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transfers are considered. A general expression for the elastic scattering amplitude in terms of even

moments of the probability distribution is presented. We also show that the shape of the forward

inclusive inelastic diffraction is determined by elastic scattering in the transition region between

the forward peak and diffraction minimum.
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1. Elastic scattering amplitude and the moments of hadronic density

The familiar form of the hadron elastic scattering amplitudeT(s, t) at high energies is given as
the 2-dimensional probability Fourier transform of the 1-dimensional probability1−S(s,b):

T(s, t) =
i

2π

∫
d2b ei~q·~b [1−S(s,b)] (1.1)

where the squared momentum transfert =~q2 and the c.m. energy equals
√

s.
Even if T(s, t) is not the generator of the moments of the probability distribution1−S, nev-

ertheless theeven momentsof this distribution can be obtained fromT(s, t). For this scope let us
consider the Laplace operator:

4= ∇2 =
2

∑
j=1

∂ 2

∂q j∂q j =−4(
d
dt

+ t
d2

dt2
) (1.2)

and apply itn times to both sides of (1.1).
We have att = 0 on the left and right hand side, respectively :

4nT(s, t = 0) = 22nn!
dnT(s, t = 0)

dtn
=

i
4π

(−1)n M2n

µ2n+2 (1.3)

where the dimensionless, energy dependent, even moments of the probability distribution1−Sare
defined as:

M2n(s) = 4π
∫

d(µb) (µb)2n+1 [1−S(κ(s),µb)] (1.4)

with the parametersκ(s) andµ describing the dependence of the profile1−Son energy and the
impact parameter, respectively.

The even momentsM2n(s) are related toT = 1−S by decreasing functions ofκ(s). Conse-
quently, the momentsM2n(s) are increasing functions ofs, sinceκ(s) must increase withs. This
behaviour is different from that of the moments of a classical geometrical model of ablack disk
which are constants. It is instructive to remind this well known result since the leading term in the
asymptotic expansion of the famous Chou-Yang S-matrix in b-space is just a black disc S-matrix.

The Taylor expansion of the amplitudeT(s, t) aboutt = 0 follows from (1.3). We have

T(s, t) =
i

4πµ2

∞

∑
n=0

M2n(s)
(n!)2 (− t

4µ2)n (1.5)

where from, in particular, the total cross-section isσtot(s) = M0(s)/µ2 and the forward slope pa-
rameter equalsβ (s) = M2(s)/2M0µ2.

It is useful to consider the generator of the momentsM2n(s) defined as:

G(s, t) =
i

4πµ2 2π
∫ ∞

0
dz exp(

itz
4µ2) [1−S(κ(s),z= (µb)2)] (1.6)

whose Taylor series expansion aboutt = 0 is

G(s, t) =
i

4πµ2

∞

∑
n=0

M2n(s)
n!

(
it

4µ2)n (1.7)
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which means that the generator of the moments is the Borel transform ofT(s, t). Therefore the
convergence of the series implies that the amplitudeT(s, t) is an entire function oft. It means that
T(s, t), being an entire function oft, admits a canonical factorization in terms of its zeroes.

When the scattering amplitudeT(s, t) has no zeroes it may be expressed in a useful form:

T(s, t) =
i

4πµ2 M0(s) exp[
∞

∑
n=1

Cn(s)
n!

(− t
4µ2)n] (1.8)

where the coefficientsCn(s) are determined in terms of the reduced moments:

Nn(s) =
M2n(s)
n!M0(s)

(1.9)

by comparing the two last expressions for the amplitudeT(s, t). For the first few coefficients one
finds:C1 = N1, C2 = N2−N2

1 , C3 = N3−3N1N2 +2N3
1 .

Let us notice that the approximate form of the amplitudeT(s, t) given in (1.8)

T(s, t) =
i

4πµ2 M0(s) exp[−C1(s)
t

4µ2 ] (1.10)

is well known in relation to the slope parameterβ (s). In particular, the increase ofβ (s) with energy√
s gives rise to the phenomenon ofshrinking of the diffraction peak. Recently, A. Martin and his

collaborators [1] forwarded arguments that this simple approximation should not be used at the
LHC high energies.

2. Inclusive inelastic cross-section of hadron diffraction

In the formalism of "diffractive limit" the inelastic diffraction is built as an infinite sum
of the infinitesimal contributions from the subspace of diffractive states. The expressions of the
form N∆t, where∆t represents diversity of the diagonal matrix elements of the scattering operator
t j over the subspace of diffractive states [D], are to be considered in the doublediffractive limit [2]:
N→ ∞, ∆t → 0 such thatN∆t is finite.

The inclusive inelastic cross-section arises by making use of completness of diffractive states
in their equivalence subspace:

∑
| f 〉6=|i〉

|Tf i |2 = N2 ∑
| f 〉∈[D]

|Λi f |2| t(i)av − t f |
2

+ (1−gi)giN
2 | t(i)av − ti |

2
(2.1)

Thus the inclusive cross-section of inelastic diffraction is built of the two contributions: an
incoherent one which is proportional to a dispersion of theT0-diagonal matrix elements and another
one which equals (up to a constant) the diffractive contribution to elastic scattering (coherent term):

1
2π

dσdi f (t)
d|t| = ∑

| f 〉6=|i〉
|Tf i(q)|2 ≡ dσincoh(q)

d2q
+

dσcoh(q)
d2q

. (2.2)

The coherent cross-sectionσcoh is proportional to the square of diffractive term in the elastic
scattering amplitude:

dσcoh(q)
d2q

=
(

1
gi
−1

)
|Tii (q)− ti(q)|2. (2.3)
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Figure 1: Proton - antiproton inclusive inelastic diffraction at c.m. energy
√

s= 546 GeV [3].

The name of incoherent contribution is justified by its proportionality, in a leading order, to
the mean value〈n〉. It appears in the form of the double Fourier-Bessel transform:

dσincoh(q)
d2q

=
1

(2π)2

∫
d2b1 d2b2 ei~q· (~b1−~b2)[1−Γ0(b1)][1−Γ0(b2)]I(~b1,~b2) (2.4)

where the function
I(~b1,~b2) = N2 gi 〈n〉U(~b1,~b2) (2.5)

depends on the correlation function of diffractons

U(~b1,~b2)≡
∫

d2s|ψ(s)|2 γ(~b1−~s) γ(~b2−~s). (2.6)

Since the major contribution to the integrand function comes from small values of~b′≡~b1−~b2,
one may approximate:Γ0(b1) = Γ0(b2) = Γ0(b) andS(b1) = S(b2) = S(b) where~b≡ 1

2(~b1 +~b2).
This allows to convert the integral (2.4) into a sum of products of single integrals.

From the inspection of the above formulae it results that for the description of inclusive inelas-
tic diffraction only 3 parametersgi ,〈n〉 and the diffracton radiusRε are required since the remaining
parameters are to be determined from elastic scattering.

The fit to the experimental data on proton-antiproton inelastic diffraction at c.m.energy
√

s=
546 GeV [3] (23 points) presented in Fig. 1 is excellent in the whole range of momentum transfer.

The measurements of the inclusive inelastic cross-section at the ISR and SPS colliders [5,
3] are perhaps not sufficiently appreciated. The angular distribution of inelastic diffraction is,
in a wide range of energy, consistently characterised by two different slopes at small and large
momentum transfers. The experimental results could therefore be well reproduced simply with
a sum of two Gaussians described by 4 parameters: two slopes and two other parameters which
fix the forward magnitude of each Gaussian. However, in our phenomenology we need only 3
parameters since the slope at small momentum transfers is already determined by the diffractive
term in elastic scattering. The strength of this term in inelastic diffraction is set-up by the coupling
constantgi . So far, this constant was hidden in the definition of the cross-sectionσn and in inelastic
diffraction it appears as a new parameter at disposal.
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Figure 2: Proton - proton elastic and inclusive inelastic diffraction at c.m. energy
√

s= 53 GeV [4, 5].

3. Diffractive limit versus "diffractive" eigenstates

The numerical results presented in Section 2 will be discussed again with emphasis on
the comparison of our approach based on the diffractive limitN→∞ with the classical description
of Good and Walker [6] based on the presumed diagonalization of the scattering operatorT in
physical states. On the concept of "diffractive eigenstates" are grounded all geometrical models of
diffraction, with all their merits and limitations. Indeed, sinceT is normal it has eigenstates, but
the fundamental point in the description of diffraction is the reducibility of the Hilbert space into
two orthogonal subspaces of diffractive and non-diffractive states.

In order to understand better the relationship of the two approaches we rewrite their basic
formulae using a unified notation. Thus for the elastic scattering amplitudes one has:

Ti i = ti +N ∑
| j〉∈[D]

|Λi j |2(t j − ti), (3.1)

T(GW)
i i = ti + ∑

| j〉∈[D]
|Λi j |2(t j − ti); (3.2)

while the inclusive inelastic cross-sections read :

∑
| f 〉6=|i〉

|Tf i |2 = N2 ∑
| j〉∈[D]

|Λi j |2 |t j − ti |2−|Tii − ti |2, (3.3)

∑
| f 〉6=|i〉

|T(GW)
f i |2 = ∑

| j〉∈[D]
|Λi j |2 |t j − ti |2−|T(GW)

ii − ti |
2
, (3.4)

where the weigth|Λi j |2 is normalized togi . The two sets of formulae are almost identical except
for the infinite factorN which in the Good-Walker approach is absent while the value ofgi is fixed
to 1. But these differences turn out to be essential.

It should be stressed that the coherent contribution (2.3) to the inclusive cross-section is a
novelty of our approach. In the standard version of the Good-Walker description (withgi ≡ 1)
the coherent contribution to inelastic diffraction does not appear at all. Thus in [7] the forward
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Figure 3: Proton - proton inclusive inelastic diffraction at c.m. energy
√

s= 53 GeV. The experimental data
[3] are compared with the Good-Walker approach (solid curve). The coherent (dotted curve) and incoherent
(dashed curve) contributions to the cross-section are shown separately.

slope of inelastic diffraction was explained in terms of incoherent scattering while our analysis
shows that this scattering dominates in the region of large momentum transfers. We claim that the
shape of inelastic diffraction at small momentum transfers is determined by elastic scattering in
the transition region between the forward peak and the diffraction minimum. This is successfully
verified, as Figs. 1 and 2 show, in experiment [5, 3], being a crucial evidence in favor of our
formalism.

On the contrary, the Good - Walker approach, even allowing forgi 6= 1, is not able to acco-
modate this effect. This is so because the coherent contribution to inelastic diffraction is there
completely fixed (including the value ofgi) by elastic scattering. The thus determined coherent
contribution, being proportional to(1/gi −1)g2

i , turns out, both for small and large values ofgi ,
to be too small and does not reproduce the inelastic cross-section at low momentum transfers as
illustrated in Fig. 3.

References

[1] C. Bourrely, N. N. Khuri, A. Martin, J. Soffer and T. T. Wu, preprint of the talk at the 2005 Blois
conference.

[2] A. R. Małecki,Nucl. Phys. (Proc. Suppl.)B 146(2005) 197.

[3] D. Bernardet al., Phys. Lett.B 186 (1987) 227.

[4] K. R. Schubert,Tables of Nucleon - Nucleon Scattering, Landolt-Bornstein, New Series, Vol. 1/9a,
Springer, Berlin, 1979.

[5] M. G. Albrow et al., Nucl. Phys.B 108(1976) 1; J. C. Armitageet al., Nucl. Phys.B 194(1982)365.

[6] M. L. Good and W. D. Walker,Phys. Rev.120(1960) 1857.

[7] H. Miettinen and J. Pumplin,Phys. Rev.D 18 (1978) 1696.

6


