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Diffusive scaling and the high energy limit of DDIS
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After reviewing the recent developments on the high energy evolution equation beyond the BK–

JIMWLK equation, we discuss their impact on the inclusive diffractive cross section in DIS. Due

to the Pomeron loop effects, the cross section exhibits a new scaling law–the ‘diffusive’ scaling

which eventually replaces the geometric scaling as predicted by the BK–JIMWLK equation.
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1. Nonlinear evolution equations

One of the best hopes for unitalizing the BFKL Pomeron within perturbative QCD is to derive
nonlinear evolution equations by summing gluon recombination diagrams. The most complete
equation of this kind to date is the Balitsky–JIMWLK equation[1]:

∂ 〈Txxxyyy〉
∂Y

=
ᾱs

2π

∫
dzzz

(xxx−yyy)2

(xxx−zzz)2(zzz−yyy)2

(〈Txxxzzz〉+ 〈Tzzzyyy〉−〈Txxxyyy〉−〈TxxxzzzTzzzyyy〉
)
, (1.1)

whereY is the rapidity andTxxxyyy is the scattering amplitude of a color dipole of sizer = |xxx−yyy| off a
dense target evaluated in the eikonal approximation

Txxxyyy = 1− 1
Nc

Tr{VxxxV
†
yyy}, (1.2)

with

Vxxx = Pexp

(
ig

∫
dx−A+(x−)

)
. (1.3)

A+ describes the target color field which is typically∼O(1/g) in the saturation regime and〈. . .〉 in
Eq. (1.1) denotes an averaging over the target field in the framework of the color glass condensate
(CGC) formalism. In fact, Eq. (1.1) is the first equation of an infinite hierarchy which schematically
reads

∂ 〈T(2)〉
∂Y

= ᾱs
(〈T(2)〉−〈T(3)〉),

∂ 〈T(3)〉
∂Y

= ᾱs
(〈T(3)〉−〈T(4)〉),

. . . (1.4)

whereT(n) is the scattering amplitude forn dipoles and we suppressed convolution with the BFKL
kernel and numerical factors. With an additional assumption of factorization,〈TT〉 = 〈T〉〈T〉,
Eq. (1.1) becomes a closed equation known as the Balitsky–Kovchegov (BK) equation. The BK–
JIMWLK equation has been intensively studied both analytically and numerically. At fixed impact
parameterbbb = xxx+yyy

2 , the solution looks like Fig. 1 as a function ofln1/r2.

ln 1
r2

T(r)

1

Figure 1: Schematic solution of the BK-JIMWLK equation plotted as a function ofln1/r2.
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ln 1
r2

T(r)

1

Y

Figure 2: Schematic solution of the BK-JIMWLK equation plotted as a function ofln1/r2.

Whenr → 0, T(r) goes to zero due to color transparency, while at larger, it saturates to the
black disc limit valueT(r)→ 1 thanks to the nonlinear term∼ T2 in the evolution equation. At
intermediate values ofr, a wavefront is formed. The location of this front (the onset of strong
scattering) defines thesaturation momentumQs(Y) ∝ eλY: T(r = 1/Qs(Y)) = const. ∼ O(1). A
very important property of this solution is that it showsgeometric scaling. Namely, the dipole
scattering amplitude, which is a priori a function of two variablesr andY, depends only on a single
variablerQs; T(r,Y) ≈ (r2Q2

s(Y))γ , (γ ≈ 0.63) in a wide region above the saturation momentum
r ≥ 1/Qs(Y). This means that, as the rapidity increases, the front is parallel transported to the right
without changing its shape. There is a nice way of understanding this ‘travelling wave’ behavior
of the solution. After an approximation to the BFKL kernel and some changes of variables, the
BK equation becomes identical to the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation
which is well known in statistical physics [2]. There it has been known for some time that the
solution to this equation is of a travelling wave type. This observation turns out to be crucial for
going beyond the BK-JIMWLK equation as discussed in section 3.

2. Prediction for (D)DIS: ‘Mean field’ results

The dipole scattering amplitudeT(r) directly enters observed cross sections at small–x via the
dipole factorization formulabbb,

dσT/L

dbbb
(Y,Q2) = 2

∫
dzdr|ΨT/L(z, r,Q

2)|2〈T(r)〉Y, (2.1)

whereΨ is the QED amplitudeγ∗T/L → qq̄ andz is the longitudinal momentum fraction taken by
the quark. Plugging the solution〈T(r)〉 of the BK–JIMWLK equation into Eq. (2.1), one sees that,
whenQ > Qs, ther integral is dominated by1/Q < r < 1/Qs. The geometric scaling of〈T(r)〉 is
taken over by the geometric scaling ofσ , σ(Y,Q2) = σ(Q2/Q2

s(Y)). Similarly, for the inclusive
diffraction one gets, at smallβ ,

dσD
T/L

dbbb
(Y,Y0,Q

2) =
∫

dzdr|ΨT/L(z, r,Q
2)|2PD(Y,Y0,Q

2), (2.2)

whereY−Y0 = ln1/β . Our definition is such thatY0 is theminimalrapidity gap. So the diffractive
probability PD is integrated over events whose rapidity gaps are equal to, or larger thanY0. The
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usual diffractive structure function is obtained by taking aβ–derivative,FD(3) ∝ d/d(ln1/β )σD.
PD naturally splits into the elastic diffractionPD

el and the inelastic diffraction (diffractive dissocia-
tion) PD

inel which are given, respectively, by

PD
el = 〈T(r)〉2 + ln

1
β

ᾱs

π
Re

∫
dzzzMxxxyyyzzz〈Txxxyyy〉〈Txxxzzz+Tzzzyyy−Txxxyyy−TxxxzzzTzzzyyy〉,

PD
inel = ln

1
β

ᾱs

2π

∫
dzzzMxxxyyyzzz|〈Txxxzzz+Tzzzyyy−Txxxyyy−TxxxzzzTzzzyyy〉|2, (2.3)

where we have limited ourselves to theqq̄ andqq̄g components of the virtual photon and used the
largeNc approximation to represent theqq̄gstate as a two dipole system. Note that ‘elastic’ or ‘in-
elastic’ refers to therelativenormalization of various Fock components of the virtual photon before
and after the scattering (the Good-Walker picture). Therefore, theqq̄g state also contributes to the
elastic part. When one tries to evaluate the rhs. of Eq. (2.3) by substituting〈T(r)〉 ∼ (r2Q2

s(Y))γ ,
one immediately notices that small size dipoles are suppressed due to the factor〈T(r)〉2 ∼ (r2)2γ .
Correspondingly, ther integral is dominated by large dipoles of sizer ∼ 1/Qs(Y) > 1/Q which is
still perturbative ifY is large. (Note that without saturation, inclusive diffraction is a soft process
dominated by large dipoles of sizer ∼ 1/ΛQCD.) Other terms of Eq. (2.3) are similarly computed
and the result is thatPD

inel dominates overPD
el at smallβ for Q> Qs. On the other hand, forQ< Qs,

PD
inel goes to zero sinceT → 1.

3. Beyond the BK-JIMWLK: Pomeron loop effects

Recently there has been growing evidence that thegluon number fluctuationdeveloped in the
dilute regime plays an important role for the asymptotic behavior of the scattering amplitude. Such
effects are not included in the BK-JIMWLK equation which contains only the gluon recombination
diagrams, Fig. 3(a), but are due to the gluon splitting diagrams Fig. 3(b).A priori, these diagrams
are important when the target is ‘dilute’. However, even in DIS where the target eventually be-
comes saturated, small dipolesr → 0 undergo weak scatteringT(r) ∼ α2

s , and in this region one
cannot neglect the gluon splitting process. It turns out that the dynamics of this tail part dominates
the asymptotic propagation of wavefronts. Iteration of vertices in Figs. 3(a) and 3(b) (and more
generally, 3(c)) in thet–channel gives rise to loops of reggeons, or Pomerons. At the moment
complete treatment of Pomeron loop effects in the evolution equation is not known. However, in
the DIS case there have been already some significant progresses which we are going to review.

Figure 3: Quantum evolution of the target (represented by a blob): (a) Gluon recombination (b) Gluon
splitting (c) Both the gluon recombination and the splitting

The connection between Fig. 3(b) and the gluon number fluctuation is best illustrated by the
Monte-Carlo simulation [3] of the evolution of an onium in the dipole model at largeNc. This
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process is, in a sense, an extreme opposite of saturation: It contains only Fig. 3(b) in the form
of dipole splitting, but not Fig. 3(a). As the rapidity is increased, each dipole in an onium splits
into two new dipoles with certain probability computed in perturbation theory. It was observed
in [3] that, after some evolution in rapidity, the number of dipoles of a fixed size in the onium
wavefunction greatly fluctuates event-by-event. As the rapidity is further increased, the saturation
effects set in and the dipole model breaks down. But one can easily imagine that the gluon number
fluctuations developed in the early stages of the evolution persists in the saturation environment
in the form ofsaturation momentum fluctuation, since the saturation momentum is a measure of
gluon number density. This expectation is indeed the case. In [4], it was shown that, within the
largeNc approximation, the effect of Fig. 3(b) can be simulated by adding Gaussian noise to the
rhs. of the BK-JIMWLK equation. In momentum space,

∂T(kkk)
∂Y

= ᾱsHBK−JIMWLK⊗T(kkk)+ ᾱs

√
α2

s T(kkk)ν(kkk), (3.1)

whereν is random noise with〈ν(kkk)ν(kkk′)〉 ∼ 1/ᾱsδ (2)(kkk−kkk′). One sees that the newly added term
is important whenT ∼ α2

s . Eq. (3.1) is known in statistical physics as the stochastic–FKPP equa-
tion, and general features of its solution is known. In particular, numerical simulations show that
the front position becomes a random variable after some evolution even if one starts with a single
initial condition. In QCD, this means that the saturation momentumQs becomes a random variable
event-by-event, which is in qualitative agreement with what one would expect after summing the
gluon splitting diagrams Fig. 3(b) as explained above. Moreover, the probability distribution ofQs

is Gaussian inlnQ2
s, with the variance growing like

√
Y.

P(Qs)∼ exp

(
− ln2(Q2

s/〈Qs〉2)
DY

)
, (3.2)

where〈Qs〉(Y) is the average saturation momentum. The observed amplitude is given by an average
over the ensemble ofQs

〈T(r)〉=
∫

dQsP(Qs)T(rQs)≈ 1
2

Er f

(
ln1/(r2Q̄2

s)√
DY

)
, (

√
DY¿ ln1/(r2Q̄2

s)¿ DY)

(3.3)

whereEr f (x) is the error function. An important point here is that, though each event in the
ensemble has the geometric scaling propertyT(rQs), this property is lost in the averaged quantity
because of the additionalY dependence coming from the dispersion of the front. Instead, Eq. (3.3)
exhibits a new type of scaling, thediffusive scaling–the scattering amplitude depends onY andr
via the combinationln(r2Q̄2

s(Y))/
√

Y.

4. Impact on DDIS

Now that we have the novel behavior of the scattering amplitude, Eq. (3.3), predictions for
DDIS should be updated and compared with the ‘mean field’ behavior of section 2. The details of
the calculation are presented in [5]. The immediate consequence of Eq. (3.3) is that small dipoles
are no longer suppressed. Indeed, within the diffusive scaling window

√
DY¿ ln1/(r2Q̄2

s)¿DY,
the error function falls like Gaussian
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〈T(r)〉 ∼ exp
(− ln2(r2Q̄2

s)/DY
)
, (4.1)

and squaring it is not a big effect unlike the case of the mean field resultT(r)∼ (r2Q2
s)

γ . Therefore,
ther integral in Eq. (2.2) is dominated byr ∼ 1/Q¿ 1/Q̄s —diffraction becomes ahard process!

It is straightforward to evaluate other terms in Eq. (2.3). After the convolution with the photon
wavefunction, the result again shows the diffusive scaling with the variableZ≡ ln(Q2/Q̄2

s)/
√

DY

dσD

dbbb
≈ dσD

el

dbbb
∝
√

DY
e−2Z2

Z3 , (
√

DY¿ ln1/(Q2/Q̄2
s)¿ DY) (4.2)

Note thatPD
el dominates overPD

inel even whenQ2 À 〈Qs〉2.1 As already remarked in section 2,
this phenomenon is expected in the saturation regionQ2 ¿ 〈Qs〉2. The physical reason why this
happens also forQ2 À 〈Qs〉2 is the fluctuation ofQs —There are events in the ensemble whose
saturation momentum isQs ∼ Q∼ 1/r À 〈Qs〉. These events are rare, coming from the upper
tail of the gaussian distribution Eq. (3.2). But sinceQs∼ 1/r, the scattering is strongT ∼ O(1).
On the other hand, typical events withQs∼ 〈Qs〉 are more frequent, but the cross section is small
T ¿ 1 for these events. It turns out that the former wins after averaging overQs —cross section is
dominated by rare fluctuations (‘hot spots’) in the ensemble which has unusually large saturation
momentumQs ∼ QÀ 〈Qs〉. In this way the fluctuation effects ‘push up’ the saturation physics
well above the average saturation momentum〈Qs〉. The dominance ofPD

el overPD
inel is an example

of this general tendency.
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1Remember thatPD(Y,Y0) is integrated overβ from β = 1 to β = e−(Y−Y0). PD
el receives contribution fromβ ∼ 1

while PD
inel from β ¿ 1. The derivativedPD/dβ at smallβ is always dominated by inelastic diffraction.
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