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Regge and Bjorken asymptotics in N=4 SUSY Lev Lipatov

1. Introduction

In the leading logarithmic approximation (LLA) the scattering amplitude in QCD has the form

MA′B′
AB (s, t) = s

∞

∑
n=0

(αs ln s)n an(t) , αs =
g2

4π
→ 0 . (1.1)

In the Born approximation it is factorized

MA′B′
AB (s, t)|Born = gT c

A′A δλA′λA

2s
t

gT c
B′B δλB′λB

. (1.2)

After summing radiative corrections we obtain for the amplitude the Regge-type expression [1]

MA′B′
AB (s, t) = MA′B′

AB (s, t)|Born sω(t) , (1.3)

where the gluon Regge trajectory is

ω(−|q|2) = − αc

4π2 Nc

∫
d2k

|q|2
|k|2|q− k|2 ≈−αc

2π
ln

|q2|
λ 2 . (1.4)

The particles at high energies for the process AB → A′B′d1...dn−1 in LLA are produced in the
multi-Regge kinematics

s � sr = (kr−1 + kr)
2 � |qr|2 , kr = qr −qr+1 . (1.5)

The gluon production amplitude in this region has the multi-Regge form [1]

M2→1+n ∼
sω1

1

|q1|2
gT d1

c2c1
C(q2,q1)

sω2
2

|q2|2
...C(qn,qn−1)

sωn
n

|qn|2
, (1.6)

where the Reggeon-Reggeon-gluon vertex for the produced gluon with a definite helicity is

C(q2,q1) =
q2 q∗1

q2 −q1
. (1.7)

It is convenient to introduce the complex variables for the gluon transverse coordinates and
momenta

ρk = xk + iyk , ρ∗
k = xk − iyk , pk = i

∂
∂ρk

, p∗k = i
∂

∂ρ∗
k

. (1.8)

Then in the coordinate representation the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation is [1]

E Ψ(~ρ1,~ρ2) = H12 Ψ(~ρ1,~ρ2) , ∆ = −αsNc

2π
min E , (1.9)

where ∆ is the Pomeron intercept. In the operator form the BFKL Hamiltonian is [2]

H12 = ln |p1 p2|2 +
1

p1 p∗2
ln |ρ12|2 p1 p∗2 +

1
p∗1 p2

ln |ρ12|2 p∗1 p2 −4ψ(1) , (1.10)

where ρ12 = ρ1−ρ2. The kinetic energy is proportional to the gluon Regge trajectories ω(−|p1,2|2)
and the potential energy ∼ ln |ρ12|2 is related to the Fourier transformation of the product of two
vertices C(q2,q1).
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The BFKL Hamiltonian is invariant under the Moebius transformation [3]

ρk →
aρk +b
cρk +d

. (1.11)

For the classification of its eigenstates one can introduce the Casimir operators of this group

M2 =

(
2

∑
r=1

~M(r)

)2

= ρ2
12 p1 p2 , M∗2 = (M2)∗ . (1.12)

Their eigenvalue equations

M2 fm,m̃ = m(m−1) fm,m̃ , M∗2 fm,m̃ = m̃(m̃−1) fm,m̃ (1.13)

define the conformal weights

m = 1/2+ iν +n/2 , m̃ = 1/2+ iν −n/2 (1.14)

for the principal series of unitary representations.
The Hamiltonian has the property of the holomorphic separability [4]

H12 = h12 +h∗12 , (1.15)

where the holomorphic Hamiltonian h12 equals

h12 = ln(p1 p2)+
1
p1

lnρ12 p1 +
1
p2

lnρ12 p2 −2ψ(1) . (1.16)

2. Integrability of the multi-colour BFKL dynamics

One can write the Bartels-Kwiecinskii-Praszalowicz equation [5] for the n-gluon state as
follows

EΨ(~ρ1, ...,~ρn) = ∑
k<l

T a
k T a

l

(−Nc)
Hk,l Ψ(~ρ1, ...,~ρn) , (2.1)

where T a
k is the gauge group generator acting on the colour index of the gluon k

T a
bc = −i fabc , [T a

k ,T b
l ] = i fabcT c

k δkl . (2.2)

The BKP equation is especially simple in the multi-colour QCD. In particular, for the eigen-
function of the Hamiltonian H = 1

2 ∑k Hk,k+1 we obtain the holomorphic factorization [4]

Ψ(~ρ1,~ρ2, ...,~ρn) = ∑
r,s

ar,s Ψr(ρ1, ...,ρn)Ψs(ρ∗
1 , ...,ρ∗

n ) (2.3)

and the duality symmetry [6]
ρr,r+1 → pr → ρr−1,r . (2.4)

The holomorphic Hamiltonian h has the integrals of motion [2, 7]

qr = ∑
k1<k2<...<kr

ρk1k2ρk2k3 ...ρkr−1kr pk1 pk2 ...pkr , [qr,h] = 0 . (2.5)
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The integrability of the BFKL dynamics [7] is related to the fact, that H coincides with the local
Hamiltonian of the Heisenberg spin model [8].

In particular for the Pomeron (n = 2) one can obtain the following wave function [3]

fm,m̃(−→ρ1,
−→ρ2;−→ρ0) =

(
ρ12

ρ10 ρ20

)m( ρ∗
12

ρ∗
10 ρ∗

20

)m̃

(2.6)

with the corresponding energy having the holomorphic separability property

Em,m̃ = εm + εm̃ , εm = ψ(m)+ψ(1−m)−2ψ(1) , ψ(x) =
d

d x
lnΓ(x) . (2.7)

Thus, the intercept of the BFKL Pomeron is [1]

∆ = 4
αs

π
Nc ln2 (2.8)

and, as a result, one obtains the violation of the Froissart bound

σ ∼ s∆ > c ln2 s . (2.9)

Therefore there is a problem how to restore the s-channel unitarity for scattering amplitudes.
The consistent way to solve this problem is to use the effective field theory for Reggeized gluons
which is similar to the Gribov Reggeon calculus for Pomerons. For the multi-Regge kinematics of
intermediate particles such effective model was constructed in Ref. [9].

3. Effective field theory for high energies

In the next-to-leading approximation one should consider more complicated processes - the
production of particle clusters in the multi-Regge kinematics

PA +PB = Q1 +Q2 + ...+Qn , s � si = 2QiQi+1 � |q2
i | , (3.1)

Q2
i = M2

i , Qk = ∑
j

p(k)
j , k = 1,2, ...,n . (3.2)

We define the parton rapidity y as follows

y =
1
2

ln
εk + |k|
εk −|k| (3.3)

and investigate the interaction of particles belonging to the rapidity interval |y−y0| < η , η � ln s.
The gluon and quark fields are transformed according the corresponding representations of SU(Nc)

vµ(x) = −iT ava
µ(x) , ψ(x) , ψ̄(x) . (3.4)

We introduce also the fields describing the production and annihilation of Reggeized gluons

A±(x) = −iT aAa
±(x) . (3.5)

Under the global colour group rotations the fields are transformed in the standard way

δvµ(x) = [vµ (x),χ ], δψ(x) = −χ ψ(x), δA±(x) = [A±(x),χ ] , (3.6)
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but under the local gauge transformations (χ(x) → 0 for x → ∞) we have

δvµ (x) =
1
g
[Dµ ,χ(x)], δψ(x) = −χ(x)ψ(x), δA±(x) = 0 . (3.7)

In the quasi-multi-Regge kinematics the Reggeon fields satisfy the kinematical constraints

∂∓ A±(x) = 0 . (3.8)

For the gauge invariance one should introduce new effective vertices with an arbitrary number of
gluons. The effective gauge-invariant action local in the rapidity y has the form [10]

S =
∫

d4x
(
L0 +LGR

ind

)
, (3.9)

where the usual QCD Lagrangian is

L0 = iψ̄D̂ψ +
1
2

Tr G2
µν , Dµ = ∂µ +gvµ , Gµν =

1
g
[Dµ ,Dν ] (3.10)

and the induced contribution for the gluon-Reggeon interactions is given below

LGR
ind = −1

g
∂+Pexp

(
−1

2

∫ x+

−∞
v+(x′)dx′+

)
∂ 2

σ A−− 1
g

∂−Pexp

(
−1

2

∫ x−

−∞
v−(x′)dx′−

)
∂ 2

σ A+.

(3.11)
One can formulate the Feynman rules in the momentum space [11]. The effective vertices for

the interaction of r gluons with a Reggeized gluon have the form [10]

∆ν0ν1...νr+
a0a1...arc = −~q2

⊥
r

∏
s=0

(n+)νs 2Tr (T cGa0a1...ar ) (3.12)

with the following representation for Ga0a1...ar [11]

Ga0a1...ar = ∑
{i0,i1,...,ir}

T ai0 T ai1 T ai2 ...T air

k+
i0 (k

+
i0 + k+

i1 )...(k
+
i0 + k+

i1 + ...+ k+
ir−1

)
. (3.13)

These vertices satisfy the recurrent relations (Ward identities) [10]

k+
r ∆ν0ν1...νr+

a0a1...ar
(k+

0 , ...,k+
r ) =

r−1

∑
i=0

i faamai∆
ν0...νr+
...ai−1aai+1...ar

(k+
0 , ...,k+

i−1,k
+
i + k+

r ,k+
i+1, ...) . (3.14)

4. DGLAP and BFKL equations in N = 4 SUSY

Usual parton distributions are expressed in terms of the corresponding unintegrated quantities

fa(x,Q
2) =

∫

k2
⊥<Q2

dk2
⊥ ϕa(x,k

2
⊥) . (4.1)

With the use of the Mellin transformation

fa( j,Q2) =
∫ 1

0
d x x j−1 fa(x,Q

2) (4.2)
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the kernel of the DGLAP equation is written in terms of the anomalous dimension matrix γab

d
d lnQ2 fa( j,Q2) = ∑

b

γab( j) fb( j,Q2) . (4.3)

The momenta fa( j,Q2) are proportional to matrix elements of the light-cone components of
the local twist-2 operators being Lorentz tensors or pseudo-tensors

Oa = ñµ1 ...ñµ j Oa
µ1,...,µ j

, Õ
a = ñµ1 ...ñµ j Õ

a
µ1,...,µ j

. (4.4)

Their anomalous dimensions do not depend on the different tensor projections

ñµ1 ...ñµ1+ω Oa
µ1,...,µ1+ω ,σ1,...,σ|n| l

σ1
⊥ ...l

σ|n|
⊥ . (4.5)

The solution of the BFKL equation due to its Möbius invariance is classified by the anomalous
dimension γ = 1

2 + iν and the conformal spin |n| which coincides with the number of transverse
indices of the tensor Oa.

In the next-to-leading approximation the eigenvalue of the BFKL kernel is written below

ω = ω0(n, γ)+4 â2 ∆(n,γ) , â = g2Nc/(16π2) . (4.6)

In QCD ∆(n,γ) is a non-analytic function of the conformal spin |n| [12, 13]

∆QCD(n,γ) = c0δn,0 + c2δn,2 +analytic terms ,

but in N = 4 SUSY the Kronecker symbols are cancelled [13].
Moreover, in this model we obtain for ∆(n,γ) the Hermitian separability

∆(n,γ) = φ(M)+φ(M∗)− ρ(M)+ρ(M∗)
2â/ω

, M = γ +
|n|
2

, (4.7)

ρ(M) = β ′(M)+
1
2

ζ (2) , β ′(z) =
1
4

[
Ψ′
(z+1

2

)
−Ψ′

( z
2

)]
. (4.8)

It is important, that here all special functions have the maximal trancedentality property [13].

φ(M) = 3ζ (3)+Ψ
′′
(M)−2Φ(M)+2β

′
(M)

(
Ψ(1)−Ψ(M)

)
, (4.9)

where

Φ(M) =
∞

∑
k=0

β ′(k +1)

k +M
+

∞

∑
k=0

(−1)k

k +M

(
Ψ′(k +1) − Ψ(k +1)−Ψ(1)

k +M

)
. (4.10)

For one loop anomalous dimension matrix in the case N = 4 the calculations were performed
in Ref. [14]. In this model one can introduce the following twist-2 Wilson operators

O
g
µ1,...,µ j = ŜGa

ρµ1
Dµ2Dµ3 ...Dµ j−1Ga

ρµ j
, (4.11)

Õ
g
µ1,...,µ j = ŜGa

ρµ1
Dµ2Dµ3 ...Dµ j−1G̃a

ρµ j
, (4.12)

O
q
µ1,...,µ j = ŜΨ̄aγµ1 Dµ2...Dµ j Ψ

a , (4.13)

6
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Õ
q
µ1,...,µ j = ŜΨ̄aγ5γµ1 Dµ2 ...Dµ j Ψ

a , (4.14)

O
ϕ
µ1,...,µ j = ŜΦ̄aDµ1Dµ2...Dµ j Φ

a . (4.15)

The diagonalization of the anomalous dimension matrix UγU + gives the result

−4S1( j−2) 0 0
0 −4S1( j) 0
0 0 −4S1( j +2)

,
−4S1( j−1) 0

0 −4S1( j +1)
(4.16)

containing the universal function γuni for the super-multiplet of all twist-2 operators

γ (0)
uni ( j) = −4S1( j−2) , Sr( j) =

j

∑
i=1

1
ir

. (4.17)

Note, that this function has the maximal transcedentality property, which leads to an integrability
of the evolution equations for matrix elements of quasi-partonic operators in N = 4 SUSY [14].

5. Two- and three- loop universal anomalous dimension in N = 4

In an accordance with the fact, that the eigenvalue of the BFKL equation is expressed in terms
of the most complicated harmonic sums and using the hypothesis, that the anomalous dimension in
N = 4 theory can be obtained from the BFKL equation by the analytic continuation of its kernel to
integer values of |n| [13], one can argue, that the perturbative expansion of the universal anomalous
dimension

γuni( j) = âγ (0)
uni ( j)+ â2γ (1)

uni ( j)+ â3γ (2)
uni ( j)+ ... (5.1)

contains in each order of the perturbation theory only special functions with the highest transce-
dentality. With such assumption we obtain [13]

1
8

γ (1)
uni ( j +2) = 2S1( j)

(
S2( j)+S−2( j)

)
−2S−2,1( j)+S3( j)+S−3( j) , (5.2)

where

S−r( j) =
j

∑
i=1

(−1)i

ir
, S−2,1 =

j

∑
m=1

(−1)m

m2 S1(m) . (5.3)

This result was verified by the direct calculation of the anomalous dimension matrix in two loops [15].
On the other hand, recently the three-loop anomalous dimension matrix for QCD was calcu-

lated [16]. It gave us a possibility to find the universal anomalous dimension in three loops for
N = 4 SUSY using the hypothesis of the maximal transcedentality [17]

1
32

γ (2)
uni ( j +2) = 24S−2,1,1,1 −12 (S−3,1,1 +S−2,1,2 +S−2,2,1)

+6 (S−4,1 +S−3,2 +S−2,3)−3S−5 −2S3 S−2 −S5

−2S2
1 (3S−3 +S3 −2S−2,1)−S2 (S−3 +S3 −2S−2,1)

−S1
(
8S̄−4 + S̄2

−2 +4S2S̄−2 +2S2
2

)

7
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−S1
(
3S4 −12S̄−3,1 −10S̄−2,2 +16S̄−2,1,1

)
, (5.4)

where the corresponding harmonic sums are given below

Sa( j) =
j

∑
m=1

1
ma , Sa,b,c,···( j) =

j

∑
m=1

1
ma Sb,c,···(m) , (5.5)

S−a( j) =
j

∑
m=1

(−1)m

ma , S−a,b,···( j) =
j

∑
m=1

(−1)m

ma Sb,···(m), (5.6)

S−a,b,c···( j) = (−1) jS−a,b,...( j)+S−a,b,···(∞)
(

1− (−1) j
)
. (5.7)

6. Comparison with other approaches

The three-loop anomalous dimension for N = 4 SUSY at j = 1+ω → 1

γN=4
uni ( j) = â

4
ω

−32ζ3 â2 +32ζ3 â3 1
ω

+ ... (6.1)

is in an agreement with the predictions of the BFKL equation [13].
Near the negative even points j + 2r = ω → 0 one can verify, that the anomalous dimension

satisfy the equation

γuni = 4
â
ω

+
γ2

uni

ω
(6.2)

corresponding to the resummation of the double logarithmic terms ∼ α/ω 2.
Further, one can find the universal anomalous dimension at large j

γuni = a(z) ln j , z =
αNc

π
= 4â (6.3)

valid up to three loops

a(z) = −z+
π2

12
z2 − 11

720
π4z3 + ... . (6.4)

On the other hand using the well-known AdS/CFT correspondence [18] between the superstring
model on the anti-de-Sitter space and the N = 4 supersymmetric Yang-Mills theory A. Polyakov
with collaborators obtained the prediction for a(z) in the strong coupling limit [19]

lim
z→∞

a(z) = −z1/2 +
3ln2
4π

+ ... . (6.5)

In Ref. [15] the resummation of the perturbation theory for a(z) was suggested in the form

ã = −z+
π2

12
ã2. (6.6)

The prediction of this equation for three loops is in a rather good agreement with the exact result

ã = −z+
π2

12
z2 − 1

72
π4z3 + ... (6.7)

and with its asymptotic behaviour at z → ∞.

8
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Recently Eden and Staudacher obtained the following expression for a

a(z) = −2g
√

2 f (0) ,
√

z =
1

2ε
√

2
, (6.8)

where f (x) satisfies the integral equation [20]

ε f (x) =
t

et −1

(
J1(x)

x
−
∫ ∞

0
dx′ K(x,x′) f (x′)

)
. (6.9)

The integral kernel is expressed in terms of the Bessel functions

K(x,y) =
J1(x)J0(y)− J1(y)J0(x)

x− y
. (6.10)

Using the Laplace transformation

f (x) =

∫ i∞

−i∞

d j
2π i

ex j φ( j) (6.11)

one can write the following anzatz for the solution of the ES equation

φ( j) =
∞

∑
n=1

(δn,1 −an,ε)
∞

∑
s=1

(√
( j + sε)2 +1+ j + sε

)−n

√
( j + sε)2 +1

. (6.12)

The coefficients an,ε satisfy the set of algebraic equations

an,ε =
∞

∑
n′=1

Kn,n′(ε)
(
δn′,1 −an′,ε

)
, (6.13)

where the integral kernel is [22]

Kn,n′(ε) = 2n
∞

∑
R=0

(−1)R 2−2R−n−n′

ε2R+n+n′ ζ (2R+n+n′)
(2R+n+n′−1)!(2R+n+n′)!
R!(R+n)!(R+n′)!(R+n+n′)!

. (6.14)

One can verify from this expression, that in all orders of the perturbation theory for a(z) the maxi-
mal transcedentality is valid and the coefficients in front of the products of ζ -functions are integer
numbers. Note, that for the modified ES equation derived in Ref. [21] the kernel Kn,n′(ε) should
be multiplied by the factor i =

√
−1 for odd values of the sum n+n′.

Using the new variable z = j +
√

j2 +1 one can write the dispersion representation

ξ (z) =
∫

L

dz′

2π i
ξ (z′)−ξ (−1/z′)

z− z′
(6.15)

for the function

ξ (z) =
z2 +1

2z
(φ( j− ε)−φ( j)) . (6.16)

The corresponding discontinuity satisfies the linearized "unitarity" constraint

ξ (z)−ξ (−1/z)

2
√

j2 +1
= 1−

∞

∑
s=1

ξ
(

j + sε +
√

( j + sε)2 +1
)

√
( j + sε)2 +1

. (6.17)

9
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7. BFKL Pomeron and graviton in N=4 SUSY

Let us calculate the Pomeron intercept in the N = 4 supersymmetric gauge theory at large
coupling constants [17]. To begin with, one can simplify the eigenvalue for the BFKL kernel in the
diffusion approximation as follows (see [12])

j = 2−∆−Dν2 , γuni =
j
2

+ iν , (7.1)

assuming, that the parameter ∆ is small at large z ∼ α . Due to the energy-momentum conservation
we have γ | j=2 = 0 and therefore γ can be expressed only in terms of the parameter ∆

γ = ( j−2)

(
1
2
− 1/∆

1+
√

1+( j−2)/∆

)
. (7.2)

On the other hand with the use of the AdS/CFT correspondence [18] the above BFKL equation can
be written as the graviton Regge trajectory

j = 2+
α ′

2
t , t = E2/R2 , α ′ =

R2

2
∆ . (7.3)

The behaviour of γ at g → ∞, j → ∞ is known from the paper of Polyakov with collabora-
tors [19]

γ|z→∞ = −
√

j−2∆−1/2
| j→∞ =

√
π j z1/4 (7.4)

As a result we obtain the following Pomeron intercept at large couplings [17] (see also Ref. [23])

j = 2−∆ , ∆ =
1
π

z−1/2 (7.5)

To verify this result independently one can calculate the slope of the anomalous dimension at j = 2

γ ′(2) =
1
2
− 1

2∆
= b = −π2

6
z+

π4

72
z2 − π6

540
+ ... . (7.6)

Similar to the case j → ∞ we use the following resummation procedure [15]

π2

6
z = −b̃+

1
2

b̃2 . (7.7)

The weak and strong coupling asymptotics of the solution of this equation is given below

b̃ = −π2

6
z+

π4

72
z2 − π6

432
z3 + ... , lim

z→∞
∆̃ =

√
3

2π
z−1/2 , (7.8)

which is in a good agreement with the above results for ∆ and b

b = −π2

6
z+

π4

72
z2 − π6

540
z3 + ... . (7.9)
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8. Discussion

It is important, that in QCD the gluons and quarks are reggeized. For solving the unitarization
problem for the BFKL Pomeron one should use the effective action for interactions of Reggeons
and particles in the quasi-multi-Regge kinematics. The Reggeon calculus in the form of a 2+1 field
theory can be derived from the action. In the framework of this approach the t -channel unitarity
is automatically fulfilled. The s-channel unitarity is incorporated in the Reggeon theory through
the bootstrap equations (see [1]) and various relations among the effective vertices. The next-
to-leading correction to the eigenvalue of the BFKL kernel in N = 4 SUSY does not contain the
non-analytic terms. It is a sum of the most complicated functions which could appear in this order.
Using the hypothesis of the maximal transcedentality for the universal anomalous dimension of the
twist-2 operators we calculated this quantity up to the third order. We suggested a resummation
procedure and verified the strong coupling predictions obtained from the AdS/CFT correspondence.
In particular, we investigated the Eden-Staudacher equation for γ( j) at j → ∞ and calculated the
intercept of the BFKL Pomeron in N = 4 SUSY at the strong coupling regime.
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