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1. Introduction

The theory of integrable quantum systems originated from Bethe’s semarkl[%] has nu-
merous important applications in physical and mathematical sciences. Themmatitted founda-
tion of this theory is based to a great extent on powerful analytic and migetechniques dis-
covered by Baxter in his pioneering papers [2-5] on the exact solufitimeceight-vertex lattice
model. This paper concerns one of these techniques — the method of halgitations. Over
the last three decades, since Baxter’s original works [2-5], this mdthsdeen substantially de-
veloped and applied to a large number of various solvable models. Hagwhbeestatus of this
method in the eight-vertex model itself with an account of all subsequeriafewents has not
been recently reviewed. This paper is intended to (partially) fill this gape Me will adopt an
analytic approach exploiting the existence of an (hitherto unnoticed) contérfiedd parameter in
the solvable eight-vertex solid-on-solid model of ref. [4].

For the purpose of the following discussion it will be useful to first sumneattie key results
of [2-5]. Here we will use essentially the same notations as those in [2kiEnthe homogeneous
eight-vertex (8V) model on a square latticeddtolumns, with periodic boundary conditions. The
model contains three arbitrary parameterg andq = €™, Im1 > 0, which enter the parametriza-
tion of the Boltzmann weights (the paramedegnters as the nome for the elliptic theta-functions).
The parameters andq are considered as constants and the spectral parametera complex
variable. We assume that the paramegeés real and positive, & n < 17/2, which corresponds to
the disordered regime [6] of the model.

The row-to-row transfer matrix of the modéi(u), possesses remarkable analytic properties.
Any of its eigenvaluesT (u), is both (i) an entire function of the variableand (ii) satisfies Baxter's
famous functional equation,

T(WQ(u) =f(u—n)Q(u+2n) +f(u+n)Qu—2n), (1.1)
wheret
f(u) = (Sa(ul )", (1.2)

andQ(u) is an entire quasi-periodic function of such that
Qu+m =£(-)V2Q(u),  Qu+2mr)=q Ne2NQ(u). (1.3)

These analytic properties completely determine all eigenvalues of the trameféx T (u). Indeed,
Eq.(@.1) implies that the zeroes, Uy, . . ., u,, of Q(u) satisfy the Bethe Ansatz equations,

flu+n) _ Quk+2n) Qu) =0, k=1,...n. (1.4)

flue—n)  Q(u—2n)’
These equations, together with the periodicity relatipng (1.3), define the &miictionQ(u) (there
will be many solutions corresponding to different eigenvectors). Gag is known the eigen-
valueT (u) is evaluated from[(1] 1).

IHere we use the standard theta-functions§7{u|q), i =1,...,4, g=€"7, ImT > 0, with the periodsrandrrt.
Our spectral parameteris shifted with respect to that in [2] by a half of the imaginary period, sem for further
details.
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The entire function§(u) appearing in[(1]1) are, in fact, eigenvalues of another mafr{u),
called theQ-matrix. Originally it was constructed [2] in terms of some special transferiogatr
A different, but related, construction of th@-matrix was given in [3] and later on used in the
book [6]. An alternative approach to the 8V-model was developed )] Mhere Baxter invented
the “eight-vertex” solid-on-solid(SOS) model and solved it exactly by means of the co-ordinate
Bethe Ansatz. This approach provided another derivation of the sasut (&.1)-(1.}4), since the
8V-model is embedded within the SOS-model.

Baxter's Q-matrix (or theQ-operator) possesses various exceptional properties and plays an
important role in many aspects of the theory of integrable systems. A complety thfethe Q-
operator in the 8V-model is not yet developed. However for the simpleretsaelated with the
quantum affine algebruq(glg) (where the fundamentél-operators [8] are intertwined by the-
matrix of the six-vertex model) the properties of tQeoperator are very well understood [9]. In
this case th&€-operators (actually, there are two differéptoperatorsQ . andQ_) are defined as
traces of certain monodromy matrices associated with infinite-dimensionaiseagiations of the
so-calledg-oscillator algebra. The main algebraic properties of@eperators can be concisely
expressed by a single factorization relation

Ti(u) =Q+(u+(2j+ )n)Q-(u—(2j+1)n) (1.5)

WhereTfr(u) is the transfer matrix associated with the infinite-dimensional highest weighg-re
sentation otJy(sl) with an arbitrary (complex) weightj2 Remarkably, this relation alone leads
to a simple derivation o&ll functional relations involving various “fusion” transfer matrices and
Q-operators [9,10]. For this reason Hq.{1.5) can be regardeéLaslamental fusion relatioronce

it is derived, no further algebraic work is required.

An important part of the theory of th@-operators belongs to their analytic properties with
respect to a certain parameter, which we call here the “field parametdte kcontext of conformal
field theory (considered in [9, 10]) this is the “vacuum parameter”, wiietermines the Virasoro
highest weighty; in the six-vertex model it corresponds to the horizontal field. In factviry
existence of two different solutions [9,11] of the TQ-equation] (1.1)m@simply illustrated by the
fact that the spectrum of the transfer matrix does not depend on the fstilge field, whereas the
spectrum of th&)-operator does.

It is well known that it is impossible to introduce an arbitrary field parametertiméo‘zero-
field” or “symmetric” eight vertex model of [2] without destroying its integitél. However, such
parameter is intrinsically present in the solvable SOS-model. It does nat thetdoltzmann
weights, but arises from a proper definition of the space of states of tdelnio realize this recall
that the SOS-model [5] is an interaction-round-a-face model whereattes fariabled; (called
the heights) take arbitrary integer valueso < ¢; < +oo. Its transfer matrix acts in an infinite-
dimensional space of states even for a finite lattice. It has a continuoctsispeparameterized by
the eigenvalue of the operator which simultaneously increments all heighbles,/; — ¢ + 1,
on the lattice. Indeed, taking into account the results of [12,13], it is Hffitudt to conclude that
the calculations of [5] require only a very simple modification to deduce thaigenvalues of the
SOS transfer matrix enjoy the same TQ-equatjor] (1.1), but require diffpegiodicity properties

Qu(u+m=€"Qs(u),  Qu(ut2m)=q NeVe NQu(u), (1.6)
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where the exponent is arbitrary. It is determined by the eigenvalue= €#19/™ of the height
translation operatdr(the second exponent is dependent o). It is natural to assume, that the
functionsQ4 (u) solving these equations, are eigenvalues of@heperators for the SOS-model.
Of course, it would be very desirable to obtain their explicit definition (agkgalize the algebraic
result [1.b) to the SOS-model), however, many properties of thesetopecan already be deduced
from the information about their eigenvalues.

In this paper we will develop the analytic theory of the functional relationghfe SOS-model
starting from the eigenvalue equatiofs1.1) gnd (1.6). Bearing in mind #dt@requation[(1]1)
arises from very non-trivial algebraic “fusion” relations [2], it is rairprising that it implies all
other functional relations. The required calculations are essentially the aa those in [9, 10],
apart from trivial modifications arising in the context of lattice models.

The eigenvalueQ. (u) are two linear independent “Bloch wave” solutions [9, 11] of the finite
difference equatior{ (1.1) for the sarfi¢u). Their quantum Wronskiaw (¢), defined as,

2IW(¢)f(u) = Q4 (U+nN)Q-(U—n)—Q(u—n)Q_(u+n), 1.7)

is a complicated function op, n andq, depending on the eigenvaldgu). The Bloch solu-
tions Q4 (u) are well defined provided the exponehtdoes not take some “singular values” (see
Eq.(2.17) below), wher@/(¢) vanishes. Otherwise Ef|.(L.1) has only one quasi-periodic solution,
while the second linear independent solution does not possess any seripligity properties.

All singular cases (in fact, they split into different classes) can bectftdy studied with a
limiting procedure starting from a non-singular valuegofin the simplest case, whenis generic
and¢ approaches the poings= kr, k € Z, the solutionRQ, (u) andQ_ (u) smoothly approach the
same value (which for eveM coincides with the eigenvalu@(u) of the 8V-model).

A more complicated situation occurs when the figldends to a singular value, sgy= 0,
while the parameten simultaneously approaches some rational fractiom,ofvhere the transfer
matrix of the 8V-model has degenerate eigenvalues. The limiting valtiéwfis always uniquely
defined. However, i (u) is a degenerate eigenvalue, the limiting valueQ ofu) are not uniquely
defined. They have “complete exact strings” of zeroes whose pos#iorbe made arbitrary by
changing the direction of the two-parametgr ¢ )-limit. Obviously, this reflects a non-uniqueness
of eigenvectors for degenerate states [14]. An immediate consequktinie ghenomenon is that,
for rationaln, there is no unique algebraic definition of tQeoperator in the symmetric 8V-model.
This explains an important observation of [15], that Baxter's Qwoperators, constructed in [2]
and [3], are actually different operators, with different eigenvafoeslegenerate eigenstates.

Further, the eigenvalugy, (u), considered as functions ¢f, have rather complicated analytic
properties. Besides having the (relatively simple) singular points disdws®re, they are multi-
valued functions with algebraic branching points in the compglgpane. These analytic properties
are studied in an extended version of this article [16].

2|n [5] Baxter restricted the parametgrto the “rational” valued. ) = my T+ mp T, L, my, mp € Z and considered
a finite-dimensional subspace of the whole space of states, regardinglties of heightsnodulo L In this case the
phase factorso = €219/ take quantized values" = 1 (see [12, 14] for further discussion of this point). Apart from
providing the conceptual advantage of a finite-dimensional spacetetstae above restriction ap and w was not
used anywhere else in [5] and, therefore, can be removed. Thefdranatrix of the 8V-vertex model (reformulated as
the SOS-model) acts only in the finite-dimensional subspace of the S@8& spstates, corresponding to a discrete set
of exponentg = kirandy = 0 (the value oN is assumed to be even).
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2. Functional relations in the eight-vertex SOS model.

2.1 Overview

In this section we will outline the analytic theory of the functional relations in tB&$nodel
(which also covers the symmetric 8V-model). Actually most of the functiorlatioss discussed
below are quite universal and apply to a wider class of related model. ihbkyde the six-vertex
model in a field [17], the restricted solid-on-solid (RSOS) model [18] amdesintegrable models
of quantum field theory: the < 1 conformal field theory [9] and the massive sine-Gordon model
in a finite volume [19].

Let T(u) andQ(u) denote the eigenvalues of the transfer matrix andQheperator respec-
tively andn is an arbitrary real parameter in the range

O<n<m2. (2.1)

In all subsequent derivations we will use only one general assumptiout she properties of the
eigenvalues:

We assume that(u) andf(u) are entire periodidunction of the variable u,
T(u+m) =T(u), flu+m=~f(u), (2.2)
and that the functio®(u) solving the TQ-equation,
T(WQ(U) =f(u—n)Q(u+2n)+f(u+n)Q(u—2n), (2.3)
is a also arentire (but not necessarily periodic) function of u.

For every particular model the above requirements are supplementeddtipmal, model-
specific analyticity properties & (u) (such as, for example, the imaginary period relatjor (1.3) for
the 8V-model). These properties are discussed at the end of this section.

As explained in the Introduction, once the additional analyticity propertie§ixed, the func-
tional equation [(2]3) completely determines all eigenvalligg andQ(u). For certain applica-
tions, however, it is more convenient to use other functional equationdditi@n to (or instead
of) (2.3). We will show that all such additional functional relations in theSS@odel (and in the
related models mentioned above) follow elementary from two ingredients:

(i) the TQ-equation itself (Eqs[ (2.2) ar[d (2.3) above), and

(i) the fact that for the same eigenvalUéu) this equation has two different [9, 11] linearly
independent solutions f@(u) which are entire functions af.

The only property of the functiof(u) essentially used in this Section is its periodicity ]2.2).
For technical reasons we will also assume ftttat- ) andf(u+ n) do not have common zeroes.
This is a very mild assumption, excluding rather exotic row-inhomogeneouglsodahich are
beyond the scope of this paper.
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2.2 General functional relations.

SinceT (u) is an entire function, Ed.(3.3) implies that the zerogsl, . . . , u, of any eigenvalue
Q(u) satisfy the same set of the Bethe Ansatz equations
flue+n) — Q(u+2n)
=_ , Q(uy) =0, k=1,...,n, 24
fu—m  Qu—z2n W @49
where the number of zeroes, is determined by the model-specific analyticity properties.
For any given eigenvalu& (u) introduce an infinite set of function§y(u), k = 3,4, ...,
defined by the recurrence relation

Tk(u+n) Te(u—n) =f(u+kn)f(u—kn)+ Tk-1(u) Tk (u), k>2, (2.5)

where
To(u) =0, T1(u) =f(u), To(u)=T(u) . (2.6)

This relation can be equivalently rewritten as

T(U) T(u+kn) =fu=n) Tiea(u+ (kK+1)n) +f(u+n) Tk (u+(k=1n),  (2.79)
oras

T(U) T(u—kn) = fu+n) Tkea(U—(k+)n) +f(u—n) Tpa(u—(k=1n) . (2.7b)
Using the definition[(2]5) one can easily expr@gsgu) in terms of T (u) as a determinant

Tk(W) = (f%(0)) " det||Map(u-+ k)

k> 2, (2.8)

1<ab<k—1’
where thelk— 1) by (k— 1) matrix M(u)ap, 1<a,b<k-1,is given by
Mab(U) = dap T(U—2aN) — Sap1f(U—(2a+1)N) — dar1pf(u—(2a—1)n), (2.9)

while the normalization factor reads
k-3
f(k)(u):J_Lf(u—(k—3—2€)n). (2.10)

Finally, expressing (u) from (2.3) through the corresponding eigenva@i) one arrives to the
formula

f(u+ (20 —k+1)n)
(—k)n) Q(u+ (20 —k+2)n) °

k—1
Tk(u):Q(u—kn)Q(qukr])/;)Q(qu(z (2.11)

valid fork = 1,2,...,». Note, that the Bethe Ansatz equatiops](2.4) guarantee that all the higher
Tk(u) with k > 3 are entire functions afi as well asT (u). It is worth noting that these functions

are actually eigenvalues of the “higher” transfer matrices, obtained ghrthe algebraic fusion
procedure [20]. In our analytic approach this information is, of couiss. Nevertheless it will

be useful to have in mind that the ind&xin the notationT(u) refers to the dimension of the
“auxiliary” space in the definition of the corresponding transfer matrixother convenient scheme
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of notation for higher transfer matrices (used, e.g., in [10]) is basetalfi\integer spin label$,
such thak = 2j + 1.

In a generic case E{.(?.3) has two linear independent “Bloch wavetiaedQ . (u), defined
by their quasi-periodicity properties,

Q(u+m) =e7?Qu(u), (2.12)

where the exponert depends on the eigenvalli¢u). These solutions satisfy the quantum Wron-
skian relation

2IW(9)f(u) = Q4 (u+n)Q-(U—n)—Q(u—n)Q_(u+n), (2.13)
whereW(¢) does not depend an Indeed, equating the two alternative expressiond far,

(W) Qu (u) = F(u—1) Qu(u+27) + F(u+1) Qy (u—2n) | (2.14)

and
TWQ-(u)=fu-=n)Q-(u+2n)+f(u+n)Q-(u—-2n), (2.15)

and writingW(¢) asW(¢|u) (to assume its possibledependence, which cannot be ruled out just
from the definition [[2.13)) one ge/(¢|u+n) = W(¢|u—n). On the other hand, EqE.(2]13),
(B-2) and [2.32) imply a different periodicity relatiodh (¢|v-+ 1) = W(¢|v). For generic reah,
these two periodicity relations can only be compatibM/if¢ |u) is independent o,

W(glu)=W(9). (2.16)

Whenn and¢ are in general position, the eigenvalu@s(u) are locally analytic functions af,
therefore, by continuity, Eq.(2.]16) at genegitiolds also whemn /Tis a rational number. However,
when¢ takes special values (for example, in the symmetric 8-vertex model) Eq.{@ri@Yional

n /mcannot be established by the analytic arguments only.

Obviously, the condition[(2.12) defin&s. (u) up to arbitraryu-independent normalization fac-
tors. Using this freedom, it is convenient to assume the normaliZasioch that neither oR.. (u)
vanishes identically (as a function@for diverges at any value @f. Then the quantum Wronskian
W (¢) will take finite values, but still can vanish at certain isolated values of therexmt¢. These
values are calledingularin the sense that there is only one quasi-periodic solufion](2.12), while
the second linear independent solution[of](2.3) does not possess tHe penipdicity properties
(B.12). As argued in [9], the singular exponents take values in the &ang” set

However, each eigenvalue has its own set of singular exponents, dsirtgset of (2.17).

3In the context of the 8V/SOS-model this is the most natural normalizatiba.€lgenvalue§- (u) are factorized
in products of theta functions and the variationgobnly affects positions of zeroes. Obviously, the transfer matrix
eigenvaluesT (u), do not have any singularities i
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Evidently,Q(u) in (2.1]) can be substituted by any of the two Bloch solutiQnsu), so there

are two alternative expression for eabf{u). Further, multiplying [2.14) and (2.]15) §§_(u—2n)
andQ. (u—2n) respectively, subtracting resulting equations and uging](2.13) one sbtain

2iW() T(u) = Q4 (u+27) Q- (u—2n) — Q4 (u—2n)Q_(u+2n) . (2.18)
The last result, combined with the determinant form{ilg (2.8), gives
21W(9) Ti(u) = Qs (u+kn) Q- (u—kn) — Q. (u—kn) Q_(u+kn), (2.19)

wherek=10,1,2, ..., .
All the functional relations presented above are general corollariéisect Q-equation[(2]2),
3.
2.3 Rational values ofn
Let us now assume that
2L.n = mm, 1<m<L-1, L>2, (2.20)
wherem andL are mutually prime integers. Evidently,
2kn #0 (modm), 1<k<L-1. (2.21)

Combining the expressior (2]11) with (2.2) ad (R.12), one immediately obtanfolibwing
functional relation,

TLsk(u) = 2cogmg) Ti(u+ 2mm) + Ty (u), k=1,2,.... (2.22)

which shows that, for the rationgl of the form [2.2D), all highe(u) with k > L are the linear
combinations of a finite number of the low&g(u) with k < L. This relation is a simple corollary
of the TQ-equation. It always holds for the rational valueg @&nd does not require the existence
of the second Bloch solution ifi (2]12) (indeed, Eq.(R.22) is independéne sign of¢). Setting

k=1in (2.22) one obtains
Ti2(u) =2cogme) f(u+ Smm) + T4 (u) . (2.23)
This allows one to bring E4.(3.5) with= L to the form
TL(u+mTL(u—n) = (f(u+ Imm) +ém? TL_l(u)) (f(u+ imm) e ™ TL_l(u)) (2.24)

where the periodicity[ (2} 2) of the functidifu) was taken into account. Thus, for the rationathe
equations[(2]5) wittk = 2,3, ..., L — 1 together with Eq[(2.24) form a closed system of functional
equations for a set df — 1 eigenvalueg T (u), T3(u),..., T, (u)}. Given that allTy(u) with k>3
are recursively defined through(u), this system of equation leads to a single equation involving
T(u) only. Indeed, substituting the determinant formulag| (2.8) ihto]2.23) onénabta

detH Mab(U) nga’bﬂ —0, (2.25)

where thel by L matrix reads

Map(U) = Map(U) — 08218 f(U—3N) —w 18 dp1f(u+n) (2.26)
with Map(u) given by [Z:p) andv = e*im?.
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2.3.1 Non-zero quantum Wronskian

Continuing the consideration of the rational cgse (2.20), let us additiorsdiynae that both
quasi-periodic solutiong (2.J12) exist and that their quantum Wronskid®)2s non-zero. It is
worth noting that the function® (u) in this case cannot contagomplete exact stringsA com-
plete exact string (or, simply,@mplete strinyis a ring ofL zeroedu,, ..., u., where each consec-
utive zero differs from the previous one by 2closing over the periodt,

U1 = Uk +2n, k=1,...,L, U+1=U; (modrm). (2.27)

It is easy to see that any such string manifests itself as a factor in the RIZSL$j,(but not in its
LHS (unless, of cours&V(¢) = 0).
It follows from (2.12) that

Qe (u+mm) = e ™ Q. (u) . (2.28)

Using (2.1p) and[(2.20) one easily obtains the two equivalent relations,

e T (u) + TLk(u+ 3mm) = C(¢) Q; (u+kn) Q- (u—kn), (2.292)
and
e "™ Ti(u) + Tik(u+3mm) = C(¢) Q (u—kn) Q- (u+kn), (2.29b)
wherek=0,1,....L and _
C(o) = S{/r\],((r;q;) : (2.30)
In particular, fork = 0 one gets,
Ti(u+3mm) = C(¢) Q4 () Q- (u) - (2.31)

Quote also one simple but usefaonsequence of (2.p9),

0 QL) Q+<u—kn>:.og(e*‘m"’Tk<“>+TL-k<“+%m">) 232

Q (urkn) ~°%9Q (u—kn) & ™ T(U) + To(Ut 2mm)

This first-order finite difference equation relates the ra@io/Q_ with the eigenvalues of the
(higher) transfer matrices.
Introduce the meromorphic functions

Ll f(u+(20+1)n)
__ otime
VW= S T2t Qi (it 2 D) (2.33)
such that ) X
Tu(ut-3mm) = (Qu(w) v () = (Q-(W) w-(u). (2.34)

4Namely this relation withk = 1 was used in [21] to show that for rational valuesrpthe expression for the
non-linear mobility for the quantum Brownian particle in a periodic potentidghioled in [9] exactly coincide with that
of [22] found from the thermodynamic Bethe Ansatz.
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With this definition all the relationg (2.9) reduce to a single relation which agairbe written in
two equivalent forms

VW=CO) g Y W=C@ gy (2.35)
Obvi ly,
viously , v Q (U2
Vv = (¢9))", Vo = (QM) (2.36)

2.3.2 The RSOS regime and its vicinity

Further reduction of the functional relation in the rational c@ise [2.20)rsdor certain special
values of the field from the set

me¢ = (r+1)m, r=0,12,.... (2.37)

Consider the effect of varying in the relation [2.31). The eigenvaldg (u) in the LHS will
remain finite, so as the eigenvalu@s (u) in the RHS. The latter also do not vanish identically (as
functions ofu) at any value of (see the discussion of our normalization assumptions beforé (2.17)
above). Therefore the coefficie6{¢), defined in [[2.30), is always finite. This means that in the
rational case[(2.20), the quantum Wronskiéh($), can only vanish at zeroes of the numerator in
(B-30). However, the converse is not trie{¢ ) does not necessarily vanish whép) = 0. Here

we are interested in this latter case where

C(¢)=0,  W(g)#0 (2.38)

with ¢ from the set[(2.37). By definition we call it tfRSOS regime The relations [(2.29) and

(2.31) reduce to

Ti(u) = (=)' Te_k(u+3mm),  k=1,...,L-1, (2.39a)

and
Ti(u)=0. (2.39b)

All these relations can be written as a single relation (in two equivalent fovosing only Q (u)
or Q_(u) respectively),
V. (uy=v_(u)=0, (2.40)

with W_ (u) defined by[(2.33).

The special “truncation” relation§ (2]39), exactly coincide with those agipg in the RSOS-
model [18]. These were obtained [23, 24] by the algebraic fusiongohae [25] and hold for
all eigenvalues of the RSOS model. The above analysis showslth&ggenvalues of the RSOS
model are non-singularThe quantum Wronskian of the Bloch solutiops (R.12) is always nom-zer
(otherwise the coefficier@(¢) in (.29) would not have vanished). For this reason the solutions of
the Bethe Ansatz equations for the RSOS model cannot contain complets.s8inge, as argued
in [14] the complete strings are necessary attributes of degenerate stadeatrives to a rather
non-trivial statementthe spectrum of the transfer matrix in the RSOS model is hon-degenerate

10
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Consider now the vicinity of the RSOS regime, whermnd¢ are approaching their limiting
values given by[(2.20) and (2]37) respectively. Interestingly, omeespress som@- and ¢-
derivatives

O Ti(u) = (fnwum,m, 0y Ti(u) = ﬁn(um,cp) , (2.41)

calculated at the “RSOS point”,
(n, ¢) = (mm/2L, (r +1)/m) , (2.42)

in terms of the corresponding values@f (u) and their first ordeu-derivatives

, 7]
Qi(u) = %Qi(um,(b) . (2.43)
Using (2.1D) one obtains,

On [Tk(U) — (=D TLk(u+ mn/Z)] + LA T(u) =
Q/+(U+k’7)Q—(U—k’7)—Q+(u—kr7)Q’_(u+kn)} :

L
_ W [ (2.44)
9% [Tk(u) — (=)' Tek(u+mm/2)| =

m

= (g QUK Q- (u=kn) +Qu (u—kn)Q-(u+kn)]

where the expressions in the RHS are calculated directly at the fpoink .(2M2)prding to the
definitions [2.5),To(u) and T1(u) do not depend oy and¢ at all, therefore, one can express
and¢-derivatives ofT| _1(u) and T, (u) at the RSOS poinf(2.42) in terms of the of vali@s(u)

andQ’. (u).

2.4 Zero field case

Consider now the zero field limig = 0. Let us return to the case of an irratiompl 1t where
the spectrum of the transfer matrix is non-degenerate. The eigen@lyes, corresponding to the
same eigenstate smoothly approach the same valfle=ad. Moreover, adjusting @&-dependent
normalization ofQ.. (u) one can bring their sma$f expansion to the form

Q+(U) = Qo(u) F¢ Qo(u)/2+0(¢%), ¢ —0, (2.45)
where
Qol) = Qoo Qv =255 2| =255 e
From (Z.1D) it follows that
Qo(u+71) =Qo(u),  Qo(u+ 1) = Qo(u) +2iQo(U) . (2.47)
It it easy to see that the quasi-periodic par@efu) is totally determined byo(u),
Qo(t) = 22 Qo(u) + Q" (v) (2.48)

11
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However, the periodic part
W m =" (W), (2.49)

can only be determined up to an additive term proportionéldtu). Indeed, consider the effect of
an inessential normalization transformation

Qs (u) — e 9%Q(u) , (2.50)

wherea is a constant. The value @fo(u) remains unchanged while the periodic partQ#{u)
transforms as

QP (u) - Q" (u) — 2a Qo(u) - (2.51)
The quantum Wronskian relatioh (2] 13) reduces to
Qo(u-+1) Qo(u—n) —Qo(u—1)Qo(u+n) = 2W(0)f(u), (2.52)
where
W'(0) = dv(;/qg¢) ‘¢:o . (2.53)

The expression (2.19) now becomes
2iW'(0) T (u) = Qo(u+kn) Qo(u—kn) — Qo(u—kn) Qo(u+kn) . (2.54)

It is easy to see that gt = 0 the TQ-equation[(2.3) is satisfied@{(u) there is replaced by either
of Qo(u) or Qo(u). The same remark applies to the more general equdtior (2.11).

The Bethe Ansatz equatiorfs (2.4) for the zeroeQgiti) are the standard equations [2] arising
in the analysis of the symmetric 8V-model. Exactly the same equations also hdltefaeroes
of Qo(u), but their usefulness is very limited. Even thou@b(u) is an entire function ofi, it
lacks the simple periodicity (cf.[ (2.47)) and, therefore, does not gsssey convenient product
representation. Moreover, the transformatipn (2.51) affects the positioeros ofQo(u), making
them ambiguous. All this renders the Bethe Ansatz equation@dar) useless. Fortunately, these
equations are not really required for determinatiorQgfu). Once the zeros dRo(u) are known
the functionQo(u) is explicitly calculated from[(2.52).

Additional functional relations arise in the rational cdse (2.20). Thdataes are straightfor-
ward corollaries of[(2.29)[(2.81) and (2. 35). For instance,[Eq)2)2@)s

Tie(u) + Te(u+mm/2) = C(0) Qo(u+kn)Qo(u—kn), ¢ =0, (2.55)

where
C(0) = m/W'(0) . (2.56)

All these relations (with differerit) can be equivalently re-written as a single relation

=1 f(u+(20+1)n) B B
2y Qolu+2m) Qolu+ 20+ 2m) O =0 (257)
which is theg = 0 version of [2.35). Setting= 0 in ([2.5%) one gets
TL(u+mm/2) = C(0) (Qo(u))?, ¢ =0. (2.58)

12
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Thus, atp = 0 the eigenvalud | (u+ mr/2) becomes a perfect square. It only lsiblezeroes,
whose positions coincide with the zeroeS®i(u).

As is well known, in the rational cas¢ (2}20) the transfer matrix of the 8Vehbds a de-
generate spectrum (for sufficiently large valuesNof 2L). We would like to stress here that the
above relationd (2.55)=(2]58) hold only feon-degeneratstates. Actually, the assumption made
in the beginning of this subsection, that (u) coincides withQ_ (u) when¢ = 0, is true only for
non-degenerate states. Removing this assumption and takia@ limit in (2.33), while keeping
n fixed by (2.2P), one obtains

TL(u+my2) = CO QWA (W), Qe = ImQu(v). (259

For a degenerate state the eigenvalQesu) andQ_(u) can only differ by positions ofomplete
exact strings This ambiguity does not affect any transfer matrix eigenvalugs), since the com-
plete strings trivially cancel out fronj (2]11). In principle, the complete gfrioan take arbitrary
positions, however, foR(u) they take rather distinguished positions. Indeed, du¢ t0](2.59), the
zeroes ofQ- (u) manifest themselves as zeroesTefu+ mr/2) which are uniquely defined even
for the degenerate states. From the above discussion it is cledrthgthas either double zeroes

or complete strings of zeroes. Further analysis of the degenerate casgased in [16].

2.5 Particular models

So far our considerations were rather general and covered sevated models at the same
time. For each particular model, one needs to specify additional properdiely, (i) the explicit
form of the functionf(u) and (ii) detailed analytic properties of the eigenval@su). In this
Section we will do this for three different models: the 8V/SOS-model, the 6¥ehand thec < 1
conformal field theory.

2.5.1 The symmetric eight-vertex model

There are only eight “allowed” vertex configurations, shown in[fig. licivhave non-vanishing
Boltzmann weights. These weights are not arbitrary; they parameterizaayofour arbitrary con-
stantsa, b, c,d,

W =wp=2a, w3 =ty =b, W5 = W = C, w=wz=d. (2.60)

The remaining eight configurations are forbidden; their Boltzmann weighgns. Following [2]
we parameterize the Boltzmann weight®, ¢, d as

a=p 94(2n|4%) 9a(v—n19?) 1(v+nld?),
b=p 94(2n[q?) d1(v—n|q?) Sa(v+n|g?),
c=p 91(2n[q?) 9a(v—n|a?) Sa(v+n|q?), (2.61)
d=p 91(2n[q?) 91(v—n|a?) S1(v+n|q?),

Note, that our notations are slightly different from those in Baxter's odabjapers [2-5]. The
variablesq, n, v and p used therein (hereafter denotedgs ng, vs andpg) are related to our

13
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W5 03 0/ 0]

Figure 1: Eight allowed vertex configuration and their Boltzmann virég Thin lines represent the
“spin-up” states and the bold lines represent the “spinfdmstates of the edge spins
variablesq, n, vandp as

2 _ qn— o Kp/Ke _ e _ Ve _
n 2KB’ \Y ZKB’ P=p8, (262)

whereKg andKg are the complete elliptic integrals associated to the nggnélere we the fix the
normalization of the Boltzmann weights as

p=295(0[q) " 84(0]¢*) ", (2.63)

where
Si(u|q),i=1,...,4 q=¢€™, Imt > 0, (2.64)

are the standard theta functions [7] with the periadmndrr.
We denote the transfer matiTxand theQ-matrix from [2,3] asT B(v) andQB(v), remembering
that our variabler is related tosg by (£.62). Below we often use a shifted spectral parameter

u=v—rr/2, (2.65)
simply connected to the variablen (.62). We also consider the re-defined matrices
T(u)=(—ig VYN TBv),  Q(u)=€"N?Q5v) (2.66)

whereN is the number of columns of the lattice. The eigenvalliés) and Q(u) of these new
matrices enjoy the following periodicity properties

T(u+m) =T(u), T(u+mr) = (—q) Ve 2N T(u), (2.67)
and

8V:model:  Q(u+m) =sé™2Q(u),  Qu+2mr) =q Ne2NUQ(u). (2.68)

14
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Here the “quantum numbeg'= +1, is the eigenvalue of the operatgf, defined as

(2

s=0PocPe wd, #=0"eiPe 2. (2.69)

This operator always commutes wittfu) andQ(u).
Baxter's TQ-equation (Eq.(4.2) of [2] and Eq.(87) of [3]) now takesfibrm (2.B) with

f(u) = (9a(ula)" . (2.70)

The main reason for the above redefinitions is to bring the TQ-equation tothersal form [2.B),
whereT (u) andf(u) are periodic functions af (see Eq[(2]2)) for an arbitrary, odd or even, number
of sites,N. This also helps to facilitate the considerations of the scaling limit in our nexrpag].

Comparing the first equation ifi (2]68) with the periodicity of the Bloch soluti@nk2) one
concludes that the exponentsead

0 (modm), N=even
&) = - (2.71)
> (modm), N =odd

Thus, for an evel the exponents of the symmetric 8V-model, with the cyclic boundary conditions,
always belong to the “dangerous” sgt (2.17). For anNdle exponentg (2.F 1) fall into this set only
for certain rational values af /. A notable example is the cage= 11/3, considered in [26—28].

The imaginary period relations if (2]67) afd (2.68) certainly deserve detbtmnsideration.
First, note that in[(2.68) we only stated the periodicity with respect talthesleimaginary period
2mtr, which always holds in all cases when the 8V-model has been exactlgd®olActually,
this is a rather overcautious statement which can be easily specialized.fufthrehe following
discussion assume a generic (i.e., irrational) valug Gft. Then for everN the Bloch solutions
(B-12) always coincide (just as in the zero-field case of Sefct.2.4). @dNothere are always
two linearly independent Bloch solutions for each eigenvalge), one withs = 41 and one with
s= —1 (remind that in this case each eigenvalue of the transfer matrix is doutpéseiate [29]).
The existence of the “imaginary” period imposes rather non-trivial re&iris on the properties of
the eigenvalues. Indeed, the second relatiofi in[2.67) immediately implies tHanthien

Q(u) =rq"2e"NQ(u+ mm) (2.72)

wherer is a constant, satisfies the TQ-equatipn](2.3) as wel@s. Further, ifQ(u) is a Bloch
solution

Q(u+m) =€?Q(u) (2.73)

with some¢ then@(u) is also such a solution with the exponent

¢ =¢ +Nm (mod 2m). (2.74)

SRef. [2] applies to rational) and arbitrary values dfl, while ref. [3] applies to arbitrary) and even valuehl. It
is reasonable to assume th.68) holds in general, however, taefcas arbitraryn and an oddN has never been
considered.
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Obviously, there are two options, eithél(u) is proportional toQ(u) or it is proportional to the
other linearly independent Bloch solution with the negated exponent’ The first option is
realized for everN,

8V-model,N even: Q(u+mr) =rq NM2e UNQ(u),
(2.75)
The constant = +1 is then the eigenvalue of the spin-reversal operatatefined in [2.69). The
second option requires the expongnto be a half-an-odd integer fraction af it is realized for
oddN,

8V-model,N odd: Qz(u+ 1) = q V2 UNQ(u).
(2.76)
The above relationg (2]75) ar[d (3.76) were derived for irrationalesatifn /1, however they
also hold in the rational casg (2 20), if no additional degeneracy of tremeadues of the trans-
fer matrix occurs (apart from the one related with the spin-reversal symirf@ odd N). The
functional relation[(2.31) can be then written in the form

TL(u+ 3mm) = AN Q. (u) Q4 (u+ ) (2.77)
whereA is a constant. This relation is identical to the one conjectured iff[15]

2.5.2 The solid-on-solid model

The main idea of this paper is to study deformations of the eigenvalugsandQ(u) under
continuous variations of the exponenttsfrom their discrete valueg (2]71). As explained in the
Introduction the resulting eigenvalues correspond to the unrestricteeh®81. We will therefore
assume the more general periodicity relatigng (1.6) for the Bloch wave sw@io(u), which hold
for both odd and eveN,

SOS-model:  Qi(u+m) =e"?Qi(u), Qu(u+2m)=q Net¥e2UNQ (u),

(2.78)
where the exponert is arbitrary. The second exponetitis not an independent parameter, it is
determined byp (see the discussion in Section 4 of [16]).

The second relation irf (2]78) can be further refined for éven

SOS-model, N even: Qi (u+7T) = q V2et¥/2eUNQ, (u), (2.79)

whereas the periodicity of (u) remains the sam¢ (2]67) as in the 8V-model. However, there is
no a general SOS-model analog pf (2.76), as it is specific to half-ogdnexts only. As a result

Eq.(2.67) is replaced with
SOS-model, Nodd:  T(u+m)=T(u), T(u+2mr)=q Ne4NT(). (2.80)

Strictly speaking the use of the term “SOS-model” here is justified for &/enly [4]. Nonethe-
less, we will use this term to indicate arbitrary values of the field parangeiieigeneral.

6The conjecture of [15] also covers a special case of degenerate fatational values of), where the relation
[©.7$) holds for the eigenvalues of tematrix of [2] for evenN.
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2.5.3 Six-vertex model in a horizontal field

The allowed vertex configurations of the six-vertex model form a subls#Hose shown in
Fig[d. Namely, the Boltzmann weights; and ws are equal to zero. The remaining six weights
will be parameterized as

(A)l — e+H—|f7 a’ a)z — —H—in a’ (A% — e+H+|f] b7
(2.81)
W = —H+in b, ws = eiu—Zin C, g = eiu—2inc,
whereH stands for the horizontal field
a=h(u+n), b=hu—n), c=h2n), hu=1-¢€". (2.82)

The above parametrization is simply related to that given in Eq.(12) of [14¢(@the vertical field
V is set to zero). The TQ-equation (eq.(11) of [14]) takes the f¢rn (£223), where

f(u) = (h(u)N . (2.83)

The Bloch solutions[(2.12), corresponding to the eigenvectors of theferamatrix withn “up-
spins”, can be written as

Qu(u) = e 0WTA (e2Y) (2.84)
whereA, (x) andA_(x) are polynomials irx of the degrees and(N — n), respectively, and
imHN T
¢ = an +5 (N=2n). (2.85)
Introduce new variablés
x=€eM = q=éM  z=€1T (2.86)

Regardingx as a new spectral parameter insteadi ahd writing T(u) andf(u) asT(x) andf(x),
respectively, one can rewritg (P.3) in the form

TX)AL(X) =2 (g 1) AL(PX) + 272 (qX) AL (g 2X) , (2.87)

where the polynomialé\. (x) are defined in[(2.84). This form is particularly convenient for the
6V-model.

2.5.4 Conformal field theory

The continuous quantum field theory version of Baxter's commuting transé¢rices of the
lattice theory was developed in [9, 10, 30]. These papers were detwtind c < 1 conformal
field theory (CFT). The parametefisand p used there define the central chaognd the Virasoro
highest weightj,

c—1

2
c=1-6(8—B Y2, A:(E) 5 (2.88)

"The parameteq should not be confused with the nompén the 8V-model
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They are related to ouy and¢ as
2n = B2m, ¢ = 2mp/B?. (2.89)
The multiplicative spectral parametgrused in those papers is related to our variabdes
A= _g 2, (2.90)

The eigenvalues of the CRJ-operatorgQ, (u) are entire functions of the variable satisfying the
periodicity relation [[2.72). Their leading asymptotics at large positive imaginagad

A
cos( 7' %;)

whereA is a known constant [9]. Here we assumed thatoes not belong to the set

logQ(u) = /(=21 L O(1),  u— +iw, |Reul < m/2, (2.91)

n:%(l—i), k=12, .. . (2.92)

At these special values gfthe theory contains logarithmic divergences and the asymptptics (2.91)
should be replaced with

log Q= (u) = 2i(—1)*Au ™ ceUk+ O(1), U— +ico, |Reu|<7/2, (2.93)

whereC is a regularization-dependent constant. The factorization formulaé read
Q= (u) =™/ AL (u), As(u) =] (1- e_Zi(u_uki)) ; (2.94)
k=1

where the zeroesf, uf, ... accumulate at infinity along the straight line
u=r/2+1iy, y— +oo. (2.95)
Finally, the functiorf(u) in the case of CFT should be set to &ne
fluy=1. (2.96)

With these specializations the functional relations given above become @ldatibose previously
obtained in [9, 10, 30].

2.6 Related developments and bibliography

The literature on the functional relation in solvable models is huge; theréfa@uld not be
practical to mention all papers in the area. Our brief review is restrictedtoraysubset of publica-
tions directly related to the eight-vertex/six-vertex models and associatedsyadadgiantum field
theory.

8Here we assumed that9n < /4. Whenm/4 < n < 11/2 the product in 4) should contain the standard
Weierstrass regularization factors [9].
9Again, we have assumed thaidoes not fall into the sef (2p2), otherwigle)) = exp(4An €2k /m).
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2.6.1 Transfer matrix relations

In the above presentation the entire functidipgu) with k > 3 were defined by the recurrence
relation (2.5), which allows one to express them solely in ternig(af, as in [2.B). No other addi-
tional properties ofr(u) were used. However, as is well known, these functions are eigesvaiue
the higher transfer matrices, usually associated with the so-called fusioadure. This algebraic
procedure provides a derivation of the functional relations for thedrigfansfer matrices based on
decomposition properties of products of representations of the affiaetgpn groups. Originally,
all these “transfer matrix relations” were obtained essentially in this way. W@ddnike to stress
that the logic of these developments was exactly opposite to that employed ieview. The
goal was to find new techniques, independent of the TQ-relation, rditherto deduce everything
from the latter. The first important contribution was made by Stroganov [3&]gave an algebraic
derivation of the first nontrivial relation il (3.5) (with= 2),

T(u+n)T(u—n)—f(ut+2n)flu—2n) = o((u— uo)N> (2.97)

in the vicinity of the pointu = up where the transfer matricé8(up + ) andT(up — ) become
shift operators. Remarkably, this single relation alone contains almost atimation about the
eigenvalued (u). To illustrate this point consider, for instance, the 6V-model. For a chatheof
lengthN each eigenvalu&(u) is a trigonometric polynomial of the degrdk determined byN + 1
unknown coefficients. The mere fact that the LHS[of (2.97) habldin order zero immediately
givesN algebraic equations for these unknowns. Similar arguments, obviouglly, tpthe 8V-
model. One additional equation is usually easy to find from some elementasigledations (e.g.,
from the largeu asymptotics in the 6V-model). Further, in the thermodynamic liMit> co with u
kept fixed, Eq[(2.97) becomes a closed functional relation for the eiigew (its RHS vanishes).
This is the famous “inversion relation” [31-33]. With additional analyticityuasptions it can be
effectively used to calculate the eigenvalues of the transfer matfik-ato. Recently, Eq[(2.97)
was used to derive a new non-linear integral equation [34], especistlydsfor the analysis of
high-temperature properties of lattice models.

Soon after [31] Stroganov derived [35] a particular casd of [2.@8)He 6-vertex model with
n = /6 (i.e., forL = 3 andm= 1). He also found that for the case of an odd number of Sites

Eq.(2.2b) takes the form

T(u—=2n)T() T(u+2n)=Ff(uf(u+2n)T(u—-2n)+f(u—2n)f(u+2n) T(u)+f(u—2n)f(u) T(u+2n).
(2.98)

He then used this equation to obtain Bethe Ansatz type equations for thes oérbéu) and to

reproduce Lieb’s celebrated result [36] for the residual entroghetwo-dimensional ice. Unfor-

tunately, these results were left unpublished.

The ideas of [31, 35] were further developed in Hmalytic Bethe Ansaf87] where the TQ-
equation (or an analogous equation) is used essentially as a formal didostitisolve the transfer
matrix functional equations. The notion of “higher” or “fused” R-matrigess developed in [20]
from the point of view of representation theory. These R-matrices wadoaikated in [38] for the
6V-model, in [39—-42] for the 8V-model and in [25] for the SOS-model. Tinectional relations

10/n our notations this correspondsgo= /2 (modm).
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(B.7) were given in [38] for the 6V-model and in [24] for 8V/SOS-modeie determinant identity
(2.2%) was discussed in [24,43]. An algebraic derivation of the tiimeaelations [2.39) for the
RSOS model [18] was given in [24]. A particular case of this truncatiantie hard hexagon
model [44] was previously discovered in [23]. An algebraic derivatbi.23) in the zero-field
six-vertex model is given in [45]. The idea of calculationdpf and n-derivatives [(2.44) at the
RSOS point given in Se¢t.2.3.2 is borrowed from [46] and [47].

Remarkably, the same functional equatiops| (2.5) (along with all their spetializ in the
rational case) arise in a related, but different context of the thernmardi;mBethe Ansatz [48];
see [49] for its application to the 8V-model. Usually this approach in lattice madeissoci-
ated with non-linear integral equations. Here we refer to the functiomai fif these equations
discovered in [50]. Further discussion of the correspondence ofutietional relation method
with the thermodynamic Bethe Ansatz and its generalizations for excited staielsectound
in[19, 30,51-54].

2.6.2 Q-matrix and TQ-relations

As noted before, a full algebraic theory of tQematrix in the 8V-model is not yet developed.
The idea of the construction of tl§@-matrix in terms of some special transfer matrices belongs to
Baxter. It is a key element of his original solution of the 8V-model. Reanesested in details
should familiarize themselves with the Appendix C of [2] (along with other faeadices and, of
course, the main text of that paper, which contain a wealth of importantivation on the subject).
The results of [2] only apply for certain rational valuesmpfThe construction of [2] and the set of
allowed values of) were recently revised in [15]. A different construction for fRematrix, which
works for an arbitrary}, was given [4].

There are many related solvable models connected with the R-matrix of the @®trot
having different-operators and differemfuantum spaced ' he general structure of the functional
relations in all such models remains the same. In particular, they all pos$€ysadation (though
it may contain different scalar factors and require different analytiperties of the eigenvalues).
In [4] Baxter also presented an extremely simple explicit formula for the malkeents of the
Q-matrix for the zero-field 6V-model in the sector wiy/2 “up-spins” (the half filling). How-
ever, no such expression is known for the 8V-model, or the other seofdhe 6V-model. The
quantum space of the 6V-model is build from the two-dimensional highegtiveepresentation
of Uqy(slh)) at every site of the lattice. Curiously enough, if this representation is reglatth the
general cyclic representation (arising at roots of urgty= 1) then all matrix elements of th@-
matrix can be explicitly calculated [55] as a simple product involving only a tpinisteractiort™.
Remarkably, the resultin@-matrix exactly coincides with the transfer matrix of the chiral Potts
model [56-58]; this allows one to view the latter as a “descendant of theesigx model” [55].
The generalization of this construction to the eight-vertex and the KashiWiava model [59] is
considered in [60]. Further developments of the theory of@hmatrix and related topics (along
with many important applications to various solvable models) can be found-#7(§1

11The factorization of the matrix elements of tiematrix is typical for quantum space representations without
highest and lowest weights.
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Baxter’s original idea of the construction @operators which utilizes traces of certain mon-
odromy matrices was extended in [9, 10] for trigonometric models related withuhaetum affine
algebraUq(sTI(Z)). It turned out that in the trigonometric case the situation is considerably sim-
pler than for the 8-vertex model and tReoperators coincide with some special transfer matrices.
The correspondind. -operators are obtained as specializations of the univ&sgahtrix [71] to
infinite-dimensional representations of p@scillator algebra in the “auxiliary space”. Although
the calculations of [9, 10] were specific to the continuous quantum fieldythibe same procedure
can readily be applied to lattice models (see, e.g., [72—75] for the conmdBmpresults for the 6V-
model). In the case of the 6V-model with non-zero horizontal field thistcoctson leads to two
Q-matrices?, whose eigenvalued.. are precisely the “Bloch wave” solutions of the TQ-equation.

Note that functional relations which involves bi-linear combination®Qef namely [2.19),
(-29) and [[2.31) are universal in the sense that they do not involventtael-specific function
f(u). These relations were derived in [9, 10] in the context of the confofiela theory. Similar
relations previously appeared in the chiral Potts model [55, 76, 77]gtihthe correspondence is
not exact because there is no an additive spectral parameter in thalt Eqd2.19) in the eight-
vertex and the XXX-models was found in [11] and [78]. A special cRsEl) of the relation[(2.31)
involving Baxter’s originalQ-matrix [2] for the 8V-model was conjectured in [15]. Another special
(zero-field) casq (2.55) of the same relatjon (2.31) in conformal fieldyheas conjectured in [53].

3. Conclusion

In this paper we developed some new ideas in the classical subject ofrBadkebrated
eight-vertex and solid-on-solid models. Our primary observation cos@efpreviously unnoticed)
arbitrary field parameter in the solvable solid-on-solid model. This parameaésrai®gous to the
horizontal field in the six-vertex model. This fact might not be so surprisingxperts, since all
the hard work has been done before and one just needs to lay seldebthe papers [5,12,13] to
realize that an arbitrary field parameter is, in fact, required to describeotfinuous spectrum of
the unrestricted solid-on-solid model.

The introduction of an arbitrary field allowed us to develop a completely analyiory of
the functional relations in the 8V/SOS-model. As demonstrated in [16], thé@udof the Bethe
Ansatz equations are multivalued functions of the field variable, havingpedgebranching points.
It is plausible that many (if not all) eigenvalues of the transfer matrix canbb@ireed from each
other via analytic continuation in this variable.

It appears that the analytic structure of eigenvalues in the eight-vert&xiaalel certainly
deserves further studies. Somewhat simpler (but still very interesting)tgte arises in the six-
vertex model and, especially, in the: 1 conformal field theory [79]. In the latter case the Riemann
surface of the eigenvalues closes within each level subspace of tlsmiinaodule.
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