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1. Introduction

In 1932 Ettore Majorana published a paper, in italian, bytithe"Relativistic theory of parti-
cles with arbitrary angular momentum" [1]. As it is well knowhe physical interpretation of the
Dirac equation [2] was rather problematic due the existarficegative energy solutions. In 1931
Dirac proposed a solution in terms of the hole-theory [3lddticing a new kind of particles with
the same mass of the electrons and opposite charge, theopsesifThe positron was discovered
by Anderson [4] at the end of 1931, and the paper with the ficdupe of a positron appeared
at the very beginning of 1932. It is not clear when Majoranatesthis paper (probably during
the summer, according to Amaldi) and in which month of 1932 ghper appeared in || Nuovo
Cimento. However it seems that the news of the discovery eptisitron arrived in Rome only
around the end of 1932. So when Majorana conceived his pag@roblem of the negative energy
states was still in his mind. Therefore the aim of the papes wwaconstruct a Dirac-like equation
with only positive energy solutions. Majorana found thas ik indeed possible, but that it is nec-
essary that the wave function transforms under unitaryessmtations (UR) of the homogeneous
Lorentz group. These representations are infinite dimeasi@s he discovered. The UR’s were
completely unknown at that time, not only among physicistisdlso among mathematicians. Ma-
jorana showed here his great mathematical ability and hitariag of group theory finding out
two simple unitary representations for the wave functionillldiscuss some of the reason why his
paper was ignored at the time it was published, although itlévbave been of great interest from
the point of view of group theory. Majorana’s paper was reced from the general ignorance
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thanks to Fradkin in 1966 that, stimulated by Amaldi wherdeasvas visiting Rome, published a
comment to the Majorana’s paper [5]. There were severabrsawhy this paper was of interest
to physicists in that period. | will mention the incoming usfedynamical groups and the problem
of saturating the algebra of currentspat « with a set of single particle states. | will discuss why
the equations of Majorana type, involving unitary représtons of the Lorentz group, were of
interest for the previous topics. Another interesting poirthe infinite component wave equations
is that the CPT theorem does not generally hold. In fact tlefpof the theorem in relativistic
local field theories is valid only under the assumption thé possible to perform an analytical
continuation in the parameters of the Lorentz group. Thiglit@n is satisfied in the case of finite
dimensional representations of the Lorentz group but ibisfor UR’s. | will discuss briefly this
point.

2. The paper of Majorana about relativistic particles of arbitrary spin
In the paper of Majorana the following linear wave equatibthe Dirac type was introduced:
(E+a-p—BM)y =0 (2.1)

Since Majorana wanted to avoid negative energy solutioasefuired to be a positive definite
operator. The other important point was that he did not regthie validity of the Klein-Gordon
equation, that is he did not ask for a single mass value agsdcito the wave function. As a
conseqguence of the positivity of the operafit follows that the wave function must transform
according to a UR of the Lorentz group. The argument of Maiaria very simple and it is based
on writing down an action from which to derive the wave equain a variational way. The action
is

/d4wa(E+a.p—pM)w 2.2)
Sincef is required to be positive definite one can redefine the wawetifbn according to
§=pY2y (2.3)
The action becomes
/d“xq‘ﬁ (reE+F-p-M)@ (2.4)
where
Fo=p~% T=p*2ap? (2.5)
From this one gets the wave equation
(Fup* =M) @ =0, Ty=(ToT), p*=(E,p) (2.6)

Since the action must be Lorentz invariant it follow that siaene must be true fap'{. Therefore,
under a Lorentz transformatiah must transform as a UR of the Lorentz group

g =95p, S's=1 (2.7)
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The next step made by Majorana was to evaluate the commutati@tions for the generators
of the Lorentz group, which in modern notations read

[J, 3] =&k [J,Nj] =igjkNe, [Ni,Nj] = —igijd (2.8)

whereJ are the generators of the rotation group &hthe boost generators. The relation with the
covariant generatord, is:

1
k= Eskij\]ij, Nk = Jko (2.9)

Majorana was an expert in group theory. He had in his bookshelWeyl's book on Quantum
Mechanics and group theory [6], as well as other books motbenaatically oriented in the sub-
ject. In particular in Weyl's book one can find the calculat@f the matrix elements in the angular
momentum basis of the electric dipole operator. On the dthed, according to Amaldi who knew
the way of working of Majorana it is very well possible thatdiid the calculation by himself.

Let me now pause for a while in the exam of the paper and let srig$ a bit what we know
today about the irreducible UR’s of the Lorentz group. Fafsdll, in complete generality, since the
boosts are vector operators, their action on an angular mimebasis| j, m), can be written as

Ny [j,m) = Ci[(j—m)(j —m—1)Y%j— 1, m+1) — Aj[(j —m)(j +m+1)]"?|j,m+1)
+ Cial(j+m+1)(j+m+2)]Y3 [ +1,m+1)
N_[j,m) = —Ci[(j+m)(j+m—1)]"?j — 1, m—1) = Aj[(j +m)(j —m+1)]Y?j,m—1)
— Cial(j—m+1)(j - m+2)]2|j+ 1,m—1)
Na|j,m) = Cj[(j —m)(j +m)]*?[j — 1,m) — Ajm|j, m)
— Ciua[(j+m+1)(j —m+ 1M +1,m) (2.10)

where 1
(- 32— 7Y

~djoha i
O 4j2-1

| J

j(i+1)°

These matrix elements depend on the P&rj;1). These numbers characterize the Casimir opera-
tors of the Lorentz group

(2.11)

1 .
Cr = St =P - N2 = jo+ 71

C = %e,,vpaJwJpa =27-N = 2ijoj1
where we have used the matrix elements of the Lorentz gemsratWe see thatjo, j1) and
(—jo,—]j1) are equivalent representations, therefore we may chpoebe positive. It turns out
that jo is the minimum angular momentum in the representat@p < 0). For finite dimensional
representation$; = jmax+ 1 (Cj,...-1 = 0). On the other hand in the infinite dimensional case the
spin content of the representationjisjo+ 1, --. Notice also that, since under pari®g changes
sign, we have

P: (jo,j1) = (jo,—J1) (2.12)

So far about a generic irreducible representation. Thearityitcondition selects two series of
representations:
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e Principal series jg integer or half-integerj; pure imaginary.
e Supplementary series jo =0, j; real with|j1| < 1.

Going back to the paper of Majorana, after the equations idgfime commutation relations
among the Lorentz group generators he wrote: "The simpédstiens [of the commutation rela-
tions] by means of hermitian operators is given by the follmpinfinite matrices" and he writes
down the matrix elements of the Lorentz generators that easbkained from the equations (2.10)
by the choice(jo =0, j1 = 1/2) or (jo = 1/2,j1 = 0). These two representations, later named
after him, correspond t6; = —3/4 andC, = 0 and are parity invariant. Majorana did not spend
any other word about this simplicity, so it is not clear whatrheant by it. One possibility is that
he refers to the fact that with this choice the matrix elemmefthe boosts are particularly simple,
since the coupling — j vanishes and the other two couplings- j+ 1 are given byi/2. Since
in his paper Majorana mentioned the fact that for his twoesentation€, = 0, it is also possible
that he realized that with his choice the theory is parityiiant, but he did not state it explicitly.
Also, quite strangely, he did not mention the other invari@reratoiC,.

At this point Majorana went on to the evaluation of the matigments of the four-vector
operatorl” ;. He wrote the commutation relations with the Lorentz getogsathat, using again
modern notations, read

(v, Tpl =1 (T uGvp —TvOpp) (2.13)

Then, Majorana wrote directly the matrix element§ pf These can be obtained by the observation
that oncd g is known, thel"js can be evaluated from

I =—i[N;,lo) (2.14)
Noticing thatlg is a scalar under rotations

and using
Fo=[[Ni,lo], Ni] (2.16)

he gotlp up to a constant. Choosing the constant to be one:
(J,mFolj,m)=j+1/2 (2.17)

Going to the rest frame (for the moment being we are consigdime-like solutions) Majorana
found the mass spectrum

Mj=—-———=, j=1loJo+1-, jo=0o0r1/2 2.18
=512 j = lo,Jo jo Y (2.18)
By reading the Majorana paper there is no trace about theHatin order to write down a rela-
tivistic equation involving a four-vector operator one kasequire very stringent constraints on the
representation chosen . As we shall see, the two Majoramaseptations are the only irreducible
representations for which these constraints are satisfied.
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2.1 Four-vector operators

We take another pause in the analysis of Majorana’s papéudy the problem of a relativistic
wave equation of the Dirac (or Majorana) type involving arfgactor operator. The consistency
of the wave equation

p-Ty=My (2.19)

requires that the representation to whigitbelongs is contained in the tensor product of the four-
vector representation with the representation itself. ISglinally

wcryey (2.20)

In order to evaluate this tensor product, let me first comdide case of finite dimensional repre-
sentations. Remember that the Lorentz group is isomorplt8tt2) ® SU(2) and correspondingly
a finite-dimensional representation can be denotefshy,) wheres; ands, are the spin content
of the twoSU(2) representations. The physical spin operator is the sumedftb spin of the two
commuting group$SU(2) @ SU(2). The relation with the notatiofyjo, j1) is

jo=Is1—%/, j1=(s1+%2+1)sign(s; — ) (2.21)
The spin content of a four-vector is 0 and 1. Therefore we have
My € (Jo,J1) = (0,2) = (s1,%) = (1/2,1/2) (2.22)

To evaluate the direct product of two finite dimensional espntations of the Lorentz group is triv-
ial in the basigs;, s,), since we have only to combine separately the spin of the éyesentations
of SU(2). We get

11 B 1 1 1 1
<§,§>®(51,52) = <51+§a52+§>@<51+§,52_§>@

1 1 1 1

&> <51—5,52+5>@<51—§,52—§>

Going back to thé jo, j1) notations we obtain
(0,2)® (jo, J1) = (Jo, ja+1) @ (Jo+1,j1) @ (Jo—1,j1) @ (Jo, j1— 1) (2.23)

One can show that this relation holds for any irreducibleesentatior{ jo, j1). Since the condition
in eq. (2.20) reads
£(Jo, j1) € (0,2)® (jo, 1) (2.24)

we find easily that the only solutions to this condition ameied the two Majorana representations

More solutions can be found by relaxing the condition tidielongs to an irreducible repre-
sentation. Consider the case of "coupled representatidimés means that

¥ € (jo, i1) ® (ig» i1) (2.26)
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such that
In this way we satisfy the constraint of eq. (2.20). For instg the Dirac representation
o 13 1 3 1 1
(J07 Jl) - (E?E) S <§7_§> ~ (§,0> @ (07 E) - (31732) (228)

satisfies this condition. If we are in the cdde= 0 there is no such constraint on the wave equation
pHrup =0 (2.29)

and we get, for example, the Weyl's equations for massleéssisgy0,1/2) and(1/2,0). For cou-
pled representation one gets the Majorana equation foriveassutral particles [7], by observing
that under hermitian conjugation, in a finite dimensiong@resentatiorC, — —C, and therefore
j1 — —Jj1 or equivalently(s;,s) — (S2,51). In particular(1/2,0) is equivalent to1/2,0)*. More
precisely

iox* €(0,1/2), if x €(1/2,0) (2.30)
As a consequence, it is possible to define a 4-component Measpinor by putting together
andy*
_ X
v = (iaz)(*) (2.31)
This spinor satisfies the condition of (pseudo-) reality
B 0 —iop X B X* o
m = <—i02 0 ) (iazx*> B (—i02X> W (2:32)

An interesting question is if Majorana was aware of the gait#s on the representation in
order to write a linear wave equation and in the affirmativeedd this helped him in finding out
the equation for neutral massive particles beyond the taftomponent wave equation.

2.2 Other interesting points discussed by Majorana

We have seen that the Majorana equation gives rise to a masfrigp for particles with
different mass and spin. At that time this was not very irgting, since the spectrum of known
particles was very poor (essentially, e, y and perhaps). Therefore the idea of Majorana was
rather to get the formalism to find the wave function for aipbetwith given spin and mass. This
is something that it is possible to obtain from the Majorarsvevequation in the non relativistic
limit. In fact he shows that if one takes a solution of the waueation,sm, with fixed spins,
and mas/(s+ 1/2), then the wave functions for particles with different spie auppressed by
orders ofv/c. For instance

v V2
s 1m~ 6’<6>, Ws om =~ 6’(?) (2.33)
The proof goes like the decoupling of the negative energytisols of the Dirac equation in the
limit v/c — 0.
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Another point analyzed by Majorana was the existence ofesfike solutions. For space-like
momenta one goes to the special frame

~ ~2N\ 2
p* —(0,0,0,p%), p*=—(p° (2.34)

The equation becomes
p°ray =My (2.35)

It is possible to diagonalize simultaneou§ly andJs
r3|0’m> = O-|O-’m>’ ‘]3|O-’m> :m|0',m> (236)

with o > 0. The eigenvalue df3 is connected with the Casimir of the little gro®(1, 1) of the
space-like momentum. Therefore one gets a continuous oédpe solutions:

2 2 MZ

The Majorana equation has also a continuous of light-likatsms, but we will skip their discus-
sion since they do not appear in the paper by Majorana.

Majorana wave equation was rediscovered and generalifesh (@ithout reference nor to the
original paper neither to the existence of space-like gmis), as for instance in refs. [8, 9] or in
the books by Gel'fand, Minlos and Shapiro [10] and Naimark][1

3. Why the paper by Majorana was ignored?

| will list here some of the topics that most probably conitédd to take this paper out of the
mainstream of research at that time.

We have already discussed the fact that the positron waswdised the same year of the
Majorana equation and, presumably, the paper lost soohytsigal interest also to the Majorana’s
eyes.

The Majorana wave equation gives rise to a mass spectrunreadat his time only a very
restricted number of particles were known. Therefore thimtpdid not make the theory very
attractive, and Majorana himself did not pay too much aitenbp it.

Group theory was not yet very popular among physicists. @rctmtrary Majorana was very
interested in this subject since his graduation time. Ihifahis notes a lot of space is dedicated to
group theoretical calculations.

The paper was written in italian and on Il Nuovo Cimento. Tjbignal was not widely read
at that time. Furthermore the Science Abstract did not abistrom Nuovo Cimento until 1946.
On the other hand it was abstracted from Physikalische Bterignd the abstract of the Majorana’s
paper was reviewed there [12]. Unfortunately the abstragss not an expert on the subject and
the novelties of the paper, as the first treatment of the ynigpresentations of the Lorentz group,
were not underlined.

In 1939 Wigner [13] solved completely the problem of the anjtrepresentations of the
Poincaré group, i.e. the inhomogeneous Lorentz group. As\tell known physics requires
that the wave function transforms under a UR of the latteugrorhese are obtained by fixing a
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representation of the translation group, that is to say ¢he-fmnomentump. Given p# one has
to choose a UR of the corresponding little grogd(2), SU(1,1) or E2 according to a time-like,
space-like or light-like momentum). This means that it is mandatory to make use of UR’s of
the Lorentz group. Indeed in the Dirac representation dmdyangular momentum part is unitary,
whereas the boost transformations are not. In the 30’s (el later), before Wigner’s contribu-
tion, the situation was rather confused. This has lead tetr¢bd], commenting his own article
[15] about the problems of the infinite component wave equatio the following considerations
about the Dirac equation:

| conjecture that Dirac had the mistaken belief that his @2y equation did not give rise to a
unitary representation of the inhomogeneous Lorentz gthgPoincaré group), because the 4
matrices appearing in it were not unitary. He may have reslishe great importance of unitary
representations after Wigner's book, Group Theory withlapgions to atomic spectroscopy. It
might be that the fear that his equation were badly wrong drBérac to invent, in about 1945,
single-handedly, some irreducible unitary representaiof the Lorentz group, a task thought to
be too hard for mathematicians at the time. If so, it was alhtoavail, as the unitarity of the
representation (of the Poincaré group, as opposed to themtargroup acting on the spinors)
given by the original Dirac equation was shown by Wigner @9nd by Bargmann and Wigner
(1947).

We have already noticed that the Majorana wave equation atasrediscovered, often with-
out any reference to the original paper. However in 1966dkra after a suggestion by Amaldi
published a paper in english [5] commenting the Majoranajsep. In fact at that time two lines of
research pointed toward infinite component wave equatibngse two topics were:

e Dynamical groups.

e The Gell-Mann’s program of saturating the algebra of cuge@tp = « in terms of single
particle states.

I will discuss the reasons for this renewal of interest in rlegt Section. | should also mention
that the possibility of getting a mass spectrum was rattteresting from the point of view of the
Regge theory.

4. The new interest in the 60’s for the infinite component wavequations

4.1 Dynamical groups

In the 60’s the main roads to strong interactions were thcal S-matrix and group theory.
A very important result obtained by group theory was thealiscy of the symmetnBU(3) as a
classification group for hadrons and its unification with tb&ation group leading to th8U(6)
symmetry [16, 17, 18]. A justification of the success of thisup was the idea that hadrons
were composite objects. In this sense it was natural to ttgdm something from the simplest
known system, the hydrogen atom. The similarity of the mois leading t&8U(6) for hadrons
and toO(4) for the hydrogen atom, unifying the rotation group with ateinal symmetry $U(3)
for hadrons and the transformations generated by the Ruege-vector for the H-atom), was
discussed inref. [19]. In 1967, Barut and Kleinert [20] amdrisdal [21] found that it was possible
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to enlarge the symmetry group(4) of the H-atom to a dynamical group(4,2) which included,
among its generators, the electric dipole operator. Theerzfithis approach, "dynamical groups”
was due to the hope to be able to describe the interactioren@sagors of a group, as it happens for
the electromagnetic interaction in the H-atom. It is inséirey that the previous authors were able to
prove that the Schrédinger equation for the hydrogen, ¢pliso into account the electromagnetic
interaction, can be rewritten in the form of a non-relatigi$nfinite component wave equation of
the Majorana type. The connection between composite sgstem UR'’s of the Lorentz group
was already known by Dirac [22] (see also the Streater’s centifi4]) who discussed the UR of
this group in terms of continuous variables (instead of gisiiscrete basis as in the Majorana’s
approach). Eventually this idea of Dirac was the basis ofbilecal field theory introduced by
Yukawa [23, 24]. On the basis of these considerations seaetlaors discussed a series of infinite
component relativistic wave equations [25, 26, 27]. Howeliethese equations showed a number
of diseaeses as:

e Presence of redundant solutions, as the space-like ones.

e Typically these equations violate the CPT theorem (as ®Mhjorana case where no nega-
tive energy solutions are present).

e The spin-statistics theorem does not generally hold [2812P
As a consequence of these problems the program of dynamaabg died very rapidly.

4.2 Current algebra

Let me consider the matrix elements of a vector current (tthéixideas | will take currents of
SU(3) ® SU(3)) in the limit of external momenta going to infinity [30]. Toishend let me define
Fi(d) = / X 0(%,0), i€ SU(3)®SU(3) 4.1)

The matrix elements of this operator@t « can be written as

Jlim (B NIR@IBN) = 0% +d-p) (V13 (¢ - PIN) (4.2)

3, 3~>00

wherep = (pg, p2). In the previous equation the statéy are fictitious states that, in the case of
single particles, depend only on the quantum numberghe algebra of the operatalg p) is

[3(p), 3 (P)] = ifik(p+P), I (p)=34(-p) (4.3)

The idea was to look for representations of this algebradrsfface of states of single particle [31].
As shown by Coester and Roepstoff [32], in the space of sipaficle states, this algebra has only
infinite dimensional representations.

An obvious representation of this algebra is:

\Ji (E) = Zn %)H(n) eiE.)_(m) ) [Xg_n) 9 X(Zm)] 0
n= 1,2 for mesons n=1,2,3 for baryons (4.4)

10
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UnfortunatelyJ; arises as a limit of the fourth component of a four-vectorrafme and therefore
there is a set of complicated conditions that it must satisiy so called angular conditions [33].
This can be easily understood considering the matrix elemen

(P,N'[j#|B,N), with j/=0, j>1 (4.5)

It depends on 4 invariant form factors whereas, withoutirgggany other condition(N’|J(p)|N)
depends on P+ 1 form factors. As | said the angular conditions are very darafed and just to
convince you | will write their infinitesimal form

(000300 = T M2 M2 (3 1]+ 5102 M2, (1,3 (p}] + 710 {1.9(D)} (46)

where

{I,Ji@)}:—[wl? [Ls,Ji(p )H——!p\ [Ls,3i(p)], — [P-MLJ(P)], L=(L,L2) (47)

Furthermore

ap1’ dp2

When all the particles have the same madsthe exponential solution (see eq. (4.4)) satisfies all
these conditions with a position operator given by
%(Fl, F) = %(
where (F1,F,) are theE2 generators (the little group of light-like momenta). 8tay from the
degenerate case it is possible to find an approximate soltlirough a perturbative expansion in
the splitting mass term [34, 35].

It is easy to see that one can avoid the problem of solving tigellar conditions by using an
appropriate infinite component wave equation. This is donthé following steps:

L3 (p)] =ipAD,H(p), Op= <i,i> 4.8)

(X1,%2) = Ni+Jo,No — J1) (4.9)

e Introduce a wave functiony(x) transforming according to some UR of the Lorentz group
with an appropriate spin content.

e Write an invariant wave equation with the desired mass sp@ct
D(X)¢(x) =0 (4.10)

However notice that the mass squared should not increasetimaor the angular momentum
as shown in ref. [36] (an equation with a linear mass spectmasproposed in [37]).

e Require that the wave equation is invariant under a spediftednal symmetry group.

Using the last requirement one can construct an algebransieceed currents satisfying automati-
cally current algebra as a consequence of the canonical atation relations among the fields.

Of course there are problems very similar to the ones ligtethe case of dynamical groups,
but the real problem here (and also in the other case) is #mepce of the space-like solutions.
Before discussing further this point | want to stress thatmediately after the formulation of
the program of saturating the current algebra, a No-Go #mawas formulated by Grodsky and
Streater [38]. These authors made the following assurmation

11
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1. existence of covariant wave functions,

2. reasonable mass spectrum: only time-like solutions ¥iftite degeneracy on each mass
shell,

3. the representation of the wave function should contaleaat one finite-dimensional repre-
sentation of the Lorentz group and a four-vector operatoulkshexist,

4. the solutions of the wave equation form a complete set,

and proved that each mass-shell must be infinitely degeneFatrefore the set of solutions satis-
fying the previous assumptions is void. On the other handierem does not hold if the wave
equation has space-like solutions. There could be a wayfdhtispace-like solutions would
decouple from the time-like ones, or said in other word$éf $pace-like solutions would not con-
tribute to the completeness relation. It is possible to sti@tin these theories the decoupling of
the space-like solutions is related to the possibility amg the CPT theorem (see the discussion
in ref. [39]). We shall see, in the next Section, that it is possible to prove the CPT theorem for
UR’s and therefore the decoupling of space-like soluticarmot occur.

5. The CPT theorem

Consider a wave equation of the Dirac or Majorana type. Theevegerator will be CPT
invariant if it possible to define the following operation

The transformation of , can be obtained through a rotationm#long the third axis followed by
a boost along the same direction by an imaginary boost paeade- it

R3(7T)r1’2R3(7T)_1 = —Fl,z, B3(i7'[)ro’3B3(iT[)_l = —ro’3 (52)
In the case of the Dirac equation:

Ba(imRs(1) = (W)s) (V1Y) = YoV )oY = V5 (5.3)

It should be clear that in the case of Majorana such an operatinnot exist sincEq is positive
definite and the equation has not negative energy solutidhg. reason why the operation does
not exist is that for all the irreducible UR’s of the Lorenteogp the operatoBs(&) has a pole
até = im. The same happens for all the irreducible infinite dimeralioapresntations where the
infinitesimal boost generatdNs, is a normal operator. As a consequence of this pole, theatdn
derivation of the CPT theorem, as for instance in the Stresig Wightman book [40] based on the
analytical continuation of the Lorentz group, does not héldwever, for all the finite dimensional
representations of the Lorentz group, the operBigim) exists and the CPT theorem is valid. It
turns out that also the spin-statistics theorem is basebeaxistence of such an operatBg(i 7))
[40]. Therefore also this theorem cannot be proved in thHesertes. Of course the possibility of
arranging the theory in such a way that CPT and spin-stegistie satisfied is not excluded.

12
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To stress the previous point let me notice that, also if theewequation has negative energy
solutions, the CPT theorem can be violated. Consider, &iairce, the following wave equation
[41]:

1
(P =M= 304w =0 5.4)

with ¢ transforming as the direct product of the representaticinac®Majorana. The existence
of negative energy solutions is guaranteed by the CPT twamsttion

pH — —pH, Yu——Wu (5.5)

Notice that under this transformatidry, — ;. Consider now a vector fielg* with definite
properties of transformations under the the previous CRaratjpn. We may construct the two
local couplings:

lﬁVul.U‘P“a lﬁrul.U‘P“ (5.6)

Clearly one of these two couplings is not CPT invariant.

6. Conclusions

Nowdays the UR'’s of the Lorentz group do not seem to havedstirg physical applications
(however, see the attempts reviewed in [42]). However, engthper that we have reviewed here,
Majorana shows all his mathematical strength and ingeniibere are several interesting points
raised up by this paper. One is the question of the choiceprésentations made by Majorana.
They enjoy many properties, they are the only irreduciblésli& which it is possible to define
a four-vector operator in the sense specified in Section 2th&umore they are parity invariant.
These properties can be easily seen by means of the grougetibabanalysis developed here,
so the question is if Majorana had these notions, or he artivehese representations by simple
chance. Considering that applying the same consideration®asy to understand also the Ma-
jorana formulation of the massive neutral particle it seemose incredible that all this derived by
casual circumstances.

Also, quite interestingly, the work of Majorana shows clgdhat the CPT theorem can be
violated in a local relativistic theory. In fact, relatiyiand locality are not enough to ensure the
validity of this theorem. A further hypothesis about theunatof the representations of the Lorentz
group is necessary. In particular the CPT theorem is validiiy finite dimensional representation.
Therefore the only way to get a reasonable theory for a masgrsipn must involve necessarily
finite dimensional representations (unless to introdueeesfike solutions, violation of CPT and/
or lack of the spin-statistics connection). This happenrstrimg theory which involves an infinite
number of finite dimensional representations. It is curitha in the last case there are, in prin-
ciple, problems with the positivity of the states. As wellkm this problem can be avoided by
choosing a particular value for the space-time dimensi@rsthe contrary, in the case of unitary
representations this problem does not arise, the metribeispace of the states is positive definite,
but of course, as we have seen, the theory has many otheutidfsc
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