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Lectures on AdS/CFT: thie/2 BPS Sector Antal Jevicki

1. Introduction

A certain class of correlation functions of” = 4 super Yang-Mills theory can be evaluated
exactly. This follows from the fact that for this class of operators orsertrenormalization
theorems. A particularly simple subset is given by the multi-trace local opsra&donging to
the 1/2-BPS sector. In this case, the evaluation of correlators reduces to ix mattel (of a
complex matrix pair) which can be further mapped into the system of freesladnistic fermions
[l @]. This, through its collective representation is described by arbo¢droplet) theory in 1+1
dimensions. It is remarkable that an equivalent Fermi droplet picturelsanbe shown to arise
in the AdS dual description. On the supergravity side [3] a nontriviahanesults in a class of
(bubbling) geometries with the same amount of supersymmetry ag 2a@PS states of the gauge
theory. One is also able to demonstrate a precise agreement betweenaieadyon both sides of
the ADS/CFT correspondence. It is a misnomer to call the (matrix model) piattwg model’ as
it represent an exact statement underlyingAlikS; x S theory. It provides a deeper insight into
the origin of holography through the same map that defined the relationghipdrethe (oldg =1
matrix model and the 2d noncritical string theory.

One of the basic featuref [4] of the AdS/CFT correspondence is theht#cCFT correlators
are related to amplitudes of propagation of supergravity modes conneaffddpdundary to AdS
boundary. This is reminiscent of a scattering picture where one hagexioa to the on- shell
surface. However a precise scattering interpretation of ADS/CFT waex figlly implemented.
Through Euclidean continuation of the LLM construction and the corredgaoece with thee =1
theory we will be able to describe such an S-matrix interpretation.

Our review is in no sense complete. It concentrates on aspect of tlespgondence which we
consider most basic. For background one should consult some of fsicalaviews on ADS/CFT
[B1,[8.

We will not follow the chronological development of the subject either. Pdtehort introduc-
tion in sect.2 we describe first in detail the construction of LLM which prosvigleeduction of the
theory in the supergravity sector. This reduction (from 10 to 2 dimensiogsu)ts in a dynamical
system of a Fermi droplet associated with a matrix model construction. tioisdcwe then give a
detailed presentation of the collective fermion droplet theory itself. Herdisgaiss the scattering
picture that provides the basis of the holographic interpretation. In theluging section 5 we
shortly comment on extensions and generalizations that are being contentyptitexh the gauge
theory and on the supergravity side. The reference list that we givessanse complete, we only
give reference to works that directly concern the discussion in the tematerial that we expect is
of direct help to a student.

2. Yang-Millsreduction

In this section we set the notation and discuss briefly the origin of a requtattix) model
in the Yang-Mills picture. The goal is to quickly identify the model and procséH its detailed
study.
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The action of " = 4 SYM defined orR x S in SU(4) notation, is given by

_ 2 [ 4 1., 1 2 nuyAB 2 1 AB
S_g\Z(M/d xTr( TR 2 (D) (DPXR)” - TaeX

1 —
+2 [Xag, Xco] [XAB,XCP] +1A,a DAL
A A [XAB,A_g] + Aa [XAB A18])

TheSU(4)g symmetry generators are
SAR=ITEAR,  BAR = —THAA,  BXAB = ITAXCE 1 TEXAC
giving the conserved charges

=2 [ Tr(-2X*DoXes— A,5y°A%).
Gym /S
Early confirmation of the ADS/CFT correspondence came from compadgaorrelation

functions [J,[B] of selected operators in Yang-Mills theory with analogmhservables of Super-
gravity. The most explicit results concern operators invariant undtingegree of supersymmetiy[9].
Simplest is the set of operators preservin@ df Yang-Mills supersymmetries. In particular the
chiral primary 1/2- BPS operators are characterize80{4) symmetry and the conformal dimen-
sionsA = J,

Oty =TEZOM) Tr (Z(x)2) - Tr(ZOO*), I=3 3 (2.1)

whereZ = (¢ +i@)/+/2 is the complex scalar field with a unit R-char@e- 1 with respect to
the rotation in the 5-6 plane. Due to a non-renormalization property cormelfatetions of these
operators with their conjugate set of operators constructed in terfhs-dfg —igs) /v/2 are given
by the free-field results,

<E€J1,J§,...7J;n) (X) ﬁflal,327__.,3n)(x)> = f({(3),(3)},N)Da(x,X)’ (2.2)

whereD4(x,X) O |[x— x|~ with J = 5;J = 3;J is the massless free-field propagator in 4 di-
mensions and the functiof({(J'), (J)},N) is determined by the free-field contraction among the
indices of scalar fieldg betweenO’(x) and@J(x’). As such the functiorf appearing in the
numerator is completely independent of spacetime coordinates.

All the nontrivial information is contained in the functidi{{(J’), (J)},N). Concentrating on
the numerator and ignoring the spacetime coordinates and the spacetiméetggactoD (X, X )
leads one to the matrix model picture. The matrix model is defined to reprodeigaeutherator
appearing in the Yang-Mills correlator.

The degrees of freedom representing the matrix model can be dedoced freduction of
A = 4 Super Yang-Mills theory ofiR x S*. In particular the 6 Higgs fields become quantum
mechanical matrix coordinat€s; (t), a=1...6. For the study o% BPS states (and corresponding
giant gravitons) one can concentrate on the dynamics of a two matrix mosaliskful to perform
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the dimensional reduction d8 in some detail. Expanding the fields in spherical harmonicS®on
we obtain the mass spectrum for the dimensionally reduced theory

3

Mscalar: | + 1, Mfermion: | + E, Mvector: 42
In particular for the scalars we write
Xag (t.Q) = 20 S XheY' (Q)

The free part of the Lagrangian for the scalars gives
o [1, m 1 2.0 Jm
L=T = ——(+1 .
r|:§ [zxmx 2( + 1) XX

It is consistent to only keep

2V2n 1 .
Z =" X2=2 (X' +iX*) — vz
= ovm > (% ")
—  2V2m s 11 4 —195
After decomposing as
2= (A'+8)
2(1+1)

the Hamiltonian reads

o0}

H=TrS (1+3) BB+ A'A]

while the angular momentum is

‘hfni[ﬁa—smq

(=
We see thaH = J means that we only keep the conjugate [(aﬁg,Ao)
H=TrAlA

The eigenstates of this model are labeled by Young diagRofsrreducible representations
1
i i
Xr (Ao) =3 GéXR(U) r (UAO)

where

m(oA) = 3 (W) (W) (R)

i1,12,.sin lo lo(2

Characteristic examples are thd Sgiant graviton
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and the multiply woundhd Sgiant graviton
R=(L,L,...,0), L=~N

In summary one can think of the reduction of 4d Yang-Mills theory in two stag@st one has
the reduction to the zero modes and in 8ié(2) sector this results in the complex matrix model.
Through study of 12 BPS correlators it was realized that a further reduction odgurs[hjs T
second reduction is analogous to the case of Hall effect where a sg§tadnfermions is further
reduced to 1d. In terms of the canonical decomposition one has

1 1
V2 V2

Then the creation-annihilation operator paiA" determines the dynamics the 1/2 BPS sector. In
parallel with the lowest Landau level condition the additional canonical(@aB') is eliminated.

The single creation-annihilation operator pAjA" can be used to define a Hermitian matrix
model with a harmonic oscillator potential

z (A'4+B), Z=-—"=(A+B")

1 .
L= =Tr(M?—-M?
STr (M2 M2)
After diagonalizing
Mij = diag()\l, ce. ,)\N)

this results in the even simpler system of N free fermions. The dynamics ibd&xas above (and
below) the Fermi surface is nontrivial. It was used(in [1] to introduce t#tigle-hole picture of
giant gravitons inlAdS; and inS. The nonlinear dynamics underlying the theory is given by the
bosonized (collective) field theory. The collective boson is

N

et,x)=9Y 0(Xx—Aj)
2
with the collective Hamiltonian is given by
1 w
Heoll = /dx[zn,xq’nx"‘ 6§03+X2(P}
with the fields satisfying the standard Poisson brackets

{9091 (x) } =& (x=X)

After the canonical transformation
y+ = £m@p+y

the collective Hamiltonian takes the form
1 rdx|[1 5
Heoll = 5/5_[ [3 (Yi —y?i) +X (Y —Yy-)

with the Poisson brackets
{y+ (¥),y+ ()} = 27046 (x—y)
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In this parametrization one one has the closed duryéx)) which represents the boundary of the
fermionic droplet. Its dynamics is governed by the cubic collective Hamiltonian.

If we parametrize the boundary in polar coordinates which reflect thenaatigle coordinates
for the fermions on the boundary

T(@.t) =p(@.t)cos(@) X+p(@t)sin(e)y
and in this case we have
1
OF < 097 = S0P (9,1)
ap® = 0<pP2‘
The above theory, but with the inverted harmonic oscillator potential wasatsis forc = 1

/ 2d string correspondencg J10]. The collective provided an explicitpimg between the two
sides giving the first example of an 'emerging’ extra spatial dimension. cUic interacting
Hamiltonian was seen to correctly reproduce elements of scattering of 3atechoth at tree and

loop level. For a review of these results the reader is referrfd to[14 JvMdiscuss their relevance
for the ADS/CFT correspondence in Sect.4.

3. LLM Ansatz in ADS Supergravity

The simple dynamical model found on the gauge theory side can also deatedstr 10d
Supergravity. This was accomplished by Lin, Lunin and Maldacena wheesded in identifying
in AdS x S° Supergravity the degrees of freedom witf21lof supersymmetry. What emerges
is a reduction of the 10 dimensional theory to two dimensional 'bubbling’ garditions whose
dynamics is identical with the collective fermion droplet dynamics of the redloerix model.

It is useful to present the LLM reduction in some generality. Analogous P8 Bxductions
are possible for a larger class of SUGRA theories. The theory in quesperijty3 Supergravity
in 10 dimensions includes in its field content the spacetime mgiiicand the self-dual five form
field strengthFAu,m,msm,ms Which play the central role in the reduction. The Ansatz given by

ds’ = guudxdx’ +e'+CdQ2 + e -CdQ2
F = Fupops oA A AAQm+ Frypopig XA AdXS T AdQ,. (3.1)
corresponds to a reduction on 8 x S sphere with arbitrary (space-time) depending radii. One
then has a metric on a resulting 20 — mdimensional space-time described by the Greek indices
u,v=1...10—m—n. For the case o% BPS configurations oAdS; x S° one setsn= 3 and
n=3.
We register the useful identities

which expresses the determinant of the ten dimensional né@&giicin terms of the determinant of
the metric of the base spagg, and the two scalafd andG. We also have for the spin connection



Lectures on AdS/CFT: thie/2 BPS Sector Antal Jevicki

where the English indices, nare local Lorentz indices, the indices with a hat represent coordinates
on én and the indices with a tilde note indices 8n The self-duality condition of the five form
Fs = x10Fs gives the constrain
~ 5-m)! /min m-n ~
Fm= ((S—n))! el"5")Ge("5" )M *10-m-nFs5-n-
For the case og BPS solutions oAdS; x S that we will follow one hasn= 3 andn = 3.
The equations of motion of the ten dimensional theory are given by

1 2 1 2

Run = 20! (F )MN_TOQMNF
dF=0
*F =F.

In terms of the 4 dimensional fields the reduced equations of motion are fouadd
3
1 1 1 44 ~ 1 -
+ ée 3(H+G) (Fﬁv o 4g[,1VF2> + Ee 3(H-G) <F“2V - 4g[JVF2>
OH +30*Hd,H = 4e " coshG

1 1 - .
OG+ 304G9,G = —Ze‘3(H+G>F2 + ~e 3H-OF2_ 46 HsinhG.

4
These reduced 4-dimensional dynamics can be associated with the giagran
15 3 1 1 ~
Z—e-M R+ ?aHZ - 5062 — Ze_S(H+G) F2, — Ze—3(H—G) Fi, +12e7H coskﬁ]

where one needs to impose the duality constrain
E = %, °F

inherited from the ten dimensional duality constraints on the five-form. Témnskestage of reduc-
tion comes from the imposition of a 1/2 supersymmetry requirement. This follons drdetailed
discussion of the spinorial equations which we shortly describe next.

3.1 Spinorial reduction

For the case of interesh = 3 andn = 3 one decomposes the gamma matricgsin the
following way

My=welkoled

Mg =0, 1L® 02

Fa =y ds® 01
whereys =1y1...ya, FT11=T1...T10= @1, ® I, ® 63 and the chirality condition for the 11B
spinors gives

Fun=n=Gsn=n.
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For the spinors we give the decomposition

N=£&®Xa®Xo®

1
0

where the two spinorg, and X, are two Killing spinors on the unit sphere and they satisfy the
Killing spinor equation

A ia

UaXa = ?UéXaa a==1
~ ib

D&Xb = EU&be b: il

The ten dimensional Killing spinor equation reads
I

Zgg Py vel ) = 0. (3.2)

Own +

The reduced equation now gives one differential and two algebragtreans for the Killing
spinor

Ou&—INy,e=0 (3.3)
%e*%“”@ — i”\ d (H +G)+N] £=0 (3.4)

|b —l(H—G) 1
Se +Zysy/\d,\ (H-G)—1pN|e=0 (3.5)

where
N = _% Fed(CHH)

At this point we list a set of interesting spinor bilinears constructed froniKilieg spinor €

f, = Eyse (3.6)
fo=1e¢ (3.7)
Ky = eyue (3.8)
Ly = EVu)se (3.9
Yur = 1EYuvYs€ (3.10)
Vi = EYuve (3.11)

With the aid of the Killing spinor conditions and the Fierz identities in four dimensaes can
find the constraints imposed on the geometry. For our case, using theuwiféérequation[(3]3),
one can show that the vectdr {3.8) is a Killing vector

DKy =0 (3.12)
and that the vectof (3.9) gives a closed form

Ouly=0. (3.13)



Lectures on AdS/CFT: thie/2 BPS Sector Antal Jevicki

The Fierz identities constrain the two vectors to be orthogonal and the Killictgvi be timelike

L2=—K2=f24+12 (3.14)
L-K=0. (3.15)

Partial fixing of our gauge is done through the identification of the cootelinsuch that
Ly=ydy, y¥=1 (3.16)

and also use the Killing vector to identify the time coordinate. Using the Killing smionditions
one may also show for the scalars appearing in our ansatz that

f, = ez(H-G) (3.17)
f, = e2(H+0) (3.18)
=y (3.19)

At this point the ten dimensional metric takes the form

1 . e a
ds? = — (dt+ A)? + h2dy? + hPhydXTdX + yye®dQ% + yye CdQ3, m=1,...,4. (3.20)

At this point we can take advantage of the fact that the two dimensiona spatined byy,, m=
1,2 and is equipped with the-dependent metric

ds2 = himn (Xm, y) dX™dX" (3.21)
In order to draw conclusions about this two dimensional metric we considéolibwing bilinears
wy, = €'Cyye
whereC is the charge conjugation matrix
Vi =—-CyCh
Using the differential equatiof (3.3) from the Killing spinor conditions wetkeg
dw=0. (3.22)

At this point we will specify the form of the spinarin order to make use of (3.22). In order to do
this we consider the linear combination of the projectprg (3.4) (3.5) imwigcsubstitute the
known expressions to write it as

(y3(a2+b2)% —ae‘G+|ygb> £=0

which is easily seen to be solved by

g =¢d%%Rg

where b
sinha = —€°.

a
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The Fierz identity also implies that the Killing spinor has to satisfy the projection

VPye——as
which gives us
Ve =&
Choosing in particular the chiral representation for the gamma matrices veeedhat
&
0
&=
—1&
0

Finally from the norm the bilinearf, and f, we have that
1 .
B ée%('”G) sinh(2ar) .

Using the above form in equatioh (322) we see that the conformal fadtlépendent of and
that the two dimensional metrif (3]21) is flat. The differential equations thataneconstruct for
the scalarq (36) andl (.7) determines the two form

F = —de&®) A (dt+V) — h?e*C x3de"—C)

where the hodge duality is meant with respect to the flat three dimensioral spanned by, X»
andy. Finally, using the Killing vectoK, one can show that

%h*ZdA: —he x3dG

dA= —%y’lmdtanhG.
= y_l*g dz

The integrability condition coming from the last equation gives us a secatat equations for the
scalarz

d(y 'xsdz) =0=
(af +02 +ydy)1/dy> z=0.

At this point we see that all the fields involved in our ansatz can be solvexsfsoon as the scalar
zhas been determined. In order to summarize we give the relevant equations

d<? = —h2(dt+A)*+ h? (dy? + dxmdXm) +ye®dQ3 +ye ©dO3 (3.23)
h=? = 2ycoshG
yayVm = gmndnz, y(din — ngm) = gmndyz
1
Z= > tanhG

F = —d&®H A (dt+V) —h?e*C x3de™—C)

We will see next how the regularity of the solution impose strong constraintiseofunction

10
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3.2 Regularity of the solution and the ground state

As one may see from the form df (3]23) whgoes close to zero, wité remaining finite,
the spacetime is in danger of a conical singularity. In order to have a regpdae time we find
that the appropriate boundary conditions faaty = 0 is z(x1, X,y = 0) = i%. We consider the
case wherg ~ % —y?f (X1,X2) SO thate © ~ yc(x1,%2) . We see that close tp= 0 the metric in
they direction and the second three sphere combines to form the regular piece

h?dy? + ye ®dQ3 ~ c(x) (dy? + y?d$3)

while the radius of the first sphere remaining finite. From the above coasinles one can have
an explicit picture of a fermion droplet in type 1B supergravity by identifya{x;, x2,y = 0) with
the fermion density.

Using the above set of boundary conditionsZeve have its solution being given by

o < [ HA A

and

/
Vm(xl,xz,y):@n/@ (X3, %,Y) (%0 — X d>(d>(2

" (x4

As an example we give the configuration that will giveAsS; x S* which is given by a circular
configuration of fermions in thg = 0 hyperplane

) L2 <l
Z(r,(p,y_O)—{ 1/2’r>|

X1 = I COSQ

Xo = rsing.

The various fields involved in the solution are given by

r24y2_|2
z(r,@y) = 4 -
20/ (r2+y?—12)"+ 4y2|?
V(rey) = 4 do.

21/ (r2+y2 —12)? 1 4y2|2
After making the change of coordinates

y=1Isinhp sinf
r =1coshp cosf

11
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the fields are written as

1sinkép —sirf 0
z(p7¢,9):,_ﬁ)—_
2sintf p +sin’ 6
G Sinhp
€= sinf
1cosp+coLo
V(p,9,0) = P do.

 2cosifp—co20

Using the above expressions in the solution (3.23) we have after a little algebr
1 2 R 1 2 ~
ds? =1 (— cosifp (dt— 2d(p> +dp?+sint? pdQ3 +cos 6 (dt+ 2dcp> +dB2 +sir? 9dQ§)

where we observe the mixing between the coordinatesthe sphere and the globadS timet.
Defining
o=0-T, (3:24)

the LLM metric above reduces to the standard AdS® metric expressed in terms of the global
coordinate,

ds? = ro| — costf pd1? + dp? + sint? pdQ3 + d6? + cos Bd@? + sir? 6dQ3| . (3.25)

3.3 Euclidean continuation

It is useful at this point to describe how by double Wick rotation the aboméiguration of a
circular droplet transforms into a hyperbolic one. The circular cordim represents the ground
state of a harmonic oscillator the hyperbolic one is related to the ground statamferted oscil-
lator. Through this one will have a connection with the c=1 theory. Theaal of an Euclidean
picture in ADS was pointed out ifi [ILP,]13] in connection with the question abgraphy’. Con-
sider then the transformatian— —it, ¢ — —iy ( = ¢ — T — —i) under which both the AdS
metric and the RR-fields are transformed ‘covariantly’ into the Euclideamz&i(EAdSs x S*1)
background with the metric,

ds = ro[cosﬁpdrz+dp2+sinthdQ§+d92 — cog 0d{P? + sir? 6dQ3|. (3.26)

Since the signature of this metric is stilH9l in 10-dimensional sense, supersymmetries can be
preserved by a suitable renaming of spinor variables. The two-dimehsmorainategx;, xz) are
then transformed as

X1 — X1 =rcoshy, Xo — ixp =ir sinhy. (3.27)

This exercise implies that for discussing generic Euclideanized LLM aris&sufficient to make
the double Wick rotations, — ixo andt — —it. The vector field/; must also be rotated covariantly
asV; — —iVl, Vo — Vs,

After the rotation the Laplace equation turns into a hyperbolic wave equation

(012_022)Z+y0y(0)y/2) =0. (3.28)

12
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One can repeat and analyze the (nonsingular) solutions of this equatersees that for the EAdS
solution solution is obtained by replacing the circular disk (with valig'2) of the Lorentzian
theory by an infinite domain (& r < rg) in the wedge region bounded by a hyperbola atrg.

It can be checked by explicitly evaluating the above integral that the ssipreofz for the EAdS
takes the same form as in the Lorentzian case

¥ Z(Xy,%5,0)
i [/Dd’(ld)(z [ —X))2— (2 —X0)2 +y2 — is}z]

10, Y 1

=12+ rrlm[/Hd)(ld)(z[(xl—x’l)z— (xz—x’2)2+y2—is]2}

_} r2_rg+y2 _}{1/2 ifr>rg,y=0 (3.29)
2\/(r2+rg+y2)2_4r2r(2) —1/2 |fr<ro,y:0

Thus one can define Euclideanized bubbling geometries by setting hiipattiroplet at
y =0 in a similar way as in the Lorentzian case. In comparison with the circulatedrapich is
located close to the center of the geometries the hyperbolic droplet hasrateirdnge bounded
by a hyperbola. Consequently there naturally emerges a possibility fiberdeg picture.

3.4 Energy and Symplectic Form

We now turn to the important topic of specifying the dynamics of the droplet.€ehieegy of
general 1/2 BPS configuration will be given by an integral over theldtsplomainD. This was
deduced in the original work of][3]. In addition it was also seen that tlmachjcal degree of free-
dom is contained in the (closed) curve, representing the boundary dfdpéet. For coincidence
with the fermion picture it is relevant to establish the symplectic structure (namelfpdisson
brackets) of the dynamical curve. This was accomplishefl in [14] followingethod formulated
by Crnkovic and Witten[[15].

For a theory with a Lagrangian densiff ((p' ) d(p') one defines the (CWZ) symplectic current

by
aL
u: |
J 6(00“¢|>A6<p

After specifying a Cauchy surface (e~ t) the symplectic form is obtained from

w:/dxd.]t

For LLM geometries we have the Lagrangian
S= [ d'%/—g(R- )
- 9I\""2E e

The fields under study arg = {gmn, A(4)} and the first order form of the action is

. . 1
S= /dloxﬁ <glkrir|nrl<m— g Tl i — 551 F(%))

13
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The symplectic form density, ,, = J; + Jk is then given by

Js = ~OT a8 [V/=0G™) + 8Ty & | V=09 (3.30)
3= —38 (VgFR ) oA (3.31)

It can be shown that the symplectic form is invariant under regular gaagsformations

O9mn — OGmn+ U(m En)
OAK ks — OP . kst Oy Ny ko)

For the case of the five form we have that under a gauge transformagiegriplectic form trans-
forms according to

Shor = / AT = —% / A0, 5 (V=gF%-) A 5N, 1] (3.32)

which of course is a total derivative and one should be extremely cawtiopping it.
It was realized [[14] that the variation of the gauge fiéld, ,, being in axial gauge, is
singular aty = 0. For this reason one needs to perform a gauge transformation ofthe fo

54y = —dA AdQ —dA AdO

to regularize the variation everywhere. This transformation will give a firatgridoution to the
symplectic form by the addition of a boundary ternyat 0 as we may see fronj (3]32). The two
scalar functions where determined closg te 0 [[L4] by the regularity requirement

reg  _
3B, =0
Sreg _ H
3B, ,=0 i=12
where the componen&B®°, 5B8:°° appear in the variation of the 4-form field

OAG = SBI*9ndQ + 5B A dQ.

The bulk contribution, after summinfy (3]30) afid (3.31), may be expressadogal derivative

K= +al', i=12
where
z(1 12 L\ 272\
'y__y41(4+2)5\/iA5Vj— }/145”214r 1)/48”3J OViN oz
(z-2) =% (3-7)
L2z
I __ A
I _fzzé\/./\éz

yi

14
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After substitutions the symplectic form readls|[14]

w:/dZXdy%u”(‘F/ 0d2X jbndr
y=
:/dzxdy (ﬁyly+0xilxi) +/ o jondr
y=0

e —/ d2X|y+/ d2X jbndr
y=0 y=0

:/‘d%{—%awAagw)—qubﬁ4%AAaﬁz—iﬁag]
y=0

where
Y2V,
a=2> +U
2(-2) "
2
b'_éli/ZVz
37
U= 0x (C+y?) z
_ Y2(3+2)
G

The last expression may be further simplified to exactly match the collectivetisbay symplectic
form

1 ~ ~ ~
W= ﬁﬁf?{dqod(p&gn((p— @) S5 [r2 ()] AS[r? ()] (3.33)
In order to give the expression for the energy of these configurafmrhe angular momentum
since they saturate the BPS bound) we will follgyv [3] and at the geometrgtsgically. This will
allow us to compare with the reduction of the type 1B theony50(6) gauged five dimensional
supergravity [16] and identify the electric charge of one oflih{&) gauge fields which is for the

LLM class of solutions remains non-trivial. At this point we will just give th&yaptotic form
without any of the details of the calculation

dg [1+ (38U — 2Q) (Q? — 2W) + 6(Q — U2)W cos 2p

6Q2v2
((2Q—3u?)(Q*—2W) — 6(Q—u?)Wcos2p)*  2g,
+ 48V _v4]
Q*—-2w dv? Q ~
X {— <v2+Q+ 32 )dterQV2 (1— v2> +v2dQ§}
+ Quud P + 2guduD@ + gppD ¢? + goqdQ3
_ 2w -
Do=dg+dt— o7 dt (3.34)
2 E 2,/
P=— /D d2x (3.35)
1
W:Qzﬁéﬁxwf (3.36)
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Written in this form we have grouped in the first terms AwScoordinates and in the second piece
the S part with the mixing caused by thé(1) gauge field that appears in the forin (3.34). From
the above expression for the asymptotic form of the gauge field we cdmffets charge or, since
this is a BPS solution, the energy. It is given by a surface integral oeatdmain D:

d2xx1+x2_} /dzx 2
2 g2mh h 2mh

g o3 Jo0g)

Evaluating the integral ove® (up to its boundary) leads to an expression identical to the collective
field Hamiltonian. To summarize we have seen that the energy of 1/2 BPSwmetifigns in super-
gravity is given [B] by the collective Hamiltonian of the Fermi droplet, and that the symplectic
form of the droplets boundary coming from supergravity also redyb4ktp that commutation
relations of collective field theory .

4. The Fermi droplet model/continued

We continue in this section with a more detailed description of the droplet modéhitskthe
physical picture that it provides for ADS/CFT. We follow the model with Eusdid time. It was
seen that EADS translates into a c=1 theory with the inverted harmonic osqitztential:

Se1= [drom (S m] (4.)
and consider the operators
MNe=(M=+M)/V2 (4.2)
The correlators are then given as
<ﬁ(J+;Ji,...,J;n)(T/) O, (@) = F{(Q),()},N)D (1,7’ (4.3)
with
Ogygy (@ =Tr(AB)Tr(M%) o Tr(NE). (4.4)

Note that we now havB; (1, 1") O exp(—|T — T']).
Consider now the Hamiltonian formalism of collective field thedry [11]. Theatign [4.2D)
can be recast in the Hamiltonian form

Orps =i[H, p+] (4.5)

by defining the effective Hamiltonian and the commutation relations as

p+ 2+ u)p PP (C+u)p-
i [l (G -5 - (5 -757)) “6)
[pi(X,T),pi(Xl,T)] ::Fial(x_xl)' (47)
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Here,u is an arbitrary constant, corresponding to an integration constant feqtragion of motion.
It represents the chemical potential and can be eliminated in terids of

Note also that we use the usual Lorentzian convention in writing down thegiega of motion,
by interpreting [(4]5) as being due to the inverted harmonic poténtigl= —

After a shift @, :
H(VX+ U+ @ (XT)), (4.8)
H = /dx VR (@R + @)+ (p++(p)} (4.9)

and a change a change of variabtes i sinho, @, = d—‘)’( @+, one has

© 1
H:/O do [é(qﬁ G‘dx‘ (9% + ). (4.10)
The mode expansion in the interaction representation,
0. (0,7) / dEe €T g () (4.11)

with [a(§),a(&)] = —wd (& + &’) which can be identified with the normal-mode operatorg.of
introduced above in the asymptotic regiar} ~ g — o, leads to

H = Ha+ Ha(1) (4.12)
HZZ/wd‘fa(f)a(—f) (4.13)
6/ B¢ f(&+ &+ &) e TR T (&) a(&)a(Es) (4.14)
with
E)z/w daucolsl‘?aeifa:[.lszi;l-[fi‘[? (4.15)

The form factor defining the cubic vertex of this collective field theory isi§igd by a non-
trivial functional dependence on the momenta and the absence of momemrisemeation. This
is very peculiar from the viewpoint of Yang-Mills correlators where oad h conservation. This
is one of the puzzles that will be explained away in the discussion that follévesnote that the
nontrivial momentum dependent vertex is quite central for the correctifdbe theory. Its precise
form is crucial for the ability to generate higher point tree and loop amplitu@iess check was
confirmed in explicit calculationf[[L7] were agreement with 2d string the@y demonstrated.

4.1 Scattering

There is a simple methofl 18] for deriving the S-matrix in this theory which we stoortly
summarize.

One considers the classical equations of motion which can be exactly sdtedsimplest
is to recall the description from supergravity. The shape of a genmypled configuration can be
parametrized as:

x1 =a(y)coshy, x=a(y)sinhy, (4.16)

17



Lectures on AdS/CFT: thie/2 BPS Sector Antal Jevicki

a(Y) =ro+ay). (4.17)

The functiona{y) describes the droplet shape, it can be used to parametrize fluctuatowesthé
ground state. Explicit time dependence is exhibited by the coordinate tramatfon: ) = ¢ — T.
This gives the form

x1=a(@)cosit+ ), xo=a(P)sinkT+ ). (4.18)

which is explicitly time dependent. Note also that in this representation one rapla fiarmonic
oscillator equation of motion
d2x;
dr2
which is obtained by a Wick rotation from the corresponding equation of AdS
Correspondence with the fermion phase space is given by the identifigatiornx, x, — p.
One can then show the profile in the phase spage. (x, 7)) obeys the (nonlinear) collective field
equation

=X, (4.19)

7} 7}
drpi - pi&pi (4.20)

where the suffix} and — denotes the two regiong, > 0 andp_ < 0, and the upper and lower
boundary respectivelyp. = +v/x2 —a?. The S-matrix is by definition given by considering the
relation between two asymptotic regions— =co.

For sufficiently largex one has

x=€e1 py=+lFe %L (q,1). (4.21)

and alsox ~ ("’)e =¥ and~ ( aW) g+ for 7 — Foo respectively, the fields behave, with respect
to the dependence an assi(q, T)~€&L(TFQ).

One then calculates (from the known exact solution) the travel time for amiimg wave at
(large x ) to turn and reach the same location as an outgoing wave :

2 2
rf—ri:2q+loga(f) , 5(ani):5+(anf):a(Lg)

(4.22)

This leads to a functional equation

£(T—0q)

). (4.23)

e(1—0q)=¢e-(1—q—log

relating the in-coming and the out-going packet.
This is nothing but the S-matrix .
In terms of the normal-mode operators in the momentum representation, we have

and the S-matrix in the classical (tree) approximation is given by

Sy @~ 3 a) = O] () []o(@)[0) (4.25)
i j
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For example, fon — 1 scattering1f > 2), the S-matrix elements are, up to the delta-function of
energy conservatior= w + - - - ) which we will always suppress in what follows,

(Ola_(—)ar, () a, (en)|0) = (é)nil(—iw)(—iw— 1) (—iw—n+2) w1 . (4.26)
0

In applying these results to the¢ 2 BPS case, we have to Wick-rotate the momentusegergy
on the mass-shell) &= w — iJ with J being the R-charge.

4.2 Correlatorsas S-matrix amplitudes

We now come to the discussion of the duality implied by ¢he 1 model which as we have
seen plays a central role in the higher dimensional ADS/CFT correspoad&Ve will describe
the 'scattering interpretation’ given if |19]. It exactly identifies correlataf 1/2 BPS operators as
scattering amplitudes of the 2 dimensional noncritical string.

Consider the simplest correlator=n=1,

(TrZ’TrZ?) = INY. (4.27)
should be interpreted as the trividl — 1) S-matrix element
(Ola—(—id)a4(id)|0) = J. (4.28)

As we have noted before one also had-function factor—id(J — J) = —id(0) imposing energy
conservation, which is common for all S-matrix elements. Itis this energyecoing delta function
of d=2 scattering amplitudes that compares with the R-charge conservppeariang in the 1/2
BPS correlators.Then, with the normalizati@(iJ) < ﬁTrZJ for incoming states and(—iJ) <
@Tr?‘] for outgoing states we see agreement between the S-matrix element and¢fet@o
The further examples (in the leading planar approximation of the Mrjmit) for n=2,3,4

(= Zin:r]i)-

f(J,{J1, 92}, N) pranar = RN (4.29)
F(3, {30, %2, 35} N) pranar = 3(919235(31 — 1) + 312 36(% — 1)
+ 3k —1)+ 2J1J2J3) N2 =3J3J(J—1)N2 (4.30)

again agree simply with the corresponding expressions for the noncstigay. The case of the
3-point function is well known. It was noticed i [20] and also earlier[id][that three point
correlators contain a factor similar to the vertex of collective field theorye fiezle was that it
was a momentum conserving vertex characteristic of fermions on the citgleridin is clarified
by the S-matrix interpretation 4f[lL9], one has an on-shell condition aneirtbrgy conserving delta
function associated with the the S-matrix.

There is an elegant way to to argue that an arbitrary 1/2 BPS correldtéasg-Mills theory
coincides in tree approximation with the S-matrix of. Using the coherent-statesentation in
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which M_(M,) ~ AT(A) are regarded as generalized coordinajeaid momentumd), respec-

tively.
Tr(n?) /dz/dzl/zzJa —a_y,

I+1
)= o] w5 (431

It is relevant to note that there is also a (dual) coherent state repriésemtavhich

T =6y = .g:[Z_‘]B(Z)
CEB(Z)‘H'l

JY\
()= o1

(4.32)

The correlator then becomes

dz a z J1+1 dzna (zm Jh+1
!/ L a(z) / (Zm) a_y0-3 - 0_30).

o J+1 1

In this picture, the operators 'Q'IFIJ,) are simply creation operators while the operator I'Ii/
are nontrivial polynomials. The relationship between the two representadigngen through the
(c=1) Smatrix operator:

Tr(N)) =S*'a;S
Consequently, the above matrix elements are
( )=(0lay - -aySa_y 03 a_3[0)

This gives the basis for the correspondence between the 1/2-BR$ators and = 1 S-matrix at
the planar approximation.

It is relevant to have this correspondence at higher genus also. ®nlthside, evaluating of
loop effects in the (E)AdS background is an unsolved problem. In génagey and simple matrix
models, the existence of a fermionic representation allows for calculati@mbiagry finiteN and
integerJ.

For the correlators one has exact general form{lgs [22], given bgrlicombinations of the
ratios of Gamma functions, such as (sey 1,2)

(Tr(Z)Tr(2%)) = Jil(r(Nrt,jﬁl)—FEEj;), (4.33)
@2 = 5 (s N+Jl+Jz+1> r(m\lﬁz)
TN+ +1) F(N+J2+l)
FN-3) N3 ) etc (4.34)

We can perform an all orders comparison for example of the two poimeledor with the
1— 1 c=1 theory amplitude, at largk-The exact c=1 string amplitudes can be deduced through
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the fermionic picture. In the coherent state representation, one has thié{dt@an for a single
fermion

h= <é+a+;> —p. (4.35)

The wave-function can be taken as functionsofor (the dual picture) of, . One has the simple
transform from one basis to another

1 _
Y-(ay) = \/ﬁ/da—e gy (a). (4.36)
The wave-functions both obey

l@a raa)p=Gay. (4.37)

In the coherent state representation vath=aé, = d/da, one has the equation

<aja +i- u> W k(@) = ki (@), (4.38)

From the viewpoint of the fermion phase-spdeep), creation-annihilation coordinates are
the null plane coordinates. — x. = (p=+Xx)/v/2. The discussion of scattering theory in the
fermionic picture can be found ifi [2B,]24].

The fermionic wave-functiong., (x;.) obey the analogous Schrédinger eqgs. The equation is
solved by

e k(x) = A PO ) +B(—x )k He(—x ) (4.39)
with an analogous solution fap_. The (Gaussian) transform then leads to the relation between the
in andout fermion wave-function with the following reflection coefficient (see réf@ghlin))

1
Rk—p) = —<§ \f(l;-[ W) [ei%[(%*(kfﬂ))+ye*i%[(kfﬂ)} (4.40)

wherey specifies the boundary conditions.
One next uses bosonization to make contact with the collective field

Wl (2. (2) = as(2) (4.41)

and consequently th&-matrix is determined by

u:la

Z n(RY) o 0-ji0jp -0, [0). (4.42)

n

The fermion method gives the following exact expressfoh [23] for thefiniat amplitude

O Vg =T (— a2 (T (Al +3—i0) T (5-in)
o =T qDZIm{é q 2( r(%—ziu) r(—IQIZ+%—iu) (449

In the largeq limit, one has that

0

—_ — — _l f—
auR(q, q) =i g R(q,—q)
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which follows from the fact that the factqe!¥ gives the dominant effect. Consequently at lagge
(only) we can use the formula

1 9
R(g,—q) ~ ﬁl“ﬁ R(g,—q) (4.44)

and

. 1 [ ymg (Ta+3-ip)  T(G-ip
M(—ld)) ?R(q,—q) ~ 5 < €20 2
2di rG-iw  Ta+ri-im
_ i3l r(Q‘i‘%‘HIJ)_ r(%‘i‘ilJ)
FG+in)  T(-q+3+ip)
This can be seen to be in agreement with the gauge-theory corréigtprunder the replacement
—u? — N? with an overall factoeti. The sign is consistent with the correspondence we found at
the planar level.

5. Extensions

What we have reviewed is a fairly complete duality map involving th2 BPS sector of the
theory. A central role in this map is played by the harmonic oscillator matrix modetoufh
Euclidean continuation one has a connection with thecetdl model and thel = 2 string. This
presents then a simple physical basis for the gauge/gravity correspanaealogous to the one of
the noncritical string.

Extensions which are in progress or are being contemplated are the f@glo@mthe Yang-
Mills side one is interested in understanding the large N dynamics of a matrixsysth more
that a single matrix. In particular the study of4lor 1/8 BPS states requires the participation of
other Higgs matrices. Some recent progress in extending the map involvi(my twore) matrices
at the level of linearized fluctuations can be found[if [25]. On the gravitg there has been
definite progress in reduction of the full supergravity to/4 and 78 BPS sector[[26]. A future
direction is finding a way to perform a comparison between the two sideengwery definite
progress was accomplished in understanding full string theord® x S [27, [28). It is likely
that some of the results found in the SUGRA BPS sector could be of reletastring theory. For
the study of 'bubbling’ configurations in open string field theory the reatieuld consult{J39].

6. Acknowledgment

One of us (AJ) is grateful to the organizers of the School for an extyepleasant and pro-
ductive meeting. This work was supported in part by the Department afgnmder Contract
DE-FG02-91ER40688,Task A.

References

[1] S. Corley, A. Jevicki, and S. Ramgoolam, “Exact corretatof giant gravitons from dual n = 4 sym
theory,” Adv. Theor. Math. Phy& (2002) 809-83%ep-t h/ 0111222},

22


http://arXiv.org/abs/hep-th/0111222

Lectures on AdS/CFT: thie/2 BPS Sector Antal Jevicki

[2] D. Berenstein, “A toy model for the ads/cft corresponckshJHEP 07 (2004) 018,
lhep-th/0403110.

[3] H. Lin, O. Lunin, and J. M. Maldacena, “Bubbling ads spacel 1/2 bps geometriesJHEP 10
(2004) 025hep-t h/ 0409174,

[4] S.S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gaugedtty correlators from non-critical string
theory,”Phys. LettB428 (1998) 105-114hep-t h/ 9802109.

E. Witten, “Anti-de sitter space and holographédv. Theor. Math. Phy® (1998) 253-291,
lhep-t h/ 9802150,

[5] I. R. Klebanov, “Tasi lectures: Introduction to the atfstorrespondenceliep- t h/ 0009139,
[6] J. M. Maldacena, “Lectures on ads/cfgp-t h/ 0309244.

[7] S.-M. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, f8édrpoint functions of chiral operators in
d =4, n=4 sym at large nAdv. Theor. Math. Phy£ (1998) 697-718hep-t h/ 9806074.

[8] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. RastéCiorrelation functions in the
cft(d)/ads@ + 1) correspondenceNucl. PhysB546 (1999) 96-118hep- t h/ 9804058,

[9] A. V. Ryzhov, “Quarter bps operators in n = 4 sydEP 11 (2001) 046hep-t h/ 0109064,

[10] P. H. Ginsparg and G. W. Moore, “Lectures on 2-d gravitgd &-d string theory,”
hep-1th/ 9304011

[11] A. Jevicki, “Development in 2-d string theoryjep-t h/ 9309115,

[12] T. Yoneya, “Extended fermion representation of mahiarge 1/2-bps operators in ads/cft: Towards
field theory of d-branes,JHEP 12 (2005) 028hep-t h/ 0510114},

[13] S. Dobashi, H. Shimada, and T. Yoneya, “Holographiomafulation of string theory on ads(5) x s**5
background in the pp-wave limitRlucl. PhysB665 (2003) 94-128hep- t h/ 0209251.

[14] L. Grant, L. Maoz, J. Marsano, K. Papadodimas, and V.y&hRov, “Minisuperspace quantization of
‘bubbling ads’ and free fermion dropletslHEP 08 (2005) 025hep- t h/ 0505079,

L. Maoz and V. S. Rychkov, “Geometry quantization from sigpavity: The case of 'bubbling ads’,”
JHEP 08 (2005) 096 hep- t h/ 0508059

[15] C. Crnkovic and E. Witten, “Covariant description ohcaical formalism in geometrical theories,”.
Print-86-1309 (PRINCETON).

[16] M. Cvetic, H. Lu, C. N. Pope, A. Sadrzadeh, and T. A. Tr@pnsistent so(6) reduction of type iib
supergravity on s(5)Nucl. PhysB586 (2000) 275-28dhep-t h/ 0003103].

[17] K. Demeterfi, A. Jevicki, and J. P. Rodrigues, “Scattgramplitudes and loop corrections in
collective string field theory,Nucl. PhysB362 (1991) 173-198.

[18] J. Polchinski, “Classical limit of (1+1)-dimensiorstting theory,"Nucl. PhysB362 (1991) 125-140.

[19] A. Jevicki and T. Yoneya, “1/2-bps correlators as ¢ =rhatrix,” hep-t h/ 0612262
[20] K. Okuyama, “1/2 bps correlator and free fermiodIEP 01 (2006) 021hep-t h/ 0511064

[21] A. Jevicki, M. Mihailescu, and S. Ramgoolam, “Gravitgin cft on s**n(x): Symmetries and
interactions,"Nucl. PhysB577 (2000) 47—-72hep- t h/ 9907144,

[22] N. Beisert, C. Kristjansen, J. Plefka, G. W. Semenafif] . Staudacher, “Bmn correlators and
operator mixing in n = 4 super yang- mills theoriucl. PhysB650 (2003) 125-161,
lhep-th/ 0208178,

23


http://arXiv.org/abs/hep-th/0403110
http://arXiv.org/abs/hep-th/0409174
http://arXiv.org/abs/hep-th/9802109
http://arXiv.org/abs/hep-th/9802150
http://arXiv.org/abs/hep-th/0009139
http://arXiv.org/abs/hep-th/0309246
http://arXiv.org/abs/hep-th/9806074
http://arXiv.org/abs/hep-th/9804058
http://arXiv.org/abs/hep-th/0109064
http://arXiv.org/abs/hep-th/9304011
http://arXiv.org/abs/hep-th/9309115
http://arXiv.org/abs/hep-th/0510114
http://arXiv.org/abs/hep-th/0209251
http://arXiv.org/abs/hep-th/0505079
http://arXiv.org/abs/hep-th/0508059
http://arXiv.org/abs/hep-th/0003103
http://arXiv.org/abs/hep-th/0612262
http://arXiv.org/abs/hep-th/0511064
http://arXiv.org/abs/hep-th/9907144
http://arXiv.org/abs/hep-th/0208178

Lectures on AdS/CFT: thie/2 BPS Sector Antal Jevicki

[23] G. W. Moore, M. R. Plesser, and S. Ramgoolam, “Exact simétdr 2-d string theory,Nucl. Phys.
B377 (1992) 143-19thep-t h/ 9111035,

[24] S.Y. Alexandrov, V. A. Kazakov, and I. K. Kostov, “2d stg theory as normal matrix modeNucl.
Phys.B667 (2003) 90-110hep-t h/ 030210§.

[25] A. Donos, A. Jevicki, and J. P. Rodrigues, “Matrix mod®ps in ads/cft,Phys. RevD72 (2005)
125009hep- t h/ 0507124

[26] A. Donos, “A description of 1/4 bps configurations in rinival type iib sugra,Phys. RevD75 (2007)
025010hep-t h/ 0606199

A. Donos, “Bps states in type iib sugra with so(4) x so(2)@gd) symmetryhep-t h/ 0610259.

[27] N. Beisert, B. Eden, and M. Staudacher, “Transcendigntnd crossing,hep-t h/ 0610251|.

[28] J. Maldacena and |. Swanson, “Connecting giant magtmtise pp-wave: An interpolating limit of
ads(5) x s**5,"hep-t h/ 0612079.

[29] L. Bonora, C. Maccaferri, R. J. Scherer Santos, and Didlla, “Bubbling ads and vacuum string
field theory,”Nucl. PhysB749 (2006) 338-357hep-t h/ 0602015,

24


http://arXiv.org/abs/hep-th/9111035
http://arXiv.org/abs/hep-th/0302106
http://arXiv.org/abs/hep-th/0507124
http://arXiv.org/abs/hep-th/0606199
http://arXiv.org/abs/hep-th/0610259
http://arXiv.org/abs/hep-th/0610251
http://arXiv.org/abs/hep-th/0612079
http://arXiv.org/abs/hep-th/0602015

