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Unitarity Signatures in Diffractive Scattering U. Maor

1. Introduction

The aim of this presentation is to search and identify unambiguous s-channel unitarity signa-
tures in the high energy scattering data (both soft and hard). To this end, we shall utilize the GLM
eikonal model [1, 2, 3] as a convenient platform to present qualitative features that we consider
to be general. The utilization and further critical tests of these ideas are expected to be carried
out in the LHC small x experiments (see Orava’s and Royon’s presentations in these Proceedings).
It has also important implications for the analysis of Cosmic Rays air shower data, in particular
the forthcoming AUGER results. We aim to translate our observations into concrete experimental
propositions.

The bulk of the following will be devoted to soft scattering, where the presentation is relatively
simple. This will be followed by a brief summary on the extension of the presented analysis to hard
diffraction in ep and pp scattering. Special attention will be given to LRG survival probabilities in
both soft and hard diffraction.

2. S-Channel Unitarity and the Eikonal Model

As a consequence of our inability to execute QCD calculations in the non-perturbative regime,
high energy soft scattering is commonly described by the Regge-pole model [4]. Its key lead-
ing ingredient is the Pomeron, whose linear t-dependent trajectory is specified by αIP(0) and α ′

IP.
Donnachie and Landshoff (DL) have promoted [5] a successful Regge parametrization for total
and elastic hadron-hadron cross sections in which αIP(0) = 1 + ε = 1.08. The fitted slope [6] is
α ′

IP = 0.25 GeV−2. This simple parametrization is bound to eventually violate s-channel unitarity,
since σel grows with energy as s2ε (modulo logarithmic corrections) while σtot grows as sε . The
intriguing question is what is the energy at which the unitarity bound becomes significant. It is an
easy exercise to check that the DL model, with its fitted global parameters, will violate the unitarity
black disk bound (see the end of this Section) at very small impact parameter b, just above the
present Tevatron energy. Indeed, CDF estimates [7] ael(

√
s = 1800,b = 0) = 0.96± 0.04. Note,

though, that unitarity violations in a given model which are confined to small b have relatively little
significance on its σtot and σel output. The energy dependence of the experimental SD cross sec-
tion, in the ISR-Tevatron range, is much weaker than the observed approximate power dependence
of σel [8].

2.1 Single channel eikonal model

The above theoretical difficulties are easily identified and eliminated once we take into ac-
count the corrections necessitated by s-channel unitarity. However, enforcing unitarity is a model
dependent procedure. Indeed, in this workshop we were exposed to three, conceptually different,
approaches to this problem (Goulianos, Selyugin and myself). In the following we shall confine
ourselves to a Glauber type eikonal model [9]. In this approximation, the scattering matrix is
diagonal and only repeated elastic re-scatterings are summed. Accordingly, we write

ael(s,b) = i
(

1− e−
1
2 Ω(s,b)

)

. (2.1)
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Since the scattering matrix is diagonal, the single channel unitarity equation is written as

2Im[ael(s,b)] = | ael(s,b) |2 + Gin(s,b), (2.2)

with Gin = 1 − e−Ω(s,b). It follows that PS(s,b) = e−Ω(s,b) is the probability that the two initial
hadrons reach the final inelastic interaction intact, regardless of their re-scatterings.

Eq. (2.1) is a general solution of Eq. (2.2) as long as Ω is arbitrary. In the eikonal model Ω
is real and equals the imaginary part of the iterated input Born amplitude. The eikonalized output
amplitude is imaginary, but its real part can be calculated [9]. In a Regge language we substitute
sαIP → sαIPe−

1
2 iπαIP . In the general case, Eq. (2.2) implies a general unitarity bound, | ael(s,b) |≤ 2,

obtained when Gin = 0. This is an extreme option [10] in which asymptotically σtot = σel . This
is formally acceptable but not very appealing. Assuming that ael is imaginary, we obtain that the
unitarity bound coincides with the black disk bound, | ael(s,b) |≤ 1 and σel(s,b)/σtot (s,b) ≤ 1/2.

3. The GLM model

3.1 Single channel GLM

The GLM model [1] is an eikonal model originally conceived to explain the mild energy
dependence of soft diffractive cross sections. In this model we take a DL type Pomeron exchange
amplitude input in which αIP(0) = 1 + ∆S > 1. The simplicity of the model derives from the
observation that the eikonal approximation with a central Gaussian input (corresponding to an
exponential slope of dσel/dt) can be calculated analytically. This is, clearly, an over simplification,
but it reproduces the bulk of the data well, i.e. the total and the forward elastic cross sections.
Accordingly, the eikonal input DL type b-space opacity is

ΩS(s,b) = νS(s)ΓS(s,b) , (3.1)

where νS(s) = σ S(s0)(s/s0)
∆S , R2

S(s) = R2
0 +4α ′

IP ln(s/s0) and the soft profile

ΓS(s,b) =
1

πR2
S(s)

e−b2/R2
S(s) ,

defined so as to keep the normalization
∫

d2bΓS(s,b) = 1. One has to distinguish between the
model input and output. The key observation is that the ∆S and νS are input information, not
bounded by unitarity, and should not be confused with DL input. Obviously, ∆S > ε . In a non-
screened DL type model with a Gaussian profile the relation Bel = R2

S(s)/2 is exact. In a screened
model, like GLM, Bel > R2

S(s)/2. With this input we obtain [1] analytical expressions for σtot ,σel

and σin which are easy to calculate. Note that σel/σtot is a single variable function of νS(s). Given
this experimental ratio, we can calculate [2] an "experimental" value of νS(s), independent of the
free parameters adjustment. The GLM model, with ∆S = 0.10, provides an excellent reproduction
of ISR-Tevatron σtot ,σel and Bel .

The formalism presented above is extended to diffractive (soft and hard) b-space amplitudes
which are suppressed by the probability

√

PS(s,b) due to the soft re-scattering of the initial in-
teracting hadrons. We denote the b-space input diffractive amplitude by MD(s,b). The unitarized
output amplitude is MD(s,b)e−

1
2 ΩS(s,b). A unitarized non-elastic integrated diffractive cross section

3
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screened by soft re-scatterings of the initial hadrons is obtained by convoluting its b-space input
amplitude square with the probability PS leading to a suppression factor [1, 2]

S2
D =

σ out
D

σ in
D

=

∫

d2b | MD(s,b) |2 PS(s,b)
∫

d2b | MD(s,b) |2 . (3.2)

Note that the input MD(s,b) = νD(s)ΓD(s,b), enables us to factor out and eliminate ν 2
D. Associating

diffractive processes with LRG signatures, the above suppression factor is identical to Bjorken’s
LRG survival probability [11]. The approximation just presented underestimates the full screening
effects as it neglects the re-scatterings of the final state diffractive products. We consider, thus, σout

D

as an upper limit of the unitarized diffractive cross section. In the GLM model we assume both
elastic and diffractive input amplitudes to be central Gaussians. This enables an analytic solution
in which S2

D depends on just two input parameters νS and aD(s) = R2
S(s)/R2

D(s) > 1.

S2
D =

aD(s)γ [aD(s),νS(s)]

[νS(s)]aD(s)
, (3.3)

where γ(a,x) =
∫ x

0 za−1e−zdz denotes the incomplete Euler gamma function. In an investigation
of a few diffractive channels at a given energy, νS and R2

S(s) are fixed while R2
D depends on the

investigated channel.
The above has been utilized [1] to calculate single diffraction cross sections in the GLM model.

Whereas σtot and σel , behave asymptotically as ln2(s/s0), σsd behaves as ln(s/s0), due to the e−Ω

factor. In the high energy limit we have, σsd/σtot → 0 and σel/σtot → 1/2.

3.2 Extension to a multi channel model

The failure of a single channel eikonal model to reproduce the diffractive energy dependence
is inherent. This problem is traced to the single channel basic input assumption, σD/σel � 1,
which is not compatible with the data. This problem is resolved in a multi channel approach [3]
where the revised model has improved diffractive (specifically SD) predictions, while maintaining
the excellent single channel reproductions of the forward elastic amplitude and its results on LRG
survival probabilities [2].

In the simplest approximation we consider diffraction as a single hadronic state. We have,
thus, two orthonormal wave functions, Ψh the wave function of the incoming hadron and ΨD the
wave function of the outgoing diffractive system initiated by the incoming hadron, which satisfy
〈Ψh | ΨD〉 = 0. Consider a base of two wave functions Ψ1 and Ψ2 which are diagonal with respect
to the interaction operator T. In this representation, Ψh and ΨD can be written as

Ψh = αΨ1 + βΨ2, (3.4)

ΨD = −βΨ1 + αΨ2. (3.5)

where, α2 + β 2 = 1. The amplitude of the interaction is

Ai,k = 〈ΨiΨk | T | Ψi′Ψk′〉 = ai,k δi,i′ δk,k′ . (3.6)

The amplitudes of each channel (i,k) satisfy the diagonal unitarity condition, Eq. (2.1) and Eq. (2.2).
As in a single channel ai,k(s,b) = i(1 − e−

1
2 Ωi,k(s,b)), Gin

i,k = 1−e−Ωi,k(s,b) and Ωi,k = νi,k(s)Γi,k(s,b),
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Figure 1: Integrated SD data and a two channel model fit.

with νi,k = σi,k(s0)(s/s0)
∆. The probability of two initial interacting hadrons, i and k, to reach their

final inelastic interaction intact, regardless of the initial re-scatterings, is Pi,k(s,b) = e−Ωi,k(s,b) =

[1 − ai,k(s,b)]2.

Assume an interaction of two hadrons (a,b) for which we consider elastic and diffractive
vertices, we obtain four possible re-scattering channels (a,b), (a∗,b), (a,b∗) and (a∗,b∗). For pp
or p p̄ scattering the number of channels is reduced to three. For simplicity we neglect the small
double diffraction channel and consider only elastic and SD final states, ending with a two channel
model. In this representation we have

ael(s,b) = a1,1(s,b) + 2β 2 [a1,2(s,b)−a1,1(s,b)] , (3.7)

asd(s,b) = αβ [a1,2(s,b)−a1,1(s,b)] . (3.8)

In GLM we assume (different) central Gaussian profiles for Ω1,1 and ∆Ω = Ω1,2 −Ω1,1. This
enables a successful reproduction of σtot , σel , σsd and Bel [3] in the ISR-Tevatron range. In Fig. 1
we show a reproduction of the integrated SD cross sections. Note that the experimental points are
too scattered to provide a rigorous phenomenological test. A global analysis of diffractive channels
(soft or hard) depends crucially on a reliable and unique algorithm which defines a diffractive
system. The diversity of algorithms used by the experimental groups is a severe obstacle in the
pursuit of a more reliable analysis.

Following the calculation of S2
D in a single channel model, see Eq. (3.2), we can obtain an

expression for S2
D in a two channel model. However, we are reminded that in a multi channel model

each channel of interest has its own dependence on α and β . Let us consider a central exclusive
diffractive di-jets (or Higgs) production (p+ p → p+LRG+H +LRG+ p) for which [12]

S2
CD(s) =

∫

d2b1d2b2ei(~p1t ·~b1+~p2t ·~b2)e−Ω((~b1+~b2)
2)N2

∫

d2b1d2b2ei(~p1t ·~b1+~p2t ·~b2)D2
, (3.9)

N =
(

1−2β 2aD

(

(~b1 +~b2)
2)

))

AH(p → p;b1)AH(p → p;b2)

−2αβaD

(

(~b1 +~b2)
2
)

{AH(p → p;b1)AH(p → D;b2)+AH(p → D;b1)AH(p → p;b2)}, (3.10)

D = (1−2β 2)AH(p → p;b1)AH(p → p;b2)

−2αβ{AH(p → p;b1)AH(p → D;b2)+AH(p → D;b1)AH(p → p;b2)}. (3.11)
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We follow the philosophy and notation of Ref. [3]

aD(b) = 1 − e
1
2 ∆Ω(b). (3.12)

Ω and ∆Ω are parametrized as central Gaussians, with corresponding radii R2
S,p and R2

S,D. The hard
diffractive amplitudes AH are approximated as central Gaussians, with radii R2

H,p and R2
H,D. We fix

the soft parameters from GLM two channel global fit [3] and the hard parameters from J/Ψ elastic
and inelastic photoproduction. For details see Ref. [13].

The GLM output for soft scattering is summarized in the upper Table. Its interpretation and
consequences will be discussed in the next Section. The survival probabilities listed in the lower
Table correspond to Higgs or di-jets produced in hard two LRG exclusive central diffraction.

√
s[GeV] σ DL

tot [mb] σ GLM
tot [mb] σ GLM

el [mb] σ GLM
sd [mb] BGLM

el [GeV−2] S2
SD(GLM)

540 60.1 62.0 12.3 8.7 14.9 0.357
1800 72.9 74.9 15.9 10.0 16.8 0.174

14000 101.5 103.8 24.5 12.0 20.5 0.041
30000 114.8 116.3 28.6 12.7 22.0 0.022
60000 128.4 128.7 32.8 13.2 23.4 0.012
90000 137.2 136.5 35.6 13.5 24.3 0.008

120000 143.6 142.2 37.6 13.7 24.9 0.006

We present S2
CD calculated in GLM one and two channels [2, 12], as well as KKMR [14, 13].

√
s (GeV) S2

CD(GLM, 1CH) S2
CD(GLM, 2CH) S2

CD(KKMR, 2CH)

540 13.1% 5.1% 6.0%
1800 8.9% 4.4% 4.5%
14000 5.2% 2.7% 2.6%

4. Discussion

We claim that most of the GLM results are general and wish to investigate their experimental
consequences. To this end we shall be assisted, when needed, by comparisons of the GLM output
with other relevant models predictions. This is carried out with a relative ease in b-space.
1) Even though DL is a model with no, or very weak, unitarity corrections, there is no significant
difference between the values of σtot predicted by DL and GLM up to the top Cosmic Rays energies.
As noted, the explanation for this "paradox" is that the DL amplitude violations of s-unitarity are
confined, even at super high energies, to small b which does not contribute significantly to the
elastic amplitude. The LHC study of σtot and σel is not expected, thus, to significantly add to our
knowledge on unitarity signatures at high energies. The need for survival probabilities so as to
reproduce the experimental soft SD cross section and the hard di-jets rates, is the most compelling
existing evidence supporting an observation of unitarization signatures. The study of high energy
soft and hard diffraction serves, therefor, as a unique probe of s-channel unitarity. Estimates of S2

by most existing models are compatible, regardless of their different formulations [13]. We note,
though, that S2 is an integrated observable and stress that an in depth analysis of the role of unitarity

6
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Figure 2: DL elastic IP (left), and GLM 2Ch elastic (middle) and diffractive (right) amplitude outputs.

in LHC diffraction has to concentrate on differential distributions of the investigated observables.
2) There is a major difference between the unitarized elastic and diffractive b-space amplitudes
even though both inputs are central in b. The output suppressed elastic amplitude is different from
a Gaussian, but it maintains its b-centrality. On the other hand, the diffractive output changes to a
peripheral distribution peaking at higher b. This is a direct consequence of the survival probability
b-dependent suppression e−

1
2 ΩS

, which is exceedingly small at small b and decreases at higher b
values. This is shown in Fig. 2. These properties are general and do not depend on the specifics
of the eikonal model or its GLM simplification. They are a consequence of the well established
b-centrality of the input elastic amplitude. The GLM assumed central Gaussian behavior in b-space
for both inputs simplifies the calculation, but does not change the general features of the output.
This output is compatible with the Pumplin bound [15], σel(s,b) + σdi f f (s,b))/σtot (s,b) ≤ 1/2,
regardless of the elastic and diffractive input profile details. Indeed, a check of our results at the
Planck scale show σtot = 1010 mb with a black disk soft profile, which implies diminishing rates
for soft and hard diffraction at exceedingly high energies, well above Cosmic Rays range. This
picture is bound to have its effect on Cosmic Rays studies.
3) Goulianos has been promoting his flux renormalization model [8] (for the latest version see these
Proceedings). This is a phenomenological procedure which formally does not enforce unitarity,
but, rather, a bound of unity on the Pomeron flux in diffractive processes. The Pomeron flux is
not uniquely defined so this should be regarded as an ad hoc parametrization. Nevertheless, it has
scored an impressive success in reproducing the soft and hard diffractive data in the ISR-Tevatron
range. The implied survival probabilities of this procedure are compatible with GLM and KKMR.
The model is based on a suppression factor for the diffractive channels which is t (and, thus, b)
independent. Even though an output diffractive cross section is reduced relative to its input, there
is no change, beside normalization, of the output profile and the Pumplin bound is violated at
small b. The model should be tested, and compared to unitarized models, by checking differential
observables where unitarity re-scatterings, missing in Goulianos model, can be assessed.
4) We list below two obvious and unique experimental consequences of the small b suppression of
the diffractive amplitude.
a) Small b is associated with high P⊥. The small b suppression should induce a reduction in the
expected number of high P⊥ secondaries in LHC diffractive channels.

7
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b) Re-scatterings induce dips in dσ/dt of elastic and diffractive channels. These dips should be
observed in dσsd/dt. Since the SD forward slope depends on the diffracted mass, this analysis
should be carried out in narrow mass bins. Such dips were not found in the ISR and Tevatron,
but the analysis did not have a mass resolution. A similar analysis can be executed in LRG di-
jets production [12]. A major obstacle in the way of such analysis is that it is very sensitive to
the b-structure of ΓS. This observation is known from the studies of dσel/dt dips, where small
changes in the suggested b-profile ΓS induce a severe shift of the number of dips and their location.
Our studies show this sensitivity also in SD. As a result, we strongly recommend an analysis of
SD differential cross section at narrow diffracted mass bands, but we are unable to offer a reliable
prediction.

5. Eikonalization in Hard Diffraction

Unitarity plays a dual role in hard diffraction. On the one hand, a hard partonic diffractive
scattering process is screened by the soft re-scatterings of the spectator partons. This is the source
of the spectator soft survival probability discussed in the previous Sections. In our context, we wish
to examine if eikonalization is a viable procedure with which we can assess the role of unitarity
in a strictly hard scattering. Note that the suppression due to gluon radiation from the partons
participating in the hard scattering is included in the calculation of the hard amplitude through the
Sudakov factor. Seemingly, this is an easy problem in which we associate the basic formulas of
pQCD in the infinite momentum frame and the target rest frame. This is easily demonstrated in
LLA ep DIS calculations.

Following Gribov, the interaction of a virtual photon with the target is written

σ H
tot ∝

∫

dzd2r⊥ | Ψγ∗ |2 σ̂(x,r⊥). (5.1)

Ψγ∗(r⊥,z) is the wave function of the q q̄ system within the photon, z and (1− z) are the fractions
of the photon energy carried by q and q̄ and r2⊥ = 4/Q2. The SC due to the percolation of a q q̄ pair
through the target is calculated in the eikonal approximation

σ̂ = 2
∫

d2b(1 − e−
1
2 ΩH

), (5.2)

where, ΩH(x,r⊥;b⊥) = σ̂input(x,r⊥)ΓH(b⊥) in which σ̂input (x,r⊥) = π2

3 r2
⊥αS(4/r2

⊥)xG(x,4/r2
⊥).

The suggestive interpretation of the above is to consider the expansion of 2(1− e−
1
2 ΩH

) so that the
first term corresponds to the linear DGLAP (or BFKL) evolution, while the following non-linear
terms, correspond to the SC induced in the high parton density small x domain.

We aim to obtain a unitarity bound for xG. To this end we start from a bound derived [16] in
the dipole picture

∂ 2xG(x,Q2)

∂y ∂ lnQ2 <
2
π

R2
HQ2, (5.3)

and combine it with LL DGLAP

∂ 2xG(x,Q2)

∂y ∂ lnQ2 =
Nc

π
αS xG(x,Q2). (5.4)

8
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At small enough x, we have in the LLA of DGLAP ∂ 2xG(x,Q2)/∂y∂ lnQ2 = Nc
π αSxG(x,Q2).

Therefore,

xG(x,Q2) <
2

πNcαs(Q2)
R2

HQ2. (5.5)

R2
H = 2BH is obtained from the differential cross section of HERA J/Ψ photoproduction.

For a correlated bound of interest, we start from a LLA DGLAP equation

∂xG(x,Q2)

∂ lnQ2 =
Q2

3π2 xG(x,Q2). (5.6)

In the dipole approximation

∂xG(x,Q2)

∂ lnQ2 =
Q2

3π3 σdipole(x,r
2
⊥) =

Q2

3π2

∫

db2
⊥Im aH

el(x,r
2
⊥). (5.7)

aH
el is the hard elastic scattering amplitude of a dipole at a fixed impact parameter. It evolves non-

linearly in the domain of high density QCD, bounded by unitarity | aH
el |≤ 1. Setting aH

el = 1, enables
us to obtain a unitarity bound on ∂xG(x,Q2)/∂ lnQ2 which, for very small x, equals ∂F2/∂ lnQ2.
Fig. 3 displays xG and ∂F2/∂ lnQ2 together with a few, relatively old, xG.d.f. and its F2 logarithmic
derivative predictions. The experimental signature implying that xG and ∂F2/∂ lnQ2 are getting
dangerously close to the unitarity bound, is that their fast increase with decreasing (x,Q2) is being
significantly moderated. This behavior was well reproduced by the GLM eikonal model. Similar
success was attained in the calculation of J/Ψ photoproduction.

Despite its phenomenological success, the GLM program was unable to suggest definite uni-
tarity signatures derived from the exceedingly small (x,Q2) data. The reason for this failure is
related to the fact that xG is a phenomenological p.d.f. obtained from a fit to the relevant data.
The trigger for our investigations [17] were the early sets of p.d.f.’s, which predicted values for
data points of xG and ∂F2/∂ lnQ2, at very small (x,Q2), which were systematically too large. This
problem was not present in GLM eikonal predictions for the small (x,Q2) data. The over estimation
at very low (x,Q2) disappeared in later p.d.f.’s sets, which were obtained from a fit to an enlarged
data base, which included the previous problematic experimental points. However, once again, the
same problems were found for even smaller (x,Q2) points which were not included in the fitted
data base. The GLM model provided a unitarized reproduction of this data, which was followed by
even more advanced, successful p.d.f.’s sets.

At this point it became clear that the existing data could not differentiate between a unitarized
and a plain DGLAP evolution interpretation of the data. We conclude that unitarity corrections are,
apparently, needed in the exceedingly small (x,Q2) domain of DGLAP. However, the interpretation
of this data should be done directly with the non-linear evolution equation [18] and utilizing more
sophisticated modeling than GLM. This has been done by a few groups, GLM included, but is
beyond the scope of this contribution. It is an open question if a conventional linear evolution can
reproduce the exceedingly small x data which will be measured at the LHC.
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