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1. Introduction

Black holes (BH) are the most fascinating objects preditiedeneral relativity. There exist
about 20 confirmed candidates [1] for astrophysical BHs érttass range 5 - 20, and about
three dozen supermassive BH candidates [2] in the mass 18fge 0>° M.

Unfortunately, there exists as yet no direct evidence faophysical BHs'. At present we
only hope that the black-hole paradigm may be proved or ralgdy comparing BH candidates
with credible alternatives. Fortunately, BHs are dark amighgact, which narrows the list of pos-
sible alternatives among standard astrophysical objéaisa stellar-mass BH, the only standard
astrophysical alternative iseutron stars(NS). It is therefore quite important to understand the
properties of NSs and their observational distinction tesBIherefore, considerable attention will
be devoted here to NSs.

These lecture notes are in large part based on the standardoteks Misner, Thorne, and
Wheeler [3], Shapiro and Teukolsky [4], Wald [5], and Cdresid Ostlie [6], and on the review
articles by Townsend [7] and Narayan [8]. The exception @dige 9 which is based on original
articles. Efforts are made to provide citations to origipapers wherever appropriate but the list
of references is by no means complete. A number of inteigestiths may be found at the site of a
recent conference on supermassive black holes [9].

We use the positive-time negative-space signature caoverite., (+,- - -) and we mostly
use the so-called natural units in which= h= G = 1. In these units, the physical quantities are
expressed in powers of the Planck mass = /hc/G, Planck lengthp = 1/hG/c3, or Planck
timetp = Ip/cC.

2. Preliminaries

2.1 Spherical Configurations

Consider the space time metric
ds’ = gy dx¥dx’, (2.1)

in which the metric tensogy,, is time independent. In general relativity we distingushmeen
static and stationary metric. Stationary configuratiors described by the metric coefficients
that do not depend on time. For static configurations we algaire the time reversat (- —t)
invariance of the metric. In this case, the mixed componggtsiust vanish.

Static fluid configurations are spherical. The most genestimgenerated by a spherical
mass distribution is of the form

ds? = £2dt2 — A2dr? — r2(d6? + sir? 6d¢?), (2.2)

whereé andA are functions of only. The functioné, called the “lapse function", may be repre-
sented in terms of the gravitational potential

§=e"", (2.3)

1see A. Muller's lecture at this School
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and the function\ is related to the enclosed masgs(r)
~1/2
1 (a-200) e

It may be easily shown [10] that Einstein’s equations redocevo nontrivial independent equa-
tions

2d¢ 5 A%—1
—— = -8mA°T' 2.
Zar 8mr r+ > (2.5)
2dr oo A2-1
For a perfect fluid
T =-p, T%=p. (2.7)
Using (2.4), Einstein’s field equations take the form
3
ﬁ: M+ 4T pj 2.8)
dr r(r—24)
d.z
= ATT?D. 2.
ar mep (2.9)

The latter may be written in the form
() = /Ordr/4nr/2p(r’), (2.10)
which shows that the functionZ may indeed be interpreted as an enclosed mass.
Finally, if we impose the particle number conservation ¢@st (C.1), we have
/()Rdr4nr2(1—2////r)‘1/2n(r) —N, 2.11)

where we have employed the spherical symmetry to replagertiper volume integral as
R
/ UHds, = / dram2A. 2.12)
s 0

2.2 Schwarzschild Solution

Assume the absence of matter in the regicnR. In this region equations (2.8) and (2.9) may
be easily solved. One finds
A (r) =M = const, (2.13)

§(r)= (1— 2—M>1/2- (2.14)

r
The metric takes the form

-1
ds? = (1— @) dt? — (1— ¥> dr? —r?(d6? +sir? 6d¢?). (2.15)

This is known as th&chwarzschild metricThe constanM is the mass of the source. In the weak
field limit r > M, we obtain the Newtonian potential
M
¢:In£z—7. (2.16)
This metric describes the gravitational field outside of splgerical object of madd, including a
black hole. The sphere with radius= 2M, at which the metric diverges, is the Bient horizon
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2.2.1 Birkhoff’'s Theorem
Theorem 1. The exterior spacetime @alll spherical gravitating bodies (not necessarily static) is
described by the Schwarzschild metric.

The proof is simple. See, e.g., Misner et al. [3].

2.3 Spherical Stars

Generally, we assume thatand p satisfy an equation of state, e.g., in the form given by
(C.25) and (C.26), and are generally functions of Idcandu which in turn depend o through
the Tolman equations (C.10). Numerical integration of 2r&d (2.9) front = 0 to some radiu®
with the boundary conditions

1/2
£(R) = (1— 2’//ZR(R)> . #(0)=0 (2.17)

is rather straightforward and, as a result, a nontrivialesighl distribution of matter is obtained.
The boundary is usually naturally provided at the radRusherep = p = 0. In the case when the
p = p= 0 point does not exist, one must integrate up to infinity oraip thosen cutoff radius.

It is often more convenient (e.g., if the equation of statgii®n in the formp = p(p)) to
express the field equations in the Tolman-Oppenheimerefo(RKOV) form

dp M+ 41r3p
a——(p—i‘P)m’ (2.18)
%—/r// = 41r?p. (2.19)

Here, equation (2.18) is obtained from (2.8) with the helfhefequation of hydrostatic equilibrium
(B.14) which may be written as
din§ 1 dp
dr  p+4pdr’
The set of equations (2.18)-(2.20) is called TV equations

(2.20)

2.4 Newtonian Limit

General relativity reduces to Newtonian theory in the liofitveak gravity and low velocities.
The Newtonian limit is achieved by the approximatiér=e? ~1+¢,.#/r < 1, andp < p. In
this limit, the two equations, (2.18) and (2.19), can be coedbto give one 2nd-order differential
equation

1dr2dp
r2drpdr

In this approximation, the relativistic energy dengitys just the rest mass density

—4mnp. (2.21)

p=mn (2.22)
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2.4.1 Polytropes

If the equation of state is in the polytropic form (C.32), tbguilibrium configurations are
calledpolytropes Owing to (2.22) we can rewrite the equation of state as

p=Kp", (2.23)
where o
K=—%. (2.24)
It is convenient to write
Fr=1+1/n, (2.25)

wheren is called thepolytropic index Then the Newtonian equation (2.21) can be reduced to a
simple form by writing
p=pO; r=az (2.26)

(n+ 1)Kpcl/n1] 1/2

a= (2.27)

amn

wherep. is the central density. Then
1d_,d6
— 2 REY
Z2dz dz
This is theLane-Emden equatiofor the structure of a polytropic index This equation can be
numerically integrated starting from the center with thidahconditions

;L) (2.28)

8(0)=1; ©'(0)=0. (2.29)

Forn <5 (I > 6/5), the solutions decrease monotonically and have a zeréirdteavaluez = z;;
6(z1) = 0. This point corresponds to the surface of the star, whetep = 0. The radius is

n+ DK]Y? -
R=az = [( 4n) ] pl V2, (2.30)
while the mass is
M :/4nr2pdr
AN
:4nor3pc/ Z0"dz
0
'z2d ,do
_ 3 27
= —4mna pc/o dZz2 4,97
3/2
_ 4n[(nz ;)K} P21 (2.31)

where the absolute valyé;| has been introduced becawdie= 6'(z;) is negative. Eliminating.
between (2.30) and (2.31) gives the mass-radius relatiopdigtropes [4]:

n/(n-1)
M = 4RG3/ [%} 2302101 (2.32)
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The solutions we are particularly interested in are
r=5/3, n=3/2 2z =2365375 Z|6; =271406 (2.33)

r=4/3, n=3, 2=689685 Z|6] =201824 (2.34)

where the values 5/3 and 4/3 bfcorrespond to the nonrelativistic and ultrarelativisggimes,
respectively (see appendices C.4 and C.5).

3. Compact Astrophysical Objects

Traditionally, compact astrophysical objects represast final stages of stellar evolution:
white dwarfs (WD), neutron stars (NS), and black holes (BHjey differ from normal stars in
two basic ways.

First, since they do not burn nuclear fuel, they cannot stighemselves against gravitational
collapse by generating thermal pressure. Instead, eltlegrare prevented from collapsing by the
degeneracy pressure (WDs and NSs) or they are completdypsell (BHs). With the exception
of the spontaneously radiating “mini" BHs with masses lesst132 kg and radii smaller than a
fermi, all these objects are essentially static over theiife of the universe.

The second characteristic distinguishing compact objeota normal stars is their exceed-
ingly small size. Relative to normal stars of comparablesnesmpact objects have much smaller
radii and hence, much stronger surface gravity.

Mass Radius Mean Density Surface Potential
Object M R gcm3 M/R
Sun M., R. 1 106
White dwarf| SM., ~10 2R, S 10 ~ 104
Neutron star| ~1—3M, ~ 10°R; S 100 ~ 107t
Black hole | Arbitrary M ~M/R® ~1

Mo = 1.989x 10°° kg; R, = 6.9599x 10° km

3.1 White Dwarfs

White dwarfs are stars that no longer burn their nuclear &nel their gravitational collapse
is supported by the pressure of degenerate electrons. iflasis and radius are aboubML, and
5000 km, respectively.

3.1.1 Equation of State

We assume that the interior of a WD is almost completely iediiplasma at a temperature
T <« me. Hence, the electrons are assumed to be degenerate. Thigy gensa WD is basically
the density of barionic matter (neutrons end protons). Teegure is dominated by the pressure
of electrons. This may be seen as follows. In the nonresdtiviregime the pressure roughly
equals the average kinetic energy (see equation (C.14)Jndw the momentum conservation,
the electron and proton average momenta are equal and lieeicgverage kinetic energies in the
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nonrelativistic regime are inverse proportional to theasses. Hence, the pressure of electrons is
roughly by a factor ofn,/me ~ 2000 larger than the pressure due to nucleons.

To determine the equation of state, first assume that thér@bscare nonrelativistic. The
density is related to the number density of electrons as

P = NeMhNe, (3.1)

where the facton, to a good approximation, equals the number of nucleonsreereiectron, i.e.,
ne=A/Z. For example, for completely ionized purtC, ne = 2. The number of electrons is given
by (C.24), withm = me. Hence,

1
p= ﬁnems(mex):i 3.2)

wheremgX = g = /u2—mZ is the Fermi momentum of the electrons. We could now use the
relativistic expression (C.26) for the pressure togethigh {8.2) and numerically solve the TOV
equations to find the entire range of white-dwarf solutions.

However, it is instructive to consider the nonrelativisiicd extreme relativistic regimes sep-
arately because, in these cases, the equation of stateagdadgtropic form. The pressure in the
two regimes is given by (2.23) with = 5/3 for the nonrelativistic an@ = 4/3 for the extreme
relativistic regime. Using this and the solutions for théyfropes (2.30)-(2.34) we find the radius
and the mass of the WD:

e Low-density (nonrelativistic) regime.

2/3.4/3
r:g; K:%, (3.3)
SMeMy’ “Ne
~1/6 _5/6
— _ P Ne
R=1122x 10* <1069 Cnr3> ( > ) km, (3.4)

M= o.4964<L> v (%) .,

10%gcm3 2

R\ %/ne\ 5
_o.7o11<m> (?) M. . (3.5)

e High-density (ultrarelativistic) regime.

4 1/3,.2/3
-4 K:%7 (3.6)

4y “ne

-1/3 ~2/3
_ Pc Ne
R=3.347x 10" (Fﬁgcwg) (2) km, (3.7)
_ Ne\?

M _1.457( 2) M. . (3.8)
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Note thatM is independent gb. in the extreme relativistic limit. We conclude that@s— oo,
the electrons become more and more relativistic and the asyssptotically approaches the value
(3.8) asR — 0. This mass limit is called th€handrasekhar limjtand represents the maximum
possible mass of a WD [11].

Of course, the limiting radius is not zero. The integratibthe TOV equations using the exact
degenerate Fermi gas equation of state would also giverttitng value ofR of the order of

Mp)

Rech ~ P

~ 5x 10°%km. (3.9)

3.2 Neutron Stars

If the mass of the collapsing star is larger than the Chaed#ttes limit, the degeneracy pres-
sure of the electrons can no longer support the gravitdtiattaaction and the collapse does not
stop. As the density increases, the Fermi endtgy= u of the electrons increases according to
(3.2).

At a density of about % 10’ g cmi 3, the Fermi energy of the electrons has risemjo- mp =
1.29 MeV where electrons can now be absorbed by protons thrihwegimverse3 decay

€ +p—n+Ve (3.10)
This reaction cannot come to equilibrium with the reversetien
N+Ve—€ +p (3.11)

because the neutrinos escape from the star and the nBrdealay cannot occur because all electron
energy levels belovE = m, — m,, are occupied whekr > m, —m,. At a density in the range
10’ < p < 4x 10 g cn 2 the medium is a composition of separated nuclei in equilibrivith a
relativistic electron gas. Ap ~ 4 x 10 the ration/p reaches a critical level. Any further increase
leads to a “neutron drip" —that is , a two-phase system in vbiectrons, nuclei, and free neutrons
coexist. When the density exceeds abouwt ¥'? g cn3, more pressure is provided by neutrons
than by electrons. The neutron gas so controls the sityatio& can describe the medium as one
vast nucleus with lower-than-normal nuclear density.

As the density reaches the normal nuclear density of about

Prucl = % =2x10%gem 3, (3.12)
there is a phase transition in which nuclei dissolve. Thaltieg fluid consists mostly of neutrons
with a small (< 5%) fraction of electrons and protons. The pressure is dataéhby the degen-
erate T = 0, u, > my,) gas of neutrons. Can the degeneracy pressure of neutrppersthe star
against collapse?

Assuming that the Newtonian calculations are still valid density not very much higher than
Pruc, We can use the high-density results obtained for WDs bt mit— m,. The maximal mass
remains the same as in (3.9) but the value of the crifRialof the order of

R~ TP 2 5km, (3.13)

m

10
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Figure 1: Mass versus radius for fermion stars at zero temperatureeigéneral-relativistic framework
(solid line) compared with the corresponding Newtonianrapjnation (dotted line). The dashed line is the
Schwarzschild BH limiM = R/2.

which is close to the Schwarzschild radius of the sun, so ¢gdest of GR effects is not justified.
We have to solve the TOV equations with the equation of steftesiclear matter. The first
numerical calculation was performed by Oppenheimer anddib[12] who used the relativistic
degenerate Fermi gas described by (C.24)-(C.26). In Fig filat the mass of the NS as a function
of the radiusR. The maximum of the curve corresponds to the OV limit. Thetlirg values are

[13]
1/2 2 1/2
Rov — 3.357% (g) —96 (1 §§V> (gkm> , (3.14)
1/2 2 1/2
Moy — 0.38426% (g) —07 (1 S;V> (S) M., (3.15)

whereg is the fermion degeneracy factor. This limit is reached wiinencentral density becomes

Pc = 5x 10*°gem2 with g = 2 for neutrons. The part of the curve left from the maximum-rep
resents unstable configurations that curl up around thd pomesponding to the infinite central-

density limit.

However, the degenerate neutron gas equation of state i®alidtic because at such large
densities the effects of nuclear forces must be includedreMealistic equations of state predict
the maximum NS mass in the range 1.5 - BI4. Hence, the maximal mass is rather sensitive
to the not very well-known equation of state for nuclear eratSince the density inside the star
varies from very large central values to zero at the surfdmeequation of state is actually rather
complicated as the star may contain different phases oéauchatter.

The possibility to identify some compact objects as BHsgelh part on being able to state
categorically that the observed object has a mass largethieanaximum allowed mass of a stable

11
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NS. It turns out that it is possible to set an upper limit to M® mass based on rather general
assumptions (Rhodes and Ruffini [14]):

1. The TOV equation determines the equilibrium structure.
2. The equation of state satisfies the local stability caomlit

c

Qa‘%
Tlo

>0, (3.16)

that is, the speed of sound is real. If this condition werdatemnl, small elements of matter
would spontaneously collapse.

3. The equation of state satisfies the causality condition
<1, (3.17)
that is, the speed of sound is less than the speed of light.
4. The equation of state below some “matching dengityis known.

Rhodes and Ruffini performed a variational calculation tearine which equation of state
abovepy maximizes the mass. Then, the numerical integration of {D¥ &quations for a chosen
equation of state beloywy gives

Po 12
Mmax =~ 3.2 Mg . 3.18
me <4.6 x 10l4g cnr3> © (3.18)
A semianalytic treatment of Nauenberg and Chapline [15j wiitnilar assumptions about the
equation of state gives
Mmax =~ 3.6M,, . (3.19)

Abandoning the causality constraint still leads to a sewesiss limit, assuming general relativity
to be valid. One finds (see, e.g., Hartle and Sabbadini [16])

Mmax~ 5.2M., . (3.20)

In their estimate, Rhodes and Rulffini took the the so-calladisbn-Wheeler equation of state
which accurately describes the nuclear matter densitiesvitbe neutron drip. In fact, it turns out
that the upper mass limit is not very sensitive to the eqoaifestate used beloyw. It is important
to note that even if a new physics exists at subnuclear arglsuk level (preons, pre-preons etc.;
see, e.g., a black-hole sceptical paper [17]), it is redderta expect that the equation of state will
still satisfy the above conditions and hence, the abovedioannot be significantly altered.

3.3 Black Holes

What happens if the mass of the collapsing star is largerttimmaximal allowed NS mass?
In such a case, there is nothing to prevent the star fromdurbllapse ending in a BH

2t has been recently proposed that loop quantum gravitysffgtop the collapse to a singularity by a bounce of
the infalling matter [18]

12
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Astrophysical BHs are macroscopic objects with massesngrigpm severaM,, (X-ray bina-
ries) to 16 — 10°°M,, (in galactic nuclei). Being so massive, these BHs are desdrcompletely
by classical general relativity. As such, each BH is charmtd by just three numbers: mass
M, spin parametea, defined such that the angular momentum of the BBi{4saM, and electric
chargeQ [3, 4, 19] (see also J. Zanelli's lectures at this School)tualty, an astrophysical BH is
not likely to have any significant electric charge becauselitusually be rapidly neutralized by
surrounding plasma. Therefore, the BH can be fully charaete by measuring just two parame-
ters,M anda, of which the latter is constrained to lie in the range froomOr{rotating BH) toM
(maximally-rotating BH).

3.3.1 Spherical Collapse

A useful toy model that illustrates the collapse is a sefivgating spherically symmetric ball
of dust (i.e., zero pressure fluid). Birkhoff’s theorem (g@t2.2.1) implies that the metric outside
the star is Schwarzschild (section 2.2, equation (2.15h)s 16 valid outside the star but also, by
continuity of the metric, on the surface.rl= R(t) on the surface, we have

ds? = [(1— %M> — (1— %M> ° (?j—:v 2] dt? — R?(d6? + sir? 6d¢?). (3.21)

Zero pressure and spherical symmetry imply that a point ersthiface follows a radial timelike
geodesicd® = dg = 0 andd$ = d12 > 0, so

BRI @] e

_de
S dr’
Sinceé = d /ot is a Killing vector, by Proposition 1 in appendix A.5 the emeper unit mass

where

{ (3.23)

dx# . 2M ) .
E:Eug=goot: (1—?>t. (3.24)

is a constant of motion. Note th&t> O for timelike and null geodesics as long&sis timelike,
i.e., aslong aR > 2M. The gquantityE is constant along the geodesics &é 1 for gravitationally
bound patrticles. Using (3.24) in (3.22) gives

dR\? 1 2M\? [ 2M 5
— | == (1-— — —1+E“). 2
(&) &%) (F-) @29
We plot this function in Fig. 2. The surface radial veloditR/dt as a function oR has a zero at
R = Rnax and a minimum aR = 2M. We consider the collapse to beginRit= Ryax with zero

velocity. The radiuRk then decreases and approacRes 2M asymptotically a$ — co. This may
be seen by integrating

Rmin
t=E dR(1-2M/R)"}(2M/R—1+E?) /2, (3.26)
Rmax

13
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(%)

M R
Rmax oM

T 1-E?

Figure 2: The surface radial velocity squared ver&i®r a spherically symmetric collapse of a ball of dust
(figure from [7]).

(&)

0 oM Rmax

Figure 3: The surface radial velocity as seen by the observer on tli@csuffigure from [7]).

whereRmin > 2M. Obviouslyt — o asRnin — 2M. So an observer “sees” the star contract at most
to R= 2M but no further.

However, from the point of view of an observer on the surfacéhe star, the relevant time
variable is the proper time along a radial geodesic, so we use

d 1d 1 M d
a:tTa:E(l‘?)a (3.27)

to rewrite (3.25) as

drR\? /2Mm Rmax
(&) = (R -vre)=a-e(F-y). 529

The star surface falls frolR = Ryax throughR = 2M in finite proper time. In fact, it reaches the

14
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R = 0 singularity in the proper time
71)Y
So, for an observer following radial geodesics, the stdapeks to a singularity in a finite proper
time of the order of 10° s (~ Rscr/Cc = 3km/300000 km s1).
Nothing special happens B= 2M, which suggests that we investigate the spacetime near

R=2M in coordinates adapted to infalling observers.

3.3.2 Eddington-Finkelstein Coordinates

A singularity of the metric is a point at which the determihaheither the metric tensor or
of its inverse vanishes, or at which some elements of theiermtits inverse diverge. However, a
singularity of the metric may be simply due to a failure of tteordinate system. A simple two-
dimensional example is the origin in plane polar coordigat®uch singularities, usually referred
to ascoordinate singularitiesare removable by a coordinate transformation.

If no coordinate system exists for which the singularityésmpvable, then it is irremovable,
i.e., a genuine singularity of spacetime. Any singulariy Which some scalar constructed from
the curvature tensor blows up as it is approached, is irrallev Such singularities are called
curvature singularitiesor true singularities The singularity at = 0 in the Schwarzschild metric
is an example.

We now show that the apparent singularity of the Schwarlkbchétric at the Schwarzschild
radius is removable. On radial null geodesics in Schwailtsspacetime

1
di? = ————dr? = (dr")?, (3.30)
(1—2M/r)
where oM
* r—
r=r+2Min oM ‘ (3.31)

is theRegge-Wheeleaur tortoise radial coordinate Asr ranges from Bi to oo, r* ranges from-—co
to co. Thus
dit£r*)=0 (3.32)

on radial null geodesics. Now, define a new time coordinaigofing radial null coordinate) by
V=t+r", —co<v<oo (3.33)

and rewrite the Schwarzschild metric imgoing Eddington-Finkelstein coordinat¢20] v, r, 6,

andg:
d¢ = (1—@> <dt2—dr*2)—r2dQZ
r
= (1—27'\/') dv2 — 2drdv—r2dQ?. (3.34)

This metric is initially defined for > 2M because the relation=t + r*(r) betweenv andr
is defined only forr > 2M, but it can now be analytically continued to alt> 0. Because of

15
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the drdv cross-term, the metric in EF coordinates is nonsingular-a2M, so the singularity in
Schwarzschild coordinates is really a coordinate singylarhere is nothing at = 2M to prevent
the star from collapsing through= 2M.

However, no future-directed timelike or null worldline ceeachr > 2M from r < 2M. This
may be seen as follows. Wher< 2M, we have

2drdv= —ds — <¥ — 1) dv? —r?dQ? <0 whends’ > 0. (3.35)

Hence, for all timelike or null worldlinegjrdv < 0. The null coordinatelv > 0 for future-directed
worldlines, sodr < 0 with equality wherr = 2M, dQ = 0 (i.e., ingoing radial null geodesics at
r=2M).

Thus, no signal from the star’s surface can escape to infontge the surface has passed
throughr = 2M. The star has collapsed tobéack hole For the external observer, the surface
never actually reachas= 2M, but asr — 2M, the redshift of light leaving the surface increases
exponentially fast [19] and the star effectively disappefsom view within a time~ M/mg, ~
5x 107 %s. The late time appearance is dominated by photons escpinghe unstable photon
orbit atr = 3M.

From the point of view of an outside observer, a star collapsd a black hole never appears
to collapse, but rather freezes at the horizon. How then tche said that the star collapses to a
singularity, if it never appears to collapse even till thd efithe Universe?

The star does in fact collapse inside the horizon, even thangutside observer sees the star
freezing at the horizon. The freezing can be regarded ashtthgvel time effect. Space can be
regarded as falling into the black hole, reaching the spééght at the horizon, and exceeding the
speed of light inside the horizon [21]. The photons that ase#y at the horizon and are pointed
radially upwards stay there for ever, their outward motimotigh space at the speed of light being
canceled by the inward flow of space at the speed of light.lllthvie that it takes an infinite time
for light to travel from the horizon to the external observEe star does actually collapse: it just
takes an infinite time for the information that it has collegh$o get to the outside world!

4. Rotating Black Holes

The spacetime around a rotating black hole is describeddoldinr metric expressed in Boyer-
Lindquist coordinates [3, 4, 5]

pa2
d< — (1-?) dt%LMrzs'” % tde

((r2+a2)2 — AaZsirt 6
B s

) sir? 6d¢? — %drz—Zdez, (4.1)
with
A=r?2—2Mr+a? S=r?+a%cog6. (4.2)

The parametera andM are related to the total angular momentidies aM. The horizon occurs at
those points wherA = 0, i.e., at the roots of the quadratic equatiba- 0

rp =M++vM2-2a2. 4.3)
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Note that|a] must be less thaM for a black hole to exist. & exceededM, one would have
a gravitational field with a “naked" singularity, i.e., onetrwithin an event horizon. A naked
singularity is forbidden by the so callambsmic censor conjecturdor details, see Wald [5] and
references therein). A black hole wiftl = M is called a maximally rotating black hole.

Remarks
e Whena = 0, the Kerr solution reduces to the Schwarzschild solution.

e Taking ¢ — — effectively changes the sign af so we may choosa > 0 without loss of
generality.

4.1 Geodesic Motion

A straightforward approach to finding all geodesics is tegnate the geodesic equation (A.12)
directly. However, it is often more economic to simplify theblem by symmetry considerations.
The Kerr spacetime is stationary and axially symmetric soettexist two Killing vector€ andy
which by Proposition 1 (appendix A.5) yield a conserved gné& and an angular momentum
(per unit mass) along geodesics

2Mr\ . 2Marsinf .
E:U“fu:<1— 3 >t+ zl ®, (4.4)

Marsie0, [ (r2+a2)* - pa?sint 6
2 t 2

) sif 0o, (4.5)
wherext = ut = dx* /dt. In addition we have
guvXHx’ =k, (4.6)

wherek = 1, 0, and—1 for timelike, null, and spacelike geodesics, respectiv€dne may use
equations (4.4) and (4.5) to solve fioand @ in terms ofE andL, and substituting the results into
(4.6) one obtains a differential equation for In the case of equatorial geodesiés= 11/2, one
finds

1.
Er +V(r)=0, 4.7)
where ) )
M L 1 a M
V=-K—t—+-(k—E3(1+= |- =(L—aE)> 4.
Kr+2r2+2(K )<+r2> r3( aE) (4.8)

Thus, the problem of obtaining the geodesics in the eq@tpldne reduces to solving a problem
of ordinary, nonrelativistic, one-dimensional motion meffective potential. The calculations are
relatively simple for circular orbits. Circular orbits agowherer'= 0, which requires

o

V=0 5-=0. (4.9)

For k > 0, equations (4.9) have solutiofgr) andL(r) for all r > ron (for details, see [4, 22]),
wherer > rpy, is the radius of the photon circular orbit.
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4.1.1 Photon Circular Orbit

Photon circular orbits are possible only for particulariragh. The requirements (4.9) for null
geodesicsK = 0 in (4.8)) yield a cubic equation ig'r

r2—2M+2av/Mr =0 (4.10)
with the solution [22]
Foh = 2M {1+cos[§ cos‘l(:Fa/M)} } (4.11)

Fora=0, rph = 3M, while fora =M, ryn = M (corotating) ompn = 4M (counterrotating orbit).
Fork = 0, equations (4.9) have a solution

L ==+E,/3r], +a2. (4.12)

The photon orbit is the innermost boundary of the circulditerfor particles, i.e., for timelike
geodesicskK > 0).
4.1.2 Angular Velocity

The angular velocity of an orbiting particle is defined as

u @

0= 1 (4.13)
Using the parameterization (B.9) for the velocity compdagit may be easily shown (exercise)
thatQ can be expressed as

A
Q:_90<p+ 900’ (4.14)
9o +Adog
where L y
A=——o =22 4.1
= m (4.15)

For equatorial circular orbits one finds [22]

M1/2

This is the general-relativistic form of Kepler’s third ldar equatorial circular orbits. In this case,
the quantityQ is called theKeplerian frequency
4.1.3 Innermost Stable Circular Orbit

It is obvious that not all circular orbits will be stable basa, in addition to (4.9), stability
requires

oA
—>0. 4,17
From (4.8) we obtain
2M
1-E2>"—. 4.18
> (4.18)
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Substituting the squtioE(r) for timelike geodesics, we obtain a quartic equatior/infor the
limiting case of equality. The solutian is the radius of thinnermost stable circular orbiiSCO)
also referred to as thmarginally stable orbi{22]

fis = M [3+ ZoF (3—-20)Y2(3+ 21+ 222)1/2] , (4.19)
with
1/3 2\ 1/3 2\ 1/3
a a a
w2 [ ) ()
a2 1/2
Zo= <3W+z§> . (4.20)

Fora=0,ris = 6M; for a= M, rig = M (corotating)ris = 9M (counterrotating). Obviously, com-
pared with the photon circular orbit, the innermost stalieutar orbit satisfiesis > rpn.

A quantity of great interest for the potential efficiency oBB accretion disk as an energy
source is the binding energy of the ISCO. Defining the effiggjen as the maximum binding
energy per unit rest mass, from (4.18) (with =) one finds

1/2
2M > . (4.21)

nN=1-Es=1— <1—?iS
Plugging in the solution (4.19), one finds that the efficiencyncreases from & \/% (a=0) to
1-/1/3 (a=M) for corotating orbits, while it decreases from-1/8/9 (a=0) to 1- /25/27
(a=M) for counterrotating orbits. The maximum binding ayefor a maximally rotating BH is
42.3% of the rest-mass! This is the amount of energy thatéssed by matter spiraling in toward
the BH through a succession of almost circular equatortaitrA negligible amount of energy is
released during the final plunge framg into the BH.

4.2 Ergosphere

A curious property of rotating BHSs is that there exist pagticajectories (i.e., timelike geode-
sics) with negative energies. The energy defined by (4.4pearegative only if the time translation
Killing vector £ is spacelike. The vectdr is normally timelike ato and in Schwarzschild space-
time it is timelike everywhere outside the horizon. HowevarKerr spacetime it need not be
timelike everywhere outside the horizon because

2Mr
IJ p— pu— —_——
E E[J gOO <1 r2+aZC0§9> ’ (422)
so¢ is timelike only if
r2+a?cos 6 — 2Mr > 0. (4.23)

This implies

r<M-—+vM2—-a2co6,
r>M+4 /M2 —a2cog 6. (4.24)
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The inner boundary of this region is not physically relevasit is beyond the horizon. The outer
boundary , i.e.,the hypersurface

r=M++vM2—a2cog6 (4.25)

is called theergosphereor thestationary limit surface The ergosphere intersects the event horizon
atd =0, m, but it liesoutsidethe horizon for other values &. Thus,&é can become spacelike in a
region outside the event horizon. This region is calledetfiywregion Hence, a particle trajectory
inside the ergosphere may have negative energy!

4.2.1 Penrose Process

In 1969 Penrose exploited this property of Kerr BHs to desigmechanism for the extraction
of energy from a BH [23]. The mechanism proposed by Penrogebeaunderstood as follows.
Suppose that a particle approaches a Kerr BH along a geodesji€t is its 4-momentum, we can
identify the constant of motion

E=d"&y (4.26)

as its energy (see section A.5). The trajectory is chosehatdttpenetrates the ergosphere. Now
suppose that the particle decays into two others, one oftwits into the hole with energgin,
while the other escapes towith energyEq,.. By conservation of energy

Eout=E — Ein. (4.27)

Normally, Ej, > 0, soEg < E, butEj, = q#] ¢, is not necessarily positive in the ergoregion because
& may be spacelike there. Thus, if the decay takes place irrgfoeegjion, we may havig,; > E,
soenergy has been extracted from the black hole

The energy extraction by the Penrose process is limiteddogutsa theorem of BH mechanics,
which states that the surface area of the BH horizon neveedses [24]. The area of the horizon

IS
A:/\/detgded(p:&TM (M+VMZ=22), (4.28)

where deg = ggeQpy is the determinant of the metric on the horizon surface. Thtase metric
is obtained from (4.1) by settindt =dr =0,r =r,. = M ++vM2—a2. The maximum energy
extracted by the Penrose process is obtained if the BH spurces to zero, i.e., if the BH becomes
Schwarzschild. A Schwarzschild BH with the same area wileha masdV;; (irreducible mass)

which satisfies
16mM2, = 87M (M +V/M2— az) . (4.29)

This givesMZ = M/2 for a maximally rotating BH& = M). Hence, the maximally extracted
energy from a BH of masM is M — M, = M(1— 1/\/5). This represents: 29% of the mass
energy of the BH.

The Penrose process for extracting energy from a rotatinge®idires particular conditions
[22] which are very difficult to realize in nature. A more prising mechanism for extracting
energy from arotating BH is via magnetic fields (Znajek anarlford [25, 26],) because magnetic
fields are capable of connecting regions very close to thedBEdions farther out. Recent general-

relativistic magneto-hydrodynamics (MHD) simulationsaaihagnetized plasma in the ergosphere
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of a rotating BH (Koide et al. [27, 28, 29], Semenov et al. [3 Villiers et al. [31], McKinney

and Gammie [32]) show that, near the equatorial plane, thelfies are azimuthally twisted and
the twist then propagates outward and transports the emdogg the rotation axis. The process

is dubbed theHD Penrose processecause of a close analogy between this mechanism [29] and
Penrose’s original idea [23].

5. Stellar Mass BHs versus NSs

Astrophysical observation of NSs and BHs is difficult beesiley are dark and very compact.
Besides, a BH the mass of which is of the order of a few solaisegas not easily distingushed
from a NS because of their similar properties. So far, NSsstellhr mass BH candidates have
been identified only as the so-call¥dray binaries

5.1 X-ray Binaries

An X-ray binary is an X-ray source with an optical companiosyally a normal star. Most of
the Galactic X-ray sources are probably compact objectetieg gas from the companion star.
This interpretation of the observational data follows frtbrase facts [4]:

1. The variability of X-ray emission on short timescales liegpa small emitting region.

2. Many of the sources are positively confirmed to be in birsystems, with optical primaries
orbiting optically invisible secondaries.

3. Mass accretion onto a compact object, especially a newstiar or a black hole, is an ex-
tremely efficient means of converting released gravitatigotential energy into X-ray radi-
ation.

In general, the list of possible Galactic X-ray source cdatdis includes all three kinds of
compact objects: WDs, NSs, and BHs. But in special casesspieific nature of the compact
object can be identified.

5.1.1 Binary X-ray Pulsars

Binary X-ray sources displayingeriodicvariations are calletlinary X-ray pulsars The pulse
periods are observed in the rangé §5 P .S 1000 s. Those with short periods of about 1 s are
normally identified with rotating NS.

The standard model explains X-ray emission as due to theecsion of the kinetic energy
of the accreting matter (coming from the intense stellardwohthe companion optical star) into
radiation, because of the interactions with the strong mﬁ«gﬁeld” of the neutron star, of the order
of 10'—1@ T. The magnetic field of the compact object drives the acdnetatter onto the magnetic
polar caps, and if the magnetic field axis is not aligned withgpin axis, then the compact object
acts as a “lighthouse”, giving rise to pulsed emission whmenkteam (or the beams, according to
the geometry) crosses our line of sight.

The reasons why WD and BHs cannot be pulsars are:

3Obtained from conservation of the magnetic flux during thecpss of collapse from a “normal” sta & 10-3-
102 T, R~ 10° km) to a neutron staiR ~ 10 km)
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e Rotating WD are excluded because they are too large anddbesity too low to explain
such short periods.

e Rotating BH are excluded because they are axially symmeatddave no structure on which
to attach a periodic emitter. Any mechanism depending oretioa would not be periodic
to the observed precision. However, accretion disks rodadkbholes could produce the
so-calledquasi periodic oscillationgsee section 5.3)

5.1.2 Mass Measurements

The first important criteria that may be used to distinguigit-bfrom a NS are their masses. The
fact that there exists a maximum mass of a compact relativésar such as a NS of the order
~ 3M,, (see section. 3.2) allows the following simple criteria ifitentifying BH candidates [8]:

If a compact astrophysical object has the mass larger thauaBM,, then the object is very likely
a black hole.

The most reliable means of determining astronomical maasevia Kepler’'s Third Law.
Consider two spherical massgls andM, in a circular orbit about their center of mass (CM). The
separation of the two massesiand their distances from the CM aaganda,. Clearly,a=a; +a,
andMia; = Moay by the definition of the CM. Any spectra emitted from, eld,, will be Doppler
shifted, depending on the orbital velocity projectiof M, along the line of sight:

21T .
Vo = —apsini, (5.1)
orb

wherePy, is the orbital period andthe inclination of the orbital plane to the line of sight. Bhif
the spectrum oy shows periodic variations, thé¥,, andv, can be measured and hence one gets
apsini. Alternatively, for X-ray pulses one can measure periodigations in the time of arrival of
pulses. The amplitude of these variations is simply the ligtvel time across the projected orbit —
that is,ay sini/c.

Now, Kepler’s Third Law states

G(M1+M) [ 2m 2
al Porb/)

Note that this is valid also for elliptical orbits in whichsea is the semimajor axis of the ellipse.
Using this and

(5.2)

Mi+M
a= gaz, (5.3)
M1

we obtain

(M1—|— Mz)z - 2nG
The quantityf is called the “mass function" and depends only on the obblnguantitied,, and
Vo (Or agsini).

For several X-ray binaries, it has been possible to meakamnéass function§o, = f(Mp) and
fx = f(My) for both the optical companion and the X-ray source, respdygt The ratiofo/ fx

gives th mass ratio
M £\ 1/3
q=—2 = (Ti) (5.5)

f(My) = (5.4)
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and then from (5.4) we can write

(1+0)?
*sidi
A unique value foMx still depends on knowing sinln practice, the X-ray eclipse duration and/or
variation in the optical light curve are used to set georoakiGonstraints on sin

In this way a complete description of the binary system has lodtained for six eclipsing X-

ray pulsars with optical companions [4]. Their masses rdraye 1 to 2.3M., with error bars such
that all the data fit in the range 1.2 - M., which is expected on the basis of current theoretical
scenarios for NS formation. One of these X-ray pulsars idah@us Hercules X-1 neutron star
discovered in 1972 [33] in the data of the first astronomyli&teUhuru launched by NASA off
the coast of Keny4.

Mx = f

(5.6)

5.2 Black-Hole Binaries

Black hole X-ray binaries, or sholBH binariesare the binary X-ray sources with observed
masses larger than I, with nonperiodic time variability. As of today there are aaloof 20
confirmed BH binaries (Remillard and McClintock [1]) Thedrde masses makes them strong can-
didates for BHs. However, the mass estimates are relialyefanthose for which the inclination
anglei is well known, which is not always the case. Fortunatelyoadiog to (5.6),M > f(M).
The mass functiorf (M), which depends only on the two accurately measured queswitiand
Porb, IS a strict lower bound oM. Most of the 20 X-ray binaries havigM) itself larger than or of
the order B4,. Therefore, these systems are excellent BH candidatesdiegs of uncertainties
in their inclinations and companion star masses.

5.2.1 Cygnus X-1: A Black-Hole Candidate

Cygnus X-1 is a typical BH binary discovered in 1972 (Webated Murdin [34], Bolton [35])
as a first stellar-mass BH candidate. The X-ray source (X)yof X-1 is variable on all timescales
varying from ms to months and years. Recent observations #fat Cyg X-1 periodically cycles
through two accretion or spectral statésrd andlow X-ray states [36]. The most dramatic vari-
ability is the 1-ms bursts, which set a maximum size for X @f ¢iderR < 300 km and establish
the object to be highly compact.

The optical companion star (O) in the Cyg X-1 system is a gimapergiant star with a well-
known spectrum and the mass of at Ielslgt ~ 8.5M, [4]. From the measurements of the orbital
elementsP,, = 5.6 days andip sini = (5.8240.08) x 1P km, one obtains the mass function of
X, fx = (0.252+ 0.010M,,. Setting sin = 1 in (5.6), one obtains a minimum value for the mass

My < 3.3M,, . (5.7)

It is possible to set a convincing lower limit assumimgthingabout the mass of O and using
only the absence of a prominent X-ray eclipse and the estiofahe radius of O [37]. The absence
of eclipse implies

._ R
cos > 2 (5.8)

4Uhuru” means “freedom” in Swahili; the launch occurred be anniversary of Kenya’s independence.
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whereR is the radius of O and = ax + ao is the separation of the two objects. Using (5.3), we
can write this as

. R Mxsini
> — . 5.9
cost = ap sini Mx + Mg (59)
Hence,
My sini cos’i > R (5.10)
X ~ (apsini)?’ '
The function sixcosx? has a maximum value 0f/23y/3), and so
3V3fxR?
My > — . 5.11
X = 2(apsini)2 ®-11)
EstimatingR from luminosity and the effective temperature, one finds [4]
R=6.62x10° [~ ) km (5.12)
- 1kpc ' '
From (5.12) with knownfy andap sini one finds
d 2
>34 — :
Mx_34<2kpc> Mg, (5.13)

The distancal to Cyg X-1 is determined using two methods: a) from the assuomainosity com-
pared with the apparent luminosity of O and b) from the aktsampvs. distance curve calibrated
from a large sample of stars in the same direction. The estthdistance for O id ~ 2.5 kpc with
an absolute minimum of 2 kpc in order to produce the obserisedration.

We can summarize the situation as follows: the lower limii8 of 34M,, is very solid.
Adopting the more reasonable valuedf- 2.5 kpc increases this to 5K.. Various other less
rigorous but more realistic arguments, as well as more taoeasurements g, d, and fx give
even larger values. The currently accepted mass range oK€yig 6.8-13.3M, [1].

5.3 Spin Estimates

Measuring the BH spin amounts to measuring the Kerr-spaeetiarametea. In contrast
to BH mass estimates where Newtonian gravity applies, threafa BH or of any other rotating
astrophysical object does not have any Newtonian effecthenstirrounding objects. Only for
relativistic orbits does spin have measurable effectsrdfbee, to measura, we need test particles
orbiting very close to the innermost stable circular orbB8GO) (see section 4.1.3). Such test
particles are provided by the accretion disk.

The gas in an accretion disk starts from large radii and kspimethrough a sequence of nearly
circular orbits as it viscously loses angular momentum. fiaén source of instability and loss of
angular momentum are MHD effects, e.g., magnetorotatimsability [38] and magnetoviscous
instability [39]. When the gas reaches the ISCO, no mordestatrular orbits are available, so the
gas accelerates radially and free-falls into the BH. Thues,|IECO serves effectively as the inner
edgé of the accretion disk. A variety of observational methodgehaeen proposed for estimating

5The inner edge may not be very pronounced; compare, e.grutheated disk model [40]
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the radiusri, (spectral fitting method; relativistic iron line methodhetKeplerian frequenc
(quasiperiodic oscillations method), or the binding egaygtris. Next, we briefly describe some
of these methods. For more details and for references, fee [8

Spectral Fitting

When a BH has a large mass accretion Mtecorresponding to an accretion luminositys.
above a few per cent dfzqq (Se€ section 6.3.1), the accreting gas tends to radiatexipyately as
a blackbody. In this spectral state one can theoreticalutate the flux of radiatiofr (r) emitted
by the accretion disk, and hence obtain the effective teatper profileTe(r) = [F(r)/a]¥/4,
whereo is the Stefan-Boltzmann constant. If the disk emits as alitaekbody at each radius,
it is a simple matter to calculate the total spectral lumityok,dv. By comparing this quantity
with the spectral fluX=,dv received at Earth, one obtains an estimateizrpfosi /d? (essentially
the projected solid angle of the disk), where the inclination angle and is the distance to the
source. In a few BH binaries, sufficiently reliable estinsatéi, d andM are available, and thus an
estimate ofj, is obtained. Identifying;, with r;5, one then obtaina.

A major weakness of this method is that a number of effectsaailise the spectrum of an
accretion disk to deviate from a blackbody. Besides, thénotetequires accurate estimatesviyf
i, andd. Therefore, spin estimates obtained by this method shaitdelated with caution.

Quasiperiodic Oscillations

For some BH binaries, the power spectrum of intensity viarat shows one or two peaks
(more like bumps in some cases) at frequencies of a few hdridre The peaks are relatively
broad, indicating that they do not correspond to coherecitlatsons but rather to quasiperiodic
oscillations (QPOs).

One possibility is that the QPO with the highest frequencgaoh BH binary corresponds to
the circular Keplerian frequency of gas blobs at some chetiatic radius; it is plausible that this
radius corresponds to the inner edge of the disk. Using &mnsaf4.16) and (4.19), one can express
the Keplerian frequency of the ISCO as

1
Qs = -F (a/M), (5.14)

whereF (x) is a known function ok = a/M. Assuming thati, = ris, one can use this method
to estimatea provided an estimate d¥l is available. The method has been applied to a few BH
binaries (for references, see [8]). Recently, there has teegative evidence for QPOs with a period
of 17 minutes in the infrared emission (Genzel et al. [41g)rfrSgr A*, the supermassive BH in
the Galactic Center . If the QPOs correspond to the Kepldreaquency at any radius> rig, then

the BH must be rotating with > 0.5 [8]. A number of QPO frequencies in the X-ray flares from
Sgr A* have been identified by Aschenbach et al. [42]. Thealysis reveals that the emission
from the inner parts of the accretion disk is quite close &BHK horizon and they find ~ 0.99.

Relativistic Iron line
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A strong broad spectral line in the X-ray spectrum of thevaagialactic nucleus (AGN) MCG-
6-30-15 was recently discovered [43]. They interpretedlitteeas fluorescent iron & emission
from cool gas in the accretion disk. Similar broad lines ween in a few other AGN and X-ray
binaries. Whereas the rest energy of the iron line is 6.4 #®/pbserved line extends from about
4 to 7 keV. This broadening is due to Doppler blue- and reétsshis well as to the gravitational
redshift.

The line width and its shape, among other factors, depenteratdius range over which the
emission occurs and in particular on the position of theimusst radius of the disk which in turn
depends om (sinceri, = ris).

Given a system with a broad iron line, and assuming that ttieating gas follows Keplerian
orbits with radiir > ris, one can fit the shape of the line profile by adjusting and the emissivity
function; the latter is usually modeled as a power law inuadi—#, motivated by the standard disk
model [44]. The effect o is particularly dramatic. As the BH spin increases, the iiredge of
the disk comes closer to the horizon and the velocity of theilgereases substantially. This gives
a wider range of Doppler shifts, as well as a larger graviteti redshift. The detection of such
extreme levels of broadening may be taken as a strong imaticat a rapidly spinning BH.

In the case of MCG-6-30-15, the data confirm that the emissbones from a relativistic disk
and at least some of the data sets can be interpreted in térmspidly spinning BH. Assuming
that there is no emission from within the ISCO, Reynolds 4] estimatea > 0.93. Among BH
binaries, the source GX 339-4 shows a broad iron line whielmseto indicatea > 0.8 (Miller et
al. [46]).

In spite of some weaknesses, the method has the advantagerérpires no knowledge of
the BH mass or of the distance, and it solves for the disknatibni using the same line data from
which ais estimated.

The variability of the line with time means that it will be dleging to make fundamental
tests of gravity with this method. On the other hand, thealslity could provide interesting
opportunities to study disk dynamics and turbulence [47 (d®vies courtesy P. Armitage).

6. Supermassive Black Holes

Itis now widely accepted that quasars and active galactitehare powered by accretion onto
massive black holes [49, 50, 51]. Further, over the last feary there has been increasing evidence
that massive dark objects may reside at the centers of nost, all, galaxies [52, 53]. In several
cases, the best explanation for the nature of these objetttatithey are supermassive black holes,
with masses ranging from §@ 10'° solar masses. Comprehensive lists of about 30 supermassive
BHs at galactic centers may be found in [2, 54, 55, 56].

6.1 Masses and Radii

The main criterion for finding candidates for such black batethe presence of a large mass
within a small region. The mass and the size are estimated nsostly the following three meth-
ods: gas spectroscopy, maser interferometry, and megshermotion of stars orbiting around the
galactic nucleus.
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6.1.1 Gas Spectroscopy

An example of measurements via gas spectrography is givahebgnalysis of the Hubble
Space Telescope observations of the radio galaxy M 87 [37, 58

A spectral analysis shows the presence of a disklike streictfiionized gas in the innermost
few arc seconds in the vicinity of the nucleus of M 87. The gi#tjoof the gas measured by
spectroscopy at a distance from the nucleus of the order 20 g 10** km, shows that the gas
recedes from us on one side, and approaches us on the ottteg welocity difference of about
920 km s . This leads to a mass of the central objecto8 x 10° M, and no form of matter
can occupy such a small region except for a black hole. Thiseisnost massive black hole ever
observed.

6.1.2 Maser Interferometry

A clear and compelling evidence for black holes has recdmtign discovered in the radio
regime: BHO masers orbiting compact supermassive central objects. sfrhcture of accreting
material around the nearby galaxy NGC 4288<6.4 Mpc) has been studied in detail [59, 60, 61].
with the aid of very long baseline interferometry (VLBI), igh provides an angular resolution as
fine as 20Quas (microarcseconds) at a wavelength of 1.3 cm and a spesgmiition of 0.1 kms!
or less, radio interferometry measurements have showrnhbajas follows circular orbits with a
nearly perfect Keplerian velocity profile (1 r /2, see Fig. 1in [8]). Furthermore, the acceleration
of the gas has been measured and it too is consistent witleKapldynamics (Bragg et al. [62]).
From these measurements it is inferred that there is a dgectolith a mass of 5 x 10'M,
confined within~ 0.13 pc= 4 x 10*? km of the center of NGC 4258. The case for this dark mass
being a BH is quite strong.

6.1.3 Virial Mass

A simple method to obtain a mass estimate is based on théthieiarem. It uses the measured
velocity dispersion of stars in the central region (ref., [B] 1007). For simplicity, we restrict
attention to a spherical cluster of radiRswvith N stars, each of masy, so the total mass of the
bulge isM = Nm

The time-averaged kinetic and potential energies of stathe galaxy’'s central region are
related by the equation (ref. [6], p. 54-56)

2
%<%>—2<K>:(U>, (6.1)

wherel is the region’s moment of inertia. If the galaxy is in equilitm, then(d?l /dt?) =0,
resulting in the usual statement of the virial theorem

—2(K) = (U). (6.2)

Furthermore, for a large number of stars, the central bulijdowk the same (in statistical sense)
at any time, and the time averaging can be dropped. SN fiaars of equal mass, we find

m U
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The average velocity squared is
1
—g 2V = () = (V) +{vg) + (V) =3(%) =307, (6.4)

whereg; is the dispersion in the radial velocity.

Velocity dispersion
For a region in space with a large number of stiltso, measures the spread in tke
component of the peculiar velocities of stars and is defised a

1 1/2
@:leﬁl. (6.5)

It is equal to the standard deviation of the velocity disttibn in the special case when

Using the (approximate) gravitational potential energy epherical distribution of the total mass
(exercise)

3GM?
U=——-—— 6.6
SR (6.6)
equations (6.2) and (6.3) yield
5Ro?
IVlvirial = Tr ) (6-7)

where the mass obtained in this way is calleduinal mass
This equation can be used to estimate a virial mass for thegatdH of M31 (Andromeda).
The central radial velocity dispersion is measured to beapmately 240 km/s within 0.2 as
(arcseconds). Given the distance to Andromeda of 770 kB@<corresponds ®~ 0.8 pc. This
gives a total mass of roughly
Mvirial = 6 X 1O7M® ) (6.8)

within a sphere of radius 0.8 pc.
This is, of course, just an order of magnitude estimate. KQ¢sgmates for the mass of the
supermassive BH of M31 range from abouf 10 10'M....

6.2 Sagittarius A*

Perhaps the most convincing evidence for a black hole conoes the center of our own
galaxy that coincides with the enigmatic strong radiosesgr A. The existence of a dark massive
object at the center of the Galaxy has been inferred from thi#oms of stars and gas in its vicinity.
The motions of the stars were observed and recorded for meag Yoy two independent groups
[63, 64, 65, 66, 67]. High-resolution infrared observasionade it possible to follow the orbits of
individual stars around this object (Schédel et al. [63; &Hez et al. [66, 67]). The movies (1st
movie courtesy R. Genzel; 2nd movie courtesy A. Ghez [68pwstime-elapsed images of the
Galactic Center region revealing the (eccentric) orbitsesferal stars.
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The projected positions of the star S2(S0-2) that was obdeduring the last decade [63, 64]
suggest that S2(S0-2) is moving on a Keplerian orbit withréopdP of 15.2 yr around Sgr Aand
the estimated semimajor axaof the order of 4.62 mpc.

Then, neglecting the star mass, Kepler’s third law (5.2¢gjiv

4Pad
Msgia = 5oz = 37 10°M,, . (6.9)

The salient feature of the new adaptive optics data is tleayden April and May 2002, S2(S0-
2) apparently sped past the point of closest approach witaciy v ~ 6000 km/s at a distance
of about 17 light-hours [63] or 123 AU from Sgr*A This implies that an enormous mass of the
central object is concentrated in a very small volume, gfisoauggesting that the object is a BH.
Another star, S0-16 (S14), which was observed during thefdasyears by Ghez et al. [67]
with the Keck telescope in Hawaii, recently made a specéadidturn, crossing the point of closest
approach at an even smaller distance of 8.32 light-hour® &6 from Sgr A* with a velocityv
~ 9000 km/s. Ghez et al. thus conclude that the gravitatioogdrgial around Sgr Ahas an
approximatelyr —* form, for radii larger than 60 AU, corresponding to 118, whereRscH =
2M = 0.051 AU forM = 2.6 x 10°M,.,.

6.3 Supermassive BHs in Active Galactic Nuclei

Many galaxies possess extremely luminous central regieitis Juminosity (in particular the
luminosity of X-ray radiation) exceeding the luminosity adinary galaxies by several orders of
magnitude. These luminous central regions are caltdiye galactic nucle{AGN). To this class
belong the so-calleduasistellar object$QSO) andjuasars®.

What makes these galaxies “active” is the emission of enosmamounts of energy from their
nuclei. Moreover, the luminosities of active galactic midluctuate on very short time scales —
within days or sometimes even minutes. The time variatias ae upper limit to the size of the
emitting region. For this reason, we know that the emittiegions of active galactic nuclei are
only light-minutes or light-days across, making them ldsmtone ten-millionth the size of the
galaxy in which they sit.

How could a luminosity hundreds of times that of an entireagglbe emitted from a volume
billions of times smaller? Of all proposed explanationdya@me has survived close scrutiny: the
release of gravitational energy by matter falling towardslack hole [49, 69]. Even using an
energy source as efficient as gravity, the black holes ivaagialactic nuclei would need to be
supermassive in order to produce the luminosities of qgasar

6.3.1 Eddington Limit

The most efficient way of generating energy is by the reledgeawitational potential energy
through mass accretion. For example, a simple calculatiows that for matter falling straight
down onto the surface of a 1M, neutron star, about 21% of the rest mass is released. This is
almost 30 times larger than the energy that hydrogen fusiorpeovide.

6Quasar is short foguasistellar radio sourceQuasars are radio-loud whereas QSOs are radio-quiet e Hagses
are sometimes confused in the literature. Both te@8Qandquasar are often used to refer to both types of objects

[6].
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The efficiency may be even larger if the matter is accretedutjin an accretion disk of a
rotating black hole. Thaccretion luminosity(i.e., the radiation energy released per unit of time)
generated by a mass accretion rafe through the disk may be written as

Laisk = NM, (6.10)

wheren is the radiative efficiency of the disc equal to the bindingrgg of the innermost stable
circular orbit per unit rest mass. As we have shown in secti@rB, 00572< n < 0.423, with the
lower and upper bounds for a nonrotating and for a maximaligting BH, respectively.

However, the radiation is interacting with the accreting gad there is a limit to the luminosity
above which the radiation pressure, acting against gtait attraction, exceeds gravity and
thereby stops the accretion.

Consider a fully ionized hydrogen plasma accreting neassthréace of a compact object of
massM. The upward force on the infalling matter is mainly due to ieraction of radiating
photons with electrons in the plasma. If the photon lumityosi L, the number of photonsl,
crossing unit area per unit time at radiuis

L

N =—— 6.11
Y7 g 4m?’ 6.11)

whereg; is the mean energy transferred radially per collision. Timaler of collisions per electron
per unit time iscNy, wherea is the photon-electron scattering cross section. The foecelectron
is just the rate at which the momentum is deposited radiaiyupit time, so we multiply by, = &

to obtain

Lo

In order for accretion to occur, the gravitational force elecctron (acting via the proton)

AM
Fgrav=— 2 P (6.13)

must exceed the radiation force (6.12). Her#,~ M is the enclosed mass at radiu€quating the
radiation force (6.12) with the gravitational force (6.%8}s an upper bound to accretion luminosity
known as théeddington limit

m,
Ledd= 4n‘///a P, (6.14)

The dominant electron-photon process in a highly ionizedtdyen gas is the scattering of photons
by free electronsThomson scatteringwith the cross section

o~ 8T (€N g6 10 Bt (6.15)
T = 3 me =0. . .
This gives
M
Leqg= 1.3 x 10°8 <—> ergst. (6.16)
Mo
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Relativistic Eddington Limit

In a strong gravitational field the expression (6.13) forgravitational force is no longer valid.
Here we derive the general relativistic expression for tred per electron (acting via the proton)
under the assumption that the energy density of the fluidliswetrelativistic, i.e.,0 = mpn and
p<Lp.

Consider a spherical shell of radiusvith thicknessdr. The force acting on the shell element
of surface aredSis

dF:dep:d“f/(l—Z////r)l/z%), (6.17)
where
d¥ =drdS1—2.4/r)"Y/? (6.18)

is the proper volume element awlp is the difference between radial pressures ahdr + dr.
Next, we substitutel p/dr by the right-hand side of the TOV equation (2.18) in which veglect
the pressure (singe< p by assumption). According to (2.11), the number of parsidgtethe shell
element id.4# = nd¥’. Then, the gravitational force per particle is

dF 74 -
Fgra\/: U = — ?2 (1— 2////[‘) 1/2. (619)
Equating|Fgyray| thus obtained with the photon force (6.12), we find
Ledd = 4"’“"///(1— 2.4 r)7Y2, (6.20)

Hence, compared with (6.14), the Eddington limit in the strgravitational field is larger by a
relativistic correction factor.

6.3.2 Radius and Mass Estimate

The luminosity of a typical quasar varies in time with a tydiperiod of 1 hr. This sets the
upper limit to the radius of about

R~ 7AU = 1.1 x 10°km. (6.21)

Considering that AGNs are the most luminous objects knolig,i$ an incredibly small size.

The typical quasar luminosity of 5106 erg s ! is equivalent to more than 500 galaxies of
the Milky Way size! Now, the constraint that the luminosityshbe less than the Eddington limit,
L < Lggq provides a lower limit for the mass of the central object

M > Mg =3.3x 1M, . (6.22)

The mass limitVlg is quite close to the masdgy = R/(2G) = 3.7 x 10°M,, of a BH the Schwarz-
schild radius of which is equal to the radius of the quddastimated above. This fact supports the
idea that supermassive BHs are responsible for poweringA@darroll and Ostlie [6], p. 1181)

The estimated value of the lower mass limit is somewhat endélithe general relativistic
correction to the Eddington limit is taken into account. iidsihe relativistic expression (6.20), we
find

M2 Mo
M>M 1+—9 =214x 1PM,., . 6.23
°< + AM2,, ZMBH> ® (6.23)
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6.3.3 Estimate of the AGN Efficiency

According to equation (6.10), the radiative efficiengyf an accretion disk is defined as the
energy it radiates per unit accreted mass. As shown in seétib3,n equals the binding energy
of gas at the ISCO, which in turn depends on the BH spin paeraet

In a typical accretion system, one can easily measure thretamt luminosityL gisc (provided
the distance is known), but one practically never has anratzestimate of the mass accretion
rateM, so one cannot calculatg for an individual AGN with the precision needed to estimate
However, a rough estimate can be made for an average AGN. &lbservations of high redshift
AGN, one can estimate the mean energy radiated by supexmeBsis per unit volume of the
universe. Similarly, by taking a sample of supermassive BHwearby galaxies, one can estimate
the mean mass in BHs per unit volume of the universe at preAsstiming that supermassive BHs
acquire most of their mass via accretion (a not unreasorafgethesis), one can divide the two
guantities to obtain the mean radiative efficiency of AGNe Turrent data suggest an efficiency
n ~ 0.1—0.15 for supermassive BHs on average (Elvis et al [70], Yu arahmkine [71]). Such
large values of] are possible only if supermassive BHs have significantiostat

It should be noted that this is only a statistical result f@ population of AGN as a whole,
and the method does not say anything about the rotation ofgewific BH.

7. Intermediate Mass BHs

So far we have been concerned with either the stellar mass(BHs 3.5 — 20M.,) or the
supermassive BHIV( > 10°M..). Are there BHs in the intermediate mass rangé-100*M.?
There isa priori no reason for such BHs not to exist.

There is a tentative evidence based on the Eddington limitttie intermediate mass BHs do
exist. In several nearby galaxies a number of ultralumirduay sources have been detected [72].
As their luminosities of the order of #®or more exceed the Eddington limit (6.16) of M,
BHSs, these objects are argued to be good candidates fortdrmiediate mass BHs [73]. However,
large apparent luminosity may, under special conditioesprioduced by stellar mass BHs, e.g, by
a supercritical accretion (for details and referencesPseganen et al. [74]). Hence, it is at present
unclear what exactly the ultraluminous X-ray sources argndbnical mass measurements would
settle the issue but, unfortunately, none of the sources lhitsary companion to provide a robust
mass estimate.

8. Observational Evidence for the Horizon

To prove that a BH-like object is indeed a BH, one needs to detnate that it possesses an
event horizon. The major tests for a BH horizon are based advgction-dominated accretion
flows (ADAF), ii) X-ray bursts, and iii) direct imaging [8, 756]

8.1 ADAF

Advection dominated accretion flows [77, 78] describe aamewith very low radiative ef-
ficiency in which the energy released by viscosity fricti@mioving the angular momentum from
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the accreting matter is not radiated away but stored in the flban ADAF forms around a BH,
the stored energy will be lost forever under the event hatizehereas if the accreting object is a
NS, this energy must be radiated away once matter lands sorfisce. Therefore, the argument
goes, BHs should be dimmer than NSs if an ADAF is present ih bases.

Narayan, Garcia, and McClintock [79] suggested that pedcisuch a comparison could be
done using X-ray binaries. Most of the known stellar-massdaHdidates are in a class of X-ray
binaries called X-ray novae. These systems are charagddsiza variable mass accretion rate, and
tend to spend most of their time in a quiescent state with yleer accretion raté/l and accretion
luminosity Lacc. Only occasionally do they go into outburst, when they aecréth highM and
become bright. Spectral observations of quiescent BH lgimaran be explained in terms of an
ADAF. Narayan et al. [79] compared quiescent luminositieX-oay binaries supposed to contain
BHs with those of neutron-star X-ray binaries and realizet,tin accordance with the prediction
of the ADAF model, systems containing black-hole “candigatare dimmer. They came to the
conclusion that they found evidence for the presence oftévanizons. However, this conclusion
has been challenged (for details and references, see |8, 75]

8.2 X-ray Bursts

In some X-ray binaries, X-ray bursts are observed in addiiicthe quiescent X-ray luminos-
ity. In a typical X-ray burst luminosity increases up to ngdhe Eddington limit in less than a
second, and the flux then declines over a period of a few seamralfew tens of seconds. Remark-
ably, no X-ray bursts of this kind were observed in any BH bi#larayan and Heyl [80] argued
that the lack of bursts is a strong evidence for the horizdBHrcandidates.

The explanation for such an absence of X-ray bursts is guniple. At present, it is widely
accepted that X-ray bursts arise from thermonuclear détonaf accreted material [80, 81]. Ac-
creted material builds up on the surface of the compact blbjed is compressed by the object’s
gravity. After sufficient material accumulates, it undergainstable thermonuclear burning, which
we observe as an X-ray burst.

A key point is that the compact objectust have a surfacéaterial cannot accumulate on an
event horizon, and so no bursts can come from an X-ray binagse/compact object is a BH. For
more details, references, and critical discussion, se£5[8,

8.3 Direct Imaging

The most promising line of search for a direct evidence itwstruct an image of the region
near the event horizon using interferometry.

For definiteness, consider a nonrotating BH with a horizoradiusR. Because of strong
gravitational lensing in the vicinity of the BH, a distantsalover will see an apparent boundary of
the BH at a radius of 33R/2 [82]. Rays with impact parameters inside this boundargragct
the horizon, while rays outside the boundary miss the hariZthe angular size of the boundary,
e.g., for Sgr A with M ~ 4 x 10°M, and at a distance of 8 kpc,4s0.02 mas which is not beyond
reach. The supermassive BH in the nucleus of the nearby (1& Mant elliptical galaxy M87,
with a mass of  10°M., and an expected angular size~0D.01 mas, is another object of interest
[83].
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The best angular resolution achievable today is with radierierometry, where angles less
than 1 mas are routinely resolved. In the not too distantréytit should be possible to operate
interferometers at wavelengtiis< 1 mm and with baselines as large as the diameter of the Earth
b ~ 10* km. For details, see Falcke et al. [82].

9. Alternatives to Supermassive BHs

Given the accumulated evidence for supermassive compgeitsianging from a few o1,
to a few 10M., the existence of black-hole-like objects is beyond do&s; F6]. What still
remains an issue is whether these supermassive objectdareiBh the Schwarzschild (or Kerr)
metric describing the physics of the interior, or some otiigects built out of more or less exotic
substance but with a regular behavior in the interior. A d#ad astrophysical scenario in the
form of a compact cluster of dark stars (e.g., neutron stabsavn dwarfs) although not entirely
excluded, is quite unlikely. It has been demonstrated th#lhe case of NGC 4258 and our Galaxy,
such a cluster would be short-lived and would either “evaf@ror become a BH in much less time
than the age of the Galaxy [84].

A number of alternatives to classical BHs have been propegddno singularities in the
interior. The three representative models are: 1) Neufagnmeutralino) stars, 2) Boson stars, 3)
Dark energy stars

9.1 Neutrino Stars

Here we use the termeutrino starsas a generic name for any degenerate fermion star com-
posed of neutral weakly interacting fermions, e.g., naogior supersymmetric fermionic partners
such as neutralinos, gravitinos, and axinos. The simplestefproposed for supermassive com-
pact objects at the galactic centers is a self-gravitategederate fermion gas composed of, e.g.,
heavy sterile neutrinos [85, 86, 87, 88, 89]. Sterile naosiin the keV mass range have recently
been extensively discussed as dark-matter candidateS190,

As we have seen in the example of a neutron star, a self-gtiangtball of degenerate fermionic
matter is supported against gravitational collapse by #uederacy pressure of fermions due to
the Pauli exclusion principle, provided the total mass iswethe OV limit (3.14), with anm~?
functional dependence on the fermion mass

Let us assume that the most massive objects are sterilenmestars at the OV limit with
Mov ~ 3x 10° M., such as the supermassive compact dark object at the cétiterradio-galaxy
M87 [57]. Using (3.14) we find that the neutrino mass requfagdhis scenario is

m ~ 14keV forg=2,
m~ 12keV forg=4. (9.1)

From (3.14) and (3.15) it follows that a neutrino star of miks, = 3 x 10° M., would have

a radiusRoy = 4.446@Rsch = 3.9396x 10'° km = 1.52 light-days, wherdRsch = 2GMoy is the
Schwarzschild radius fdvoy. Thus, at a distance of a few Schwarzschild radii away froen th
supermassive object, there is little difference betweeauwdrimo star at the OV limit and a BH, in
particular since the last stable orbit around a BH alreadyahadius of 3Rsch
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Now, we wish to investigate the possibility that this scémaan be extrapolated to explain all
observed supermassive BH, and in particular Sgrthe supermassive compact dark object at the
Galactic center. As the mass of Sgri& by about a factor of fower than the OV limit above, we
can use the Newtonian mass-radius scaling relation (2&2)edl from the Lane-Emden equation
(2.28) with the polytropic inder = 3/2. We find

n.%l 2 2/3 12keV 8/3 4 2/3 M@ 1/3

Here, 1 mpc =206.265 AU. The degeneracy fagter2 describes either spin 1/2 fermions (without
antifermions) or spin 1/2 Majorana fermions. For Dirac femns (or spin 3/2 Majorana fermions),
we haveg = 4. Using the canonical valud = 2.6 x 10°M..,, we findR ~ 5200AU to be compared
with the observational upper limit [6/R < 60 AU for Sgr A". Hence, a neutrino star made of
m= 12— 15 keV neutrinos is ruled out as an explanation for Sggr A

To be able to explain Sgr*as a neutrino star, we need a minimal fermion nmagg = 63.9
keV/c? for g = 4. The maximal mass of a neutrino star made of these ferméasngiven by the OV
limit (3.14), is [92]

MO = 1.083x 16EM.,, . (9.3)

Clearly, a neutrino star scenario which would cover the whmohss-radius range of compact
supermassive galactic centers is ruled out. However, arlitiiybcenario [92] in which all super-
massive compact dark objects with masses M37* are black holes, while those wi < MG
are neutrino stars, is not excluded.

At first sight, such a hybrid scenario does not seem to becpéatly appealing. However, it
is important to note that a similar scenario is actuallyired in nature, with the co-existence of
neutron stars with masséé, < 3M., and stellar-mass BHs with mabt.< 3M,, as observed in
binary systems in the Galaxy.

An indirect support for this scenario is the absence of oké@ence for intermediate mass
BH candidates, which is difficult to explain in the convenab BH scenario (in which BHs are
all baryonic). If the hybrid scenario were realized in nafuhe intermediate mass neutrino stars
would exist but having very large radii would be rather diland hence difficult to detect.

9.2 Boson Stars

Boson stars are static configurations of self-gravitatimigh(or without self-interaction) com-
plex scalar fields. In self-interacting scalar field thesyriguch ag® theory, there are cases where
a homogeneous condensate is a stable ground state, knota Bege-Einstein (BE) condensate.
Hence, a boson star being basically a self-gravitating Biflensate may be regarded ab a 0
limit of a self-gravitating boson gas [93]. The ground stta condensed cloud of charged bosons
of massm, interacting only gravitationally and having a total madsdelow a certain limit of the
orderM,%I/ m, is a stable spherically symmetric configuration [94] whislusually referred to as
mini-soliton star [95] or mini-boson star [96]. For a receatiew and a comprehensive list of
references, see Schunck and Mielke [97].

The gravitational collapse of a self-interacting BE corsida is prevented by a repulsive self-
interaction, e.g., in the form of |®|*. That makes it astrophysically interesting as its maximal
mass is~ mg;,/m§, hence comparable with the mass of a neutron star or a neustan
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Seidel and Suen have demonstrated that boson stars mayntedftinrough a dissipationless
mechanism, called gravitational cooling [98]. Boson stenge recently attracted some attention as
they may well be candidates for nonbaryonic dark matter.[99]

The action of the gravitationally coupled complex scalddfte reads

R
S5 = /d4x\/—detg <_ET+$KG> , (9.4)

with the Klein-Gordon Lagrangian
Fe =g (9, D") (8, D) — mP|D> —U (|d|?). (9.5)

By varying the action with respect tb one obtains the Klein—Gordon equation

du
D _— = .
( +d]¢12>¢ 0, (9.6)
and the variation with respect tf,, yields Einstein’s equations (A.24) in which

Although this energy-momentum tensor is not in the perfedti florm (B.1, we can still identify
the radial pressurp and the density with —T/ andToo, respectively.

Given the interaction potentid), one has to solve a coupled system of Klein-Gordon and
Einstein equations in spherically symmetric static spamet Unlike in the case of a fermion
star, where the information about matter was provided byethetion of state, the matter here is
described by the KG equation (9.6). The stationarity ansatz

1
V2
describes a spherically symmetric bound state of the sfialdr where the frequency is deter-
mined by the asymptotic conditiaf(r) — O asr — co.

It turns out that even the simplest cdde= 0 has a nontrivial ground-state solution, called
a mini-boson star The gravitational collapse of a mini-boson star is prexdrity Heisenberg's
uncertainty principle. This provides us also with crude snestimates: For a boson to be confined
within the star of radiu&,, the Compton wavelength has to sati3ty= 2r71/m~ 2R,. On the other
hand, the star’s radius should be larger than the Schwald satius,Ry > Rsch= 2M/m,%I in order
to avoid instability against complete gravitational cpfia. In this way we obtain an estimate

O(r,t) = —=p(r)e " (9.8)

M < ’—ZTmE,./m. 9.9)

This upper bound is slightly larger than the so-calkelip limit,
_10( 1leV
Mmax = 0.633m3,/m = 8.4639x 10 Mo (9.10)

obtained numerically [96]. Clearly, mini-boson stars arelévant to astrophysical context, unless
the boson massiis ridiculously small.
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This result was later extended by Colpi et al. [100] for iatding bosons with a quartic self-
interaction

U=A®*% (9.11)

In this case, the maximal mass is obtained as [100, 101]

1 ey 1GeV)?
Mias = s VAT — 0.1V ( > ) M. 0.12)

quite similar to the fermion star mass limit. The effectieglius of an interacting boson star in the
Newtonian regime turns out to be independent of centralitjeand in a good approximation is
equal to

T Mp

Reff:ﬁ_[ AW:1.5096\/X<

Hence, boson stars with a quartic self-interaction all taeesame radius. This behavior is quite
different from the fermion star case, where the radius scaiéh the star mass &~ M1/3 (see
equation (9.2)).

The results are summarized in the table

km. (9.13)

1GeV\?
m

Maximum Effective
Object Mass Radius
Fermion Star Moy = 0.384m /m? Rov = 3.36mp/n?
Mini-Boson Star Mkaup = 0.63313, /m R~1/m
Boson Star Mmax = 1/(V8T8)VAmS,/m? | Regt = 11/ (/81)v/Ampy/m?P

Could boson stars fit the whole range of compact supermagataetic centers? To answer
this question, we proceed as in the case of neutrino staraisgéame that the most massive objects
are boson stars with maximal mass, iMmax~ 3 x 10° M, for the supermassive compact dark
object at the center M87. From this we find

2
VA (l (aneV> — 3% 10°, (9.14)

which also fixes the radius given by (9.13)
R=4.53x 10°km = 303 AU, (9.15)

quite close to the radiuRpy of the neutrino star discussed in section 9.1. Since theisaofi a
boson star does not depend on its mass, this value shoul@itateradii of all supermassive BHs.
However, it obviously does not fit the observed radius lifhiBgr A*, R < 60 AU, and even less it
fits the radius of a typical AGN of 7 AU (section 6.3.2).

Hence, boson stars with a quartic self-interaction aredrolgt as a unique explanation for
compact supermassive objects at galactic centers and AGalnAit is not excluded that some of
the galactic centers harbor a boson star.

37



Black-Hole Phenomenology Neven Bilic

9.3 Dark-Energy Stars

Dark energy (DE) is a substance of negative pressure needad &ccelerated cosmology. In
order to achieve acceleration, DE must satisfy an equafistatepge = Wpge, Wherew may depend
on the cosmological scakebut at presentg = 1) w < —1/3. In addition, one also expects that
DE satisfies the dominant energy condition, in which casesth&tion of state satisfieg> —1.
Nevertheless, matter withv < —1 dubbed “phantom energy" [102, 103] has recently received
attention as it might fit the most recent SN 1a data slightlyelbehan the usual DE.

In cosmological contextpge is homogeneous and it is normally assumed that DE does not
cluster. However, it is not excluded that owing to graviaél instability, small inhomogeneities
(analogous to dark-matter inhomogeneities) grow and lstilacture, e.g., in the form of spherical
configurations. Hence, we definark-energy staras spherical solutions to Einstein’s equation
with matter described by the DE equation of state [104, 106is worth noting that DE could
be described by a scalar field theory (quintessence) withitabdy chosen interaction potential
and/or with a noncanonical kinetic energy term in the Lagram This scalar field theory would
correspond to an effective equation of state with desirpbiperties [106]. In this way, DE stars
could be regarded as boson stars but with a rather unustsahtesaction.

Here, we briefly discuss two examples of DE stars: de Sit@ragtars and Chaplygin gravas-
tars.

9.3.1 De Sitter Gravastars

The simplest example of DE star is a gravitating vacuum stax gravastar Chapline et
al. [107, 108] put forth an interesting proposal based orogiies to condensed matter systems
where the effective general relativity was an emergent gimemon. Specifically, assuming the
Schwarzschild exterior, they suggested that the sphereavthe lapse functiod = g(l){)z vanished
marked a quantum phase transitidnjncreasing again at < 2GM. As this required negative
pressure, the authors of [108] assumed the interior vacuundensate to be described by de Sitter
space with the equation of stgpe= —p.

Subsequently, the idea of gravitational vacuum condensatgravastar’, was taken up by
Mazur and Mottola [109, 110] and Dymnikova [111], replacihg horizon with a shell of stiff
matter astride the surface at= 2GM. Visser and Wiltshire [112] and recently Carter [113] also
examined the stability of the gravastar using the Israelghiell formalism [114].

Given the mass M, the interior is described by a solutionjlamto the the Einstein-de Sitter
universe, with constant density= pg up to the de Sitter radiuRys = 2M (actually slightly further
out). Hence, the interior is de Sittgwy being the vacuum energy density. The lapse function is

given by
2\ /2
s

_ /3 _—ap
Ras = 8Tl'p0 : (9-17)

In order to join the interior solutions to a Schwarzschildegior at a spherical boundary of
radiusR, it is necessary to put a thin spherical shell at the boundatty a surface density and a

with
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surface tension satisfying Israel’s junction conditioh%4]. As the pressure does not vanish at the
boundary, it must be compensated by a negative surfaceteasthe shell.

The gravastar has no horizon or singularity! Its surfacedated at a radius just slightly larger
than the Schwarzschild radilis= 2M + ¢, € ~ 2lp;. Hence, there is practically no observational
way to distinguish a Schwarzschild BH from a gravastar. &alsi, any BH-like object observed
in nature may be a gravastar.

In spite of these attractive features the gravastar hasreewith a cool reception. Certainly,
the assumption of a de Sitter interior presents a quandaryth® one hand, the quantum phase
transition would suggest that the associated cosmolog@adtant is a fundamental parameter; on
the other hand, to accommodate the mass range of supermbksik-hole candidates, it must vary
over some six orders of magnitude. In addition, the notarioosmological constant problem is
reversed for gravastars: why is the vacuum energy in thadntef a gravastar so much larger than
the observed vacuum energy density in the universe? If wdifgdehe most massive black-hole
candidate observed at the center of M87, with mdgg, = 3 x 109M@, with the de Sitter gravastar,
thenpy = (9.7keV)4, to be contrasted with th@0-3eV)* values wanted for cosmology. Another
guestion is how does a gravastar form? The entropy of aistalias gravastar is much less than
the entropy of an ordinary star and this would require aneexély efficient cooling mechanism
before gravastars could form during stellar collapse [75].

9.3.2 Chaplygin Gravastars

Consider a particular form of DE with a rather peculiar etrabf state

p=— E (9.18)

Equation (9.18) describes the Chaplygin gas which,gor /A, has attracted some attention as
a dark-energy candidate [106, 115]. Consider a self-ging Chaplygin gas and look for static
solutions. In particular, we look for static Chaplygin gamfigurations in the phantomv(< —1)
regime, i.e., when

p<VA. (9.19)

We show that these configurations could provide an altematenario for compact massive ob-
jects at galactic centers [116]. Moreover, equation (9yl8)ls the de Sitter gravastar solution in
the limit when the central density of the static solutionragghes the valug/A.

Combining (9.18) with the TOV equations (2.18), and (2. D8k has

o (4 P*\ (P —4TAIP
p= (1 A) ( r(r—2.4) )’ (©-20)
% — 4rr?p. (9.21)

In Fig. 4 we exhibit the resulting(r) for selected values gfp/+/A. The solutions depend
essentially on the magnitude of relative toy/A. In the following we summarize the properties of
three classes of solutions corresponding to whethés larger, smaller, or equal tgA.
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Figure 4: Density profile of the Chaplygin gravastar fay/+/A= 1.2 (short dashed), 0.98 (dotted), 0.9 (long
dashed). The limiting singular solution with the/3 behavior at smalt is represented by the dot-dashed
and the de Sitter gravastar by the solid line.

i) Forpo > /A, the density increases and the lapse functialecreases withstarting from
the origin up to the black-hole horizon radiBg,, where .4 (Ron) = Roh. In the limitpg — o, a
limiting solution exists with a singular behavior

TA s

p(r) =~ (W) (9.22)

near the origin.

i) For pg < v/A, bothp and& decrease with up to the radiusy where they vanish. At that
point the pressur@ blows up to—c owing to (9.18). The enclosed magg is always less than
r/(2), never reaching the black-hole horizon, i.e., the radiusre2# (r) =r.

iii) For pp = v/A, the densityp remains constant equal tdA up to the de Sitter radiuBys =
2M. Hence, we recover the de Sitter solution precisely as ilgtheastar case.

As pg — /A from above or from below, solutiorisor ii), respectively, converge fi)) except
at the endpoint. The lapse functioniii) joins the Schwarzschild solution outside continuously,
whereas in) andii) it happens discontinuously.

As in the case of a de Sitter gravastar, in order to join owriot solutions to a Schwarzschild
exterior at a spherical boundary of radiBsit is necessary to put a thin spherical sheit the
boundary with a surface density and a surface tensiongatisksrael’s junction conditions [114].

Castii), together withiii) , is of particular interest as we would like to interpret th@ermas-
sive compact dark objects at the galactic centers in ternphafitom energy rather than in terms
of a classical black hole. It is natural to assume that thet massive such object is described by

71t has recently been demonstrated that the joining can be maatinuous without the presence of a thin shell for
a gravastar made of the fluid with an anisotropic pressureg,[118].
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the de Sitter gravastar, i.e., solutioi) (depicted by the solid line in Fig. 4). The radius of this
object isRys equal to the Schwarzschild radiusigax. Clearly, solutions belonging to clagg can

fit all masseM < Mnax. However, for the phenomenology of supermassive galaetitets it is
important to find, at least approximately, the mass-radilegionship for these solutions. This may
be done in the low central density approximation, jog.«<< VA, which is similar to the Newtonian
approximation but, in contrast to the Newtonian approxiomtone cannot neglect the pressure
term in (2.18). Moreover, as may be easily shown, in this exipration.# < r3p, so that the
pressure term becomes dominant. Next, neglectiv\Rith respect ta, as in the usual Newtonian
approximation, equation (9.20) simplifies@b= 4rAr, with the solution

r’\ _ Po
PZPo(l—%>1 Ro=o (9.23)

which gives a mass-radius relation

M 161
= ——A=constant (9.24)

R 15
The mass-radius relationshiyp O Rg which phantom gravastars obey, offers the prospect of unify
ing the description of all supermassive compact dark objatthe galactic centers, as Chaplygin-
gas phantom gravastars with masses ranging om = 10°M,, t0 Mimax = 3 x 10°M..,. Indeed,
assuming that the most massive compact dark object, olusattke center of M87, is a Chaplygin
phantom gravastar near the de Sitter gravastar limit, Rifkx = 2Mmax= 8.86x 10°km = 8.21 Ihr,
the compact dark object at the center of our Galaxy, with nviss = 3 x 10°M,,, would have a
radiusRgc = 2.06 lhr if the scaling law (9.24) holds. This radius is wedllow the distances of
the closest approach to Sgf avhich the stars SO-Rqi, = 17 Ihr = 123 AU, [63, 64]) and SO-16
(Rmin = 8.32 Ihr = 60 AU [66, 67]) recently had and beyond which theplédan nature of the
gravitational potential of Sgr Ais well established.

A. Basic General Relativity

A.1 Geometry

The geometry of spacetime is described by the metric
d = gyudxHdx’ (A1)

wheregy, is the metric tensor. The spacetime curvature is definedigiréhe Riemann curvature
tensor

Rropy = 9raRGp, - (A.2)
defined by
Rsy = 0T s — 08T §,+ T o5 —Toal b5 (A.3)
where
Mov = %Q)‘U[dugv)\ +0vGur — A guv] (A.4)
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are the Christoffel symbols. A contraction of two indiceges theRicci tensor

Rus = 9" Riavp (A.5)
and a further contraction of the Ricci tensor givesghalar curvature
% =g"PRyp . (A.6)
A.2 Covariant Derivative
A covariant derivativeé], of a fieldY (in generalY may be a tensor of any rank) is defined by
DY = (0,Y)d¥ =Y., d¥ (A.7)

whereDY is an infinitesimal difference between the value of the fiélat the pointx* + dx* and
the quantityy (x#) parallelly displaced fromx* to x* +dx*. Hence DY consists of two parts: one
is the change oY due to the parallel displacement and the other is the difterdY =Y (x* +
dx!) — Y (x*) due to the functional dependence xh The latter part is basically related to the
ordinary partial differentiation. The difference due te tharallel displacement is related to the
curvature of spacetime and depends on the tensor natiterair a scalar, vector, and second-rank
tensor one finds: [119]

e scalar¢

Ou=u, (A.8)

e vectorV,
Vl—lvv :VIJ',V — rﬁvvp ; Vu’\/ == Vu"v + rgvvp . (A.g)

Auvip =Auwvp — Aoy =T pAue, AV =AY L+ TEAY + T AR (AL0)
The covariant d’Alembertian is given by

1
O=g0,0, = Vet («/— detgg“"dv) . (A.11)

Here we have used the usual convention in which a subsgripenotes an ordinary partial
derivative and 1 denotes the covariant derivative.

A.3 Geodesics

Geodesics are the “shortest possible lines” one can drawrired geometry. Given a covari-
ant derivative operatoll,, we define ageodesicto be a curve whose tangent vector is parallel
propagated along itself, i.e., a curve whose tangértatisfies the equation

A massive particle moves along a timelike geodesj¢being its velocity. A massless particle
moves along a null geodesic in which case the vegjds null.
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A.4 Isometries and Killing Vectors

A vector fieldk" that generates one parameter group of isometries, i.e panaeneter group
of transformations that leave the metric invariant, isethlaKilling vector. A Killing vector kH
satisfies the Killing equation

K(uw) = Ky + Ky = 0. (A.13)

It is convenient to represent the Killing vecikt as a differential operatd,
k=kHd,. (A.14)

For a vector fielk, local coordinates can be found such that

)
k== (A.15)

wherex is one of these coordinates, exf.= x. In such a coordinate systekt! = cﬁ‘ and

ag
Kogev) = a—’;v =0. (A.16)

Hence, one can say thigt is Killing if g, is independent af.
Examples

Consider the spherical coordinate systém 6, ¢). Suppose the metric components are inde-
pendent of andg. Then there exist two Killing vectors:

e the generator of time translatiogs= d/dt
EH=0o & =duo, (A.17)
e the generator of axial isometrigs= d/d@. In spherical coordinates
Yt =0y Wu=ue- (A.18)
A.5 Constants of Motion

The following proposition relates Killing vectors to coasts of motion.

Proposition 1. Let x# be a Killing vector field and ley be a geodesic with tangent uThen the
quantity x,,u! is constant alongy.

Proof: We have
u’ (Xuut)w = ufu Xy + xpu’ut,, = 0. (A.19)

The first term vanishes by the Killing equation (A.13) andgheond term vanishes by the geodesic
equation (A.12) . Hence
u’(x*uy),w =0, (A.20)

as was to be proved.
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Examples

Consider a stationary axially symmetric space, as in thenpl@discussed in appendix A.4
with two Killing vectors, & = d/dt and ¢ = d/d @, corresponding to time translation and axial
isometries, respectively. In addition, assume the asytegdtatness, i.e.,

guv — diag(1,—1,—r?,—r?sin’@) asr — . A.21
L

For a particle of mass1 moving along a timelike geodesic, the two conserved questitiong the
geodesics are

e the energy
E =mu'éy = &ud = goud = ¢°|,, (A.22)

e the z-component of the angular momentum

L=—mu'yy = — ot = —gguat = r’sif 6q?|, . (A.23)

A.6 Einstein’s Equations

General relativity relates the geometry of spacetime taandirough Einstein’s field equa-
tions 1

whereT,, is theenergy-momentum tensor

B. Basic Fluid Dynamics

Consider a perfect gravitating relativistic fluid. We dembyu,, , p, p, n, ando the velocity,
pressure, energy density, particle number density, ano@ntensity of the fluid. The energy-
momentum tensor of a perfect fluid is given by

Tyv = (P+ P)uyly — PGy, (B.1)

wheregy, is the metric tensor with the Lorentzian signat(te— ——). Hence, in this convention,
we have
uHuy = gyt = 1. (B.2)

The particle number conservation is described by the coityiequation

1
nw)., = —ad,(v/—gnu) =0. B.3
The energy-momentum conservation
TIJV;V - 0 (B.4)

applied to (B.1) yields the relativistic generalizationkafler's equation [120]

(p+p)u’Uyy — dup+uyu’dyp=0. (B.5)
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B.1 Fluid Velocity

It is convenient to parameterize the four-velocity of thédflin terms of three-velocity com-
ponents. To do this, we use the projection operajer— t,t,, which projects a vector into the
subspace orthogonal to the time-translation Killing veété = (1;0) wheret,, is the unit vector

u oH
o &~ % t, = Su_ _ Guwo (B.6)
V&V, VYoo VEVE,  Boo
We split up the vectouy, in two parts: one parallel with and the other orthogonay;to
Uy = Yty + (v — tuty)u”, (B.7)
where
y=tHuy. (B.8)
From (B.7) with (B.6) we find (see, e.g., appendix of [121])
ul»l:y<i _ gLVJ,V'> ,
v9%o0 Yoo
%
u[J_ (\/go 1\/—I—_Vi>7 (Bg)
where
vi=yv, V=Vvy, pP=(1-V) (B.10)
with the induced three-dimensional spatial metric:
Joo

Sinceu! andt* are timelike unit vectors, a consequence of (B.7) is yhatl and hence & v < 1.

B.2 Hydrostatic Equilibrium

From Euler’s equation (B.5) we can derive the condition adrogtatic equilibrium. We can
use the comoving frame of reference in which the fluid vejotzikes the form

u
ut = % ;U= o (B.12)
v/900 v/900

In equilibrium the metric is static; all components are jpgledent of time, and the mixed compo-
nentsgg are zero. Equation (B.5) then gives

(p+ Pt = (p+p)5 L9, 600 = 9P (B.13)

or

1/2

dup=—(p+p)goc 20,at2.

9,95 (B.14)
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C. Basic Thermodynamics

Consider a nonrotating fluid consisting Mfparticles in equilibrium at nonzero temperature.
A canonical ensemble is subject to the constraint that tihelew of particles

/nu“dZH:N (C.1)
2

should be fixed. The spacelike hypersurfacéhat contains the fluid is orthogonal to the time-
translation Killing vector fielE*. In equilibrium & is related to the velocity of the fluid.

EH=Eu; &= (EMg)2 (C.2)

It may be shown that those and only those configurations wilhtequilibrium for which the
free energy assumes a minimum [122]. The canonical fre@gnedefined as [122, 123].

F:M—/Taf“dzu, (C.3)
2

whereM is the total mass as measured from infinity. The entropy teisiobtained using the
standard thermodynamic relation

0:%(p+p—un)- (C.4)

C.1 Tolman Equations

The temperaturd@ and the chemical potential are metric-dependent local quantities. Their
spacetime dependence may be derived from the equation odstgtic equilibrium (B.14) [10,
120] and the thermodynamic identity (Gibbs-Duhem relgtion

P_nak _pal
dT_ndT pdT. (C.5)

The crucial condition is that the heat flow and diffusion ddoranish [124]

H_ const (C.6)

T

which may be derived from the physical requirement that #te of entropy change with particle
number at fixed energy density should be constant, i.e.,

Jo

anl = const (C.7)

P

where ‘const’ is independent gf. From (C.4) and (C.5) we obtain

1, om
do = po—_l_dn (C.8)
and hence P
o __H
on . =—T (C.9
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from which (C.6) immediately follows. Next, equation (C.&pgether with (B.14) and (C.5),
implies the well-known Tolman equations

Topy =Toi Mgy = Ho. (C.10)

where Ty and Ly are constants equal, respectively, to the temperaturehendhiemical potential

at infinity. In a grand-canonical ensembli, and Lip may be chosen arbitrarily. In a canonical
ensemblelp is an implicit functional ofé because of the constraint (C.1) that the total number of
particles should be fixed.

C.2 Fermi Distribution

Consider a gas consisting Nffermions with the mass contained within a hypersurface
The equation of state may be represented in a parametricdsimg the well-known momentum
integrals over the Fermi distribution function [125]

n_g/ 2n3 1+eE/T Wt (.11
o= o TrETT (€12
p=gT / In(1+e B/THH/TY, (C.13)

whereE = /m?+ g2 and T and u are the local temperature and the local chemical potential,
respectively, defined by Tolman’s equations (C.10). Byighintegration, the last equation may

be written as
d’q 1
P= g/ (2m)3 3E1+eE/T-HT’ (C.14)

The integerg denotes the spin degeneracy factor. In most applicationsikesy = 2 (spin up and
spin down). Strictly speaking, in each equation (C.114¢ one should also add the antiparticle
term which is of the same form as the corresponding rightthside of (C.11)-(C.14) withu
replaced by-u. However, the contribution of antiparticles in astroplgsbbjects is almost always
negligiblé.

Equations (C.4) and (C.8) may be combined to yield anothefulthermodynamic identity

dW:Td(%)+%dp, (C.15)

with w= (p+ p)/n being the specific enthalpy.

80ne exception is neutrino stars made of Dirac type neutrifibere, the numbers of neutrinos and antineutrinos
are equal and separately conserved, hence g=4
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C.3 Isentropic Fluid

Euler’s equation is simplified if one restricts considematio an isentropic flow. A flow is said
to beisentropicwhen the specific entropy /n is constant, i.e.,when

0u(%) =0. (C.16)

A flow may in general have a nonvanishing vorticity,, defined as
wuv = hahJuip.q, (C.17)

where
ht = &85 — utu, (C.18)

is the projection operator which projects an arbitrary @eit spacetime into its component in the
subspace orthogonal t#'. A flow with vanishing vorticity, i.e., when

is said to berrotational. In the following we assume that the flow is isentropic andtational.
As a consequence of equation (C.16) and the thermodynamititig (C.15), equation (B.5)
simplifies to
u’(wuy ).y — duw=0. (C.20)

Furthermore, for an isentropic irrotational flow, equat{@19) implies [126]
(Wuy),w — (Wl ) = 0. (C.21)
In this case, we may introduce a scalar functfpauch that
WUy, = —0du9, (C.22)

where the minus sign is chosen for convenience. Obvioustygtantitywu in the form (C.22)
satisfies equation (C.21). Solutions of this form are thatrastic analogue of potential flow in
nonrelativistic fluid dynamics [120].

C.4 Degenerate Fermi Gas

Inthe limit T — 0, the Fermi distribution in (C.11)-(C.13) becomes a stefion that yields
an elementary integral with the upper limit equal to the Heamomentum

OF = VM2 —m2 = mX. (C.23)

The equation of state can be expressed in terms of elemdntartjons ofX. With g = 2, we find

U dq 1 303

o "o d3q o 1 4 2 2
p_z/0 E (35 = g™ [X(2X2+ 1) VX2 + 1 Arshx] (C.25)

q 2 3
g dg 1 4{X(§X2—1) X2+1+ArshX} (C.26)

o 3E(2m3 8m
There are two important limits:

p=2
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e Nonrelativistic limit,X <« 1

1 o afys, 3ys 347
=— X2+ —=X>—=X"... 27
P=3" ( 10" Tse ) (.20
L a5 D7, Oy
p= 157T2m (X —14X +24X e (C.28)
Obviously, in this limit,p < p.
¢ Ultrarelativistic limit 1 1
_ A 4 2 =
p_47T m (X +X 2In2X...>, (C.29)
1 afya 2, 3
p_Fan (X -X +§In2X...>. (C.30)

Retaining the dominant terms, these equations yield thekmelvn equation of state for an

ultrarelativistic gas
p=2. (C.31)

which also holds for massless Bose and Fermi gases at finifgetature.

C.5 Polytropic Gases

A gas of particles of magmis calledpolytropicif the equation of state may be written in the form
p=sn, (C.32)

where % is a constant that depends om Using this equation and the thermodynamic identity

(C.15) the energy density and the entropy density may also be expressed in termsofFor an
isentropic flow, it follows
Y a
=mn+——n. C.33
P + 7 (C.33)
A degenerate Fermi gas approaches a polytropic equatiotatef is both the nonrelativistic and
the extreme-relativistic limits:

e Nonrelativistic limit. Retaining only the dominant term(@.28) we find

2/3 3
p= SRR s,

C.34
5m ( )
e Ultrarelativistic limit. In this case, the dominant term(i@.30) yields
31/3,2/3
== n*/3. (C.35)
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