξν
=

δ µ
0√
g00

; tµ =
ξµ

√

ξ νξν
=

gµ0√
g00

. (B.6)

We split up the vectoruµ in two parts: one parallel with and the other orthogonal totµ :

uµ = γtµ +(gµν − tµtν)uν , (B.7)

where

γ = tµuµ . (B.8)

From (B.7) with (B.6) we find (see, e.g., appendix of [121])

uµ = γ
(

1√
g00

− g0 jv j

g00
;vi
)

,

uµ = γ
(√

g00;
g0i√
g00

−vi

)

, (B.9)

where

vi = γi j v
j , v2 = vivi , γ2 = (1−v2)−1, (B.10)

with the induced three-dimensional spatial metric:

γi j =
g0ig0 j

g00
−gi j ; i, j = 1,2,3. (B.11)

Sinceuµ andtµ are timelike unit vectors, a consequence of (B.7) is thatγ ≥ 1 and hence 0≤ v2 < 1.

B.2 Hydrostatic Equilibrium

From Euler’s equation (B.5) we can derive the condition of hydrostatic equilibrium. We can
use the comoving frame of reference in which the fluid velocity takes the form

uµ =
δ µ

0√
g00

; uµ =
gµ0√
g00

. (B.12)

In equilibrium the metric is static; all components are independent of time, and the mixed compo-
nentsg0i are zero. Equation (B.5) then gives

(ρ + p)Γ0
µ0u0u0 = (ρ + p)

1
2

g00∂µg00 = −∂µ p (B.13)

or

∂µ p = −(p+ ρ)g−1/2
00 ∂µg1/2

00 . (B.14)
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C. Basic Thermodynamics

Consider a nonrotating fluid consisting ofN particles in equilibrium at nonzero temperature.
A canonical ensemble is subject to the constraint that the number of particles

∫

Σ
nuµ dΣµ = N (C.1)

should be fixed. The spacelike hypersurfaceΣ that contains the fluid is orthogonal to the time-
translation Killing vector fieldξ µ . In equilibriumξ µ is related to the velocity of the fluid.

ξ µ = ξ uµ ; ξ = (ξ µξµ)1/2. (C.2)

It may be shown that those and only those configurations will be in equilibrium for which the
free energy assumes a minimum [122]. The canonical free energy is defined as [122, 123].

F = M−
∫

Σ
Tσ ξ µdΣµ , (C.3)

whereM is the total mass as measured from infinity. The entropy density is obtained using the
standard thermodynamic relation

σ =
1
T

(p+ ρ −µn). (C.4)

C.1 Tolman Equations

The temperatureT and the chemical potentialµ are metric-dependent local quantities. Their
spacetime dependence may be derived from the equation of hydrostatic equilibrium (B.14) [10,
120] and the thermodynamic identity (Gibbs-Duhem relation)

d
p
T

= nd
µ
T
−ρd

1
T

. (C.5)

The crucial condition is that the heat flow and diffusion should vanish [124]

µ
T

= const, (C.6)

which may be derived from the physical requirement that the rate of entropy change with particle
number at fixed energy density should be constant, i.e.,

∂σ
∂n

∣

∣

∣

∣

ρ
= const, (C.7)

where ‘const’ is independent ofρ . From (C.4) and (C.5) we obtain

dσ =
1
T

dρ − µ
T

dn (C.8)

and hence
∂σ
∂n

∣

∣

∣

∣

ρ
= −µ

T
. (C.9)
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from which (C.6) immediately follows. Next, equation (C.6), together with (B.14) and (C.5),
implies the well-known Tolman equations

Tg1/2
00 = T0 ; µg1/2

00 = µ0 , (C.10)

whereT0 and µ0 are constants equal, respectively, to the temperature and the chemical potential
at infinity. In a grand-canonical ensemble,T0 and µ0 may be chosen arbitrarily. In a canonical
ensemble,µ0 is an implicit functional ofξ because of the constraint (C.1) that the total number of
particles should be fixed.

C.2 Fermi Distribution

Consider a gas consisting ofN fermions with the massm contained within a hypersurfaceΣ.
The equation of state may be represented in a parametric formusing the well-known momentum
integrals over the Fermi distribution function [125]

n = g
∫ ∞

0

d3q
(2π)3

1

1+eE/T−µ/T
, (C.11)

ρ = g
∫ ∞

0

d3q
(2π)3

E

1+eE/T−µ/T
, (C.12)

p = gT
∫ ∞

0

d3q
(2π)3 ln(1+e−E/T+µ/T) , (C.13)

whereE =
√

m2 +q2 and T and µ are the local temperature and the local chemical potential,
respectively, defined by Tolman’s equations (C.10). By partial integration, the last equation may
be written as

p = g
∫ ∞

0

d3q
(2π)3

q2

3E
1

1+eE/T−µ/T
, (C.14)

The integerg denotes the spin degeneracy factor. In most applications wetakeg = 2 (spin up and
spin down). Strictly speaking, in each equation (C.11)-(C.14) one should also add the antiparticle
term which is of the same form as the corresponding right-hand side of (C.11)-(C.14) withµ
replaced by−µ . However, the contribution of antiparticles in astrophysical objects is almost always
negligible8.

Equations (C.4) and (C.8) may be combined to yield another useful thermodynamic identity

dw= Td(
σ
n

)+
1
n

dp, (C.15)

with w = (p+ ρ)/n being the specific enthalpy.

8One exception is neutrino stars made of Dirac type neutrinos. There, the numbers of neutrinos and antineutrinos
are equal and separately conserved, hence g=4
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C.3 Isentropic Fluid

Euler’s equation is simplified if one restricts consideration to an isentropic flow. A flow is said
to beisentropicwhen the specific entropyσ/n is constant, i.e.,when

∂µ(
σ
n

) = 0. (C.16)

A flow may in general have a nonvanishing vorticityωµν defined as

ωµν = hρ
µhσ

ν u[ρ ;σ ], (C.17)

where
hµ

ν = δ µ
ν −uµuν (C.18)

is the projection operator which projects an arbitrary vector in spacetime into its component in the
subspace orthogonal touµ . A flow with vanishing vorticity, i.e., when

ωµν = 0, (C.19)

is said to beirrotational. In the following we assume that the flow is isentropic and irrotational.
As a consequence of equation (C.16) and the thermodynamic identity (C.15), equation (B.5)

simplifies to
uν(wuµ);ν −∂µw = 0. (C.20)

Furthermore, for an isentropic irrotational flow, equation(C.19) implies [126]

(wuµ);ν − (wuν);µ = 0. (C.21)

In this case, we may introduce a scalar functionϕ such that

wuµ = −∂µϕ , (C.22)

where the minus sign is chosen for convenience. Obviously, the quantitywuµ in the form (C.22)
satisfies equation (C.21). Solutions of this form are the relativistic analogue of potential flow in
nonrelativistic fluid dynamics [120].

C.4 Degenerate Fermi Gas

In the limit T → 0, the Fermi distribution in (C.11)-(C.13) becomes a step function that yields
an elementary integral with the upper limit equal to the Fermi momentum

qF =
√

µ2−m2 = mX. (C.23)

The equation of state can be expressed in terms of elementaryfunctions ofX. With g = 2, we find

n = 2
∫ qF

0

d3q
(2π)3 =

1
3π2 m3X3, (C.24)

ρ = 2
∫ qF

0
E

d3q
(2π)3 =

1
8π2 m4

[

X(2X2+1)
√

X2+1−ArshX
]

, (C.25)

p = 2
∫ qF

0

q2

3E
d3q

(2π)3 =
1

8π2 m4
[

X(
2
3

X2−1)
√

X2+1+ArshX

]

. (C.26)

There are two important limits:
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• Nonrelativistic limit,X � 1

ρ =
1

3π2 m4
(

X3+
3
10

X5− 3
56

X7...

)

, (C.27)

p =
1

15π2 m4
(

X5− 5
14

X7+
5
24

X9...

)

, (C.28)

Obviously, in this limit,p� ρ .

• Ultrarelativistic limit

ρ =
1

4π2 m4
(

X4+X2− 1
2

ln2X...

)

, (C.29)

p =
1

12π2 m4
(

X4−X2+
3
2

ln2X...

)

. (C.30)

Retaining the dominant terms, these equations yield the well-known equation of state for an
ultrarelativistic gas

p =
ρ
3

, (C.31)

which also holds for massless Bose and Fermi gases at finite temperature.

C.5 Polytropic Gases

A gas of particles of massm is calledpolytropic if the equation of state may be written in the form

p = K nΓ, (C.32)

whereK is a constant that depends onm. Using this equation and the thermodynamic identity
(C.15) the energy densityρ and the entropy densityσ may also be expressed in terms ofn. For an
isentropic flow, it follows

ρ = mn+
K

Γ−1
nΓ. (C.33)

A degenerate Fermi gas approaches a polytropic equation of state in both the nonrelativistic and
the extreme-relativistic limits:

• Nonrelativistic limit. Retaining only the dominant term in(C.28) we find

p =
32/3π4/3

5m
n5/3. (C.34)

• Ultrarelativistic limit. In this case, the dominant term in(C.30) yields

p =
31/3π2/3

4
n4/3. (C.35)
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