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1. Introduction

The theory of integrable quantum systems originated from Bethe’s seminal work [1] has nu-
merous important applications in physical and mathematical sciences. The mathematical founda-
tion of this theory is based to a great extent on powerful analytic and algebraic techniques dis-
covered by Baxter in his pioneering papers [2–5] on the exact solution of the eight-vertex lattice
model. This paper concerns one of these techniques — the method of functional relations. Over
the last three decades, since Baxter’s original works [2–5], this methodhas been substantially de-
veloped and applied to a large number of various solvable models. However, the status of this
method in the eight-vertex model itself with an account of all subsequent developments has not
been recently reviewed. This paper is intended to (partially) fill this gap. Here we will adopt an
analytic approach exploiting the existence of an (hitherto unnoticed) continuous field parameter in
the solvable eight-vertex solid-on-solid model of ref. [4].

For the purpose of the following discussion it will be useful to first summarize the key results
of [2–5]. Here we will use essentially the same notations as those in [2]. Consider the homogeneous
eight-vertex (8V) model on a square lattice ofN columns, with periodic boundary conditions. The
model contains three arbitrary parametersu, η andq = eiπτ , Imτ > 0, which enter the parametriza-
tion of the Boltzmann weights (the parameterq enters as the nome for the elliptic theta-functions).
The parametersη andq are considered as constants and the spectral parameteru as a complex
variable. We assume that the parameterη is real and positive, 0< η < π/2, which corresponds to
the disordered regime [6] of the model.

The row-to-row transfer matrix of the model,T(u), possesses remarkable analytic properties.
Any of its eigenvalues,T(u), is both (i) an entire function of the variableu, and (ii) satisfies Baxter’s
famous functional equation,

T(u)Q(u) = f(u−η)Q(u+2η)+ f(u+η)Q(u−2η), (1.1)

where1

f(u) =
(
ϑ4(u|q)

)N
, (1.2)

andQ(u) is an entire quasi-periodic function ofu, such that

Q(u+π) = ±(−1)N/2Q(u), Q(u+2πτ) = q−2N e−2iuN Q(u). (1.3)

These analytic properties completely determine all eigenvalues of the transfer matrixT(u). Indeed,
Eq.(1.1) implies that the zeroesu1,u2, . . . ,un, of Q(u) satisfy the Bethe Ansatz equations,

f(uk +η)

f(uk−η)
= −

Q(uk +2η)

Q(uk−2η)
, Q(uk) = 0, k = 1, . . . ,n . (1.4)

These equations, together with the periodicity relations (1.3), define the entire functionQ(u) (there
will be many solutions corresponding to different eigenvectors). OnceQ(u) is known the eigen-
valueT(u) is evaluated from (1.1).

1Here we use the standard theta-functions [7],ϑi(u|q), i = 1, . . . ,4, q = eiπτ , Imτ > 0, with the periodsπ andπτ.
Our spectral parameteru is shifted with respect to that in [2] by a half of the imaginary period, see Sect 2.5.1 for further
details.
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The entire functionsQ(u) appearing in (1.1) are, in fact, eigenvalues of another matrix,Q(u),
called theQ-matrix. Originally it was constructed [2] in terms of some special transfer matrices.
A different, but related, construction of theQ-matrix was given in [3] and later on used in the
book [6]. An alternative approach to the 8V-model was developed in [4,5] where Baxter invented
the “eight-vertex” solid-on-solid(SOS) model and solved it exactly by means of the co-ordinate
Bethe Ansatz. This approach provided another derivation of the same result (1.1)-(1.4), since the
8V-model is embedded within the SOS-model.

Baxter’sQ-matrix (or theQ-operator) possesses various exceptional properties and plays an
important role in many aspects of the theory of integrable systems. A complete theory of theQ-
operator in the 8V-model is not yet developed. However for the simpler models related with the
quantum affine algebraUq(ŝl2) (where the fundamentalL -operators [8] are intertwined by theR-
matrix of the six-vertex model) the properties of theQ-operator are very well understood [9]. In
this case theQ-operators (actually, there are two differentQ-operators,Q+ andQ−) are defined as
traces of certain monodromy matrices associated with infinite-dimensional representations of the
so-calledq-oscillator algebra. The main algebraic properties of theQ-operators can be concisely
expressed by a single factorization relation

T+
j (u) = Q+(u+(2 j +1)η)Q−(u− (2 j +1)η) (1.5)

whereT+
j (u) is the transfer matrix associated with the infinite-dimensional highest weight repre-

sentation ofUq(sl2) with an arbitrary (complex) weight 2j. Remarkably, this relation alone leads
to a simple derivation ofall functional relations involving various “fusion” transfer matrices and
Q-operators [9,10]. For this reason Eq.(1.5) can be regarded as afundamental fusion relation: once
it is derived, no further algebraic work is required.

An important part of the theory of theQ-operators belongs to their analytic properties with
respect to a certain parameter, which we call here the “field parameter". In the context of conformal
field theory (considered in [9, 10]) this is the “vacuum parameter”, whichdetermines the Virasoro
highest weight∆; in the six-vertex model it corresponds to the horizontal field. In fact, thevery
existence of two different solutions [9,11] of the TQ-equation (1.1) canbe simply illustrated by the
fact that the spectrum of the transfer matrix does not depend on the sign of the field, whereas the
spectrum of theQ-operator does.

It is well known that it is impossible to introduce an arbitrary field parameter intothe “zero-
field” or “symmetric” eight vertex model of [2] without destroying its integrability. However, such
parameter is intrinsically present in the solvable SOS-model. It does not enter the Boltzmann
weights, but arises from a proper definition of the space of states of the model. To realize this recall
that the SOS-model [5] is an interaction-round-a-face model where the face variablesℓi (called
the heights) take arbitrary integer values−∞ < ℓi < +∞. Its transfer matrix acts in an infinite-
dimensional space of states even for a finite lattice. It has a continuous spectrum, parameterized by
the eigenvalue of the operator which simultaneously increments all height variables,ℓi → ℓi + 1,
on the lattice. Indeed, taking into account the results of [12, 13], it is not difficult to conclude that
the calculations of [5] require only a very simple modification to deduce that theeigenvalues of the
SOS transfer matrix enjoy the same TQ-equation (1.1), but require different periodicity properties

Q±(u+π) = e±iϕ Q±(u), Q±(u+2πτ) = q−2N e±ψ e−2iuN Q±(u), (1.6)
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where the exponentϕ is arbitrary. It is determined by the eigenvalueω = e2iηϕ/π of the height
translation operator2 (the second exponentψ is dependent onϕ). It is natural to assume, that the
functionsQ±(u) solving these equations, are eigenvalues of theQ-operators for the SOS-model.
Of course, it would be very desirable to obtain their explicit definition (and generalize the algebraic
result (1.5) to the SOS-model), however, many properties of these operators can already be deduced
from the information about their eigenvalues.

In this paper we will develop the analytic theory of the functional relations for the SOS-model
starting from the eigenvalue equations (1.1) and (1.6). Bearing in mind that the TQ-equation (1.1)
arises from very non-trivial algebraic “fusion” relations [2], it is notsurprising that it implies all
other functional relations. The required calculations are essentially the same as those in [9, 10],
apart from trivial modifications arising in the context of lattice models.

The eigenvaluesQ±(u) are two linear independent “Bloch wave” solutions [9,11] of the finite
difference equation (1.1) for the sameT(u). Their quantum WronskianW(ϕ), defined as,

2i W(ϕ) f(u) = Q+(u+η)Q−(u−η)−Q+(u−η)Q−(u+η) , (1.7)

is a complicated function ofϕ , η and q, depending on the eigenvalueT(u). The Bloch solu-
tionsQ±(u) are well defined provided the exponentϕ does not take some “singular values” (see
Eq.(2.17) below), whereW(ϕ) vanishes. Otherwise Eq.(1.1) has only one quasi-periodic solution,
while the second linear independent solution does not possess any simple periodicity properties.

All singular cases (in fact, they split into different classes) can be effectively studied with a
limiting procedure starting from a non-singular value ofϕ . In the simplest case, whenη is generic
andϕ approaches the pointsϕ = kπ, k∈ Z, the solutionsQ+(u) andQ−(u) smoothly approach the
same value (which for evenN coincides with the eigenvalueQ(u) of the 8V-model).

A more complicated situation occurs when the fieldϕ tends to a singular value, sayϕ = 0,
while the parameterη simultaneously approaches some rational fraction ofπ, where the transfer
matrix of the 8V-model has degenerate eigenvalues. The limiting value ofT(u) is always uniquely
defined. However, ifT(u) is a degenerate eigenvalue, the limiting values ofQ±(u) are not uniquely
defined. They have “complete exact strings” of zeroes whose position can be made arbitrary by
changing the direction of the two-parameter(η ,ϕ)-limit. Obviously, this reflects a non-uniqueness
of eigenvectors for degenerate states [14]. An immediate consequence of this phenomenon is that,
for rationalη , there is no unique algebraic definition of theQ-operator in the symmetric 8V-model.
This explains an important observation of [15], that Baxter’s twoQ-operators, constructed in [2]
and [3], are actually different operators, with different eigenvaluesfor degenerate eigenstates.

Further, the eigenvaluesQ±(u), considered as functions ofϕ , have rather complicated analytic
properties. Besides having the (relatively simple) singular points discussed above, they are multi-
valued functions with algebraic branching points in the complexϕ-plane. These analytic properties
are studied in an extended version of this article [16].

2In [5] Baxter restricted the parameterη to the “rational” valuesLη = m1π +m2πτ, L,m1,m2 ∈ Z and considered
a finite-dimensional subspace of the whole space of states, regarding the values of heightsmodulo L. In this case the
phase factorsω = e2iηϕ/π take quantized valuesωL = 1 (see [12, 14] for further discussion of this point). Apart from
providing the conceptual advantage of a finite-dimensional space of states, the above restriction onη andω was not
used anywhere else in [5] and, therefore, can be removed. The transfer matrix of the 8V-vertex model (reformulated as
the SOS-model) acts only in the finite-dimensional subspace of the SOS space of states, corresponding to a discrete set
of exponentsϕ = kπ andψ = 0 (the value ofN is assumed to be even).

4



P
o
S
(
S
o
l
v
a
y
)
0
0
1

Functional relations in the eight-vertex model Vladimir V. Bazhanov

2. Functional relations in the eight-vertex SOS model.

2.1 Overview

In this section we will outline the analytic theory of the functional relations in the SOS-model
(which also covers the symmetric 8V-model). Actually most of the functional relations discussed
below are quite universal and apply to a wider class of related model. Theyinclude the six-vertex
model in a field [17], the restricted solid-on-solid (RSOS) model [18] and some integrable models
of quantum field theory: thec < 1 conformal field theory [9] and the massive sine-Gordon model
in a finite volume [19].

Let T(u) andQ(u) denote the eigenvalues of the transfer matrix and theQ-operator respec-
tively andη is an arbitrary real parameter in the range

0 < η < π/2 . (2.1)

In all subsequent derivations we will use only one general assumption about the properties of the
eigenvalues:

We assume thatT(u) andf(u) areentire periodicfunction of the variable u,

T(u+π) = T(u), f(u+π) = f(u) , (2.2)

and that the functionQ(u) solving the TQ-equation,

T(u)Q(u) = f(u−η)Q(u+2η)+ f(u+η)Q(u−2η) , (2.3)

is a also anentire(but not necessarily periodic) function of u.

For every particular model the above requirements are supplemented by additional, model-
specific analyticity properties ofQ(u) (such as, for example, the imaginary period relation (1.3) for
the 8V-model). These properties are discussed at the end of this section.

As explained in the Introduction, once the additional analyticity properties are fixed, the func-
tional equation (2.3) completely determines all eigenvaluesT(u) andQ(u). For certain applica-
tions, however, it is more convenient to use other functional equations in addition to (or instead
of) (2.3). We will show that all such additional functional relations in the SOS-model (and in the
related models mentioned above) follow elementary from two ingredients:

(i) the TQ-equation itself (Eqs. (2.2) and (2.3) above), and

(ii) the fact that for the same eigenvalueT(u) this equation has two different [9, 11] linearly
independent solutions forQ(u) which are entire functions ofu.

The only property of the functionf(u) essentially used in this Section is its periodicity (2.2).
For technical reasons we will also assume thatf(u−η) andf(u+η) do not have common zeroes.
This is a very mild assumption, excluding rather exotic row-inhomogeneous models, which are
beyond the scope of this paper.
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2.2 General functional relations.

SinceT(u) is an entire function, Eq.(2.3) implies that the zeroesu1,u2, . . . ,un of any eigenvalue
Q(u) satisfy the same set of the Bethe Ansatz equations

f(uk +η)

f(uk−η)
= −

Q(uk +2η)

Q(uk−2η)
, Q(uk) = 0, k = 1, . . . ,n , (2.4)

where the number of zeroes,n, is determined by the model-specific analyticity properties.
For any given eigenvalueT(u) introduce an infinite set of functionsTk(u), k = 3,4, . . .∞,

defined by the recurrence relation

Tk(u+η)Tk(u−η) = f(u+kη) f(u−kη)+Tk−1(u)Tk+1(u), k≥ 2 , (2.5)

where
T0(u) ≡ 0, T1(u) ≡ f(u), T2(u) ≡ T(u) . (2.6)

This relation can be equivalently rewritten as

T(u)Tk(u+kη) = f(u−η)Tk−1(u+(k+1)η)+ f(u+η)Tk+1(u+(k−1)η) , (2.7a)

or as

T(u)Tk(u−kη) = f(u+η)Tk−1(u− (k+1)η)+ f(u−η)Tk+1(u− (k−1)η) . (2.7b)

Using the definition (2.5) one can easily expressTk(u) in terms ofT(u) as a determinant

Tk(u) =
(
f(k)(u)

)−1
det
∥∥∥Mab(u+kη)

∥∥∥
1≤a,b≤k−1

, k≥ 2, (2.8)

where the(k−1) by (k−1) matrixM(u)ab, 1≤ a,b≤ k−1, is given by

Mab(u) = δa,bT(u−2aη)−δa,b+1 f(u− (2a+1)η)−δa+1,b f(u− (2a−1)η) , (2.9)

while the normalization factor reads

f(k)(u) =
k−3

∏
ℓ=0

f(u− (k−3−2ℓ)η) . (2.10)

Finally, expressingT(u) from (2.3) through the corresponding eigenvalueQ(u) one arrives to the
formula

Tk(u) = Q(u−kη)Q(u+kη)
k−1

∑
ℓ=0

f(u+(2ℓ−k+1)η)

Q(u+(2ℓ−k)η)Q(u+(2ℓ−k+2)η)
, (2.11)

valid for k = 1,2, . . . ,∞. Note, that the Bethe Ansatz equations (2.4) guarantee that all the higher
Tk(u) with k ≥ 3 are entire functions ofu as well asT(u). It is worth noting that these functions
are actually eigenvalues of the “higher” transfer matrices, obtained through the algebraic fusion
procedure [20]. In our analytic approach this information is, of course, lost. Nevertheless it will
be useful to have in mind that the indexk in the notationTk(u) refers to the dimension of the
“auxiliary” space in the definition of the corresponding transfer matrix. Another convenient scheme

6
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of notation for higher transfer matrices (used, e.g., in [10]) is based on (half-)integer spin labelsj,
such thatk = 2 j +1.

In a generic case Eq.(2.3) has two linear independent “Bloch wave” solutionsQ±(u), defined
by their quasi-periodicity properties,

Q±(u+π) = e±iϕQ±(u), (2.12)

where the exponentϕ depends on the eigenvalueT(u). These solutions satisfy the quantum Wron-
skian relation

2i W(ϕ) f(u) = Q+(u+η)Q−(u−η)−Q+(u−η)Q−(u+η) , (2.13)

whereW(ϕ) does not depend onu. Indeed, equating the two alternative expressions forT(u),

T(u)Q+(u) = f(u−η)Q+(u+2η)+ f(u+η)Q+(u−2η) , (2.14)

and

T(u)Q−(u) = f(u−η)Q−(u+2η)+ f(u+η)Q−(u−2η) , (2.15)

and writingW(ϕ) asW(ϕ|u) (to assume its possibleu-dependence, which cannot be ruled out just
from the definition (2.13)) one getsW(ϕ|u+ η) = W(ϕ|u−η). On the other hand, Eqs.(2.13),
(2.2) and (2.12) imply a different periodicity relationW(ϕ|v+ π) = W(ϕ|v). For generic realη ,
these two periodicity relations can only be compatible ifW(ϕ|u) is independent ofu,

W(ϕ|u) ≡ W(ϕ) . (2.16)

Whenη andϕ are in general position, the eigenvaluesQ±(u) are locally analytic functions ofη ,
therefore, by continuity, Eq.(2.16) at genericϕ holds also whenη/π is a rational number. However,
whenϕ takes special values (for example, in the symmetric 8-vertex model) Eq.(2.16)for rational
η/π cannot be established by the analytic arguments only.

Obviously, the condition (2.12) definesQ±(u) up to arbitraryu-independent normalization fac-
tors. Using this freedom, it is convenient to assume the normalization3 such that neither ofQ±(u)

vanishes identically (as a function ofu) or diverges at any value ofϕ . Then the quantum Wronskian
W(ϕ) will take finite values, but still can vanish at certain isolated values of the exponentϕ . These
values are calledsingular in the sense that there is only one quasi-periodic solution (2.12), while
the second linear independent solution of (2.3) does not possess the simple periodicity properties
(2.12). As argued in [9], the singular exponents take values in the “dangerous” set

ϕdang= kπ +
π2

2η
ℓ , k, ℓ ∈ Z . (2.17)

However, each eigenvalue has its own set of singular exponents, beinga subset of (2.17).

3In the context of the 8V/SOS-model this is the most natural normalization. The eigenvaluesQ±(u) are factorized
in products of theta functions and the variation ofϕ only affects positions of zeroes. Obviously, the transfer matrix
eigenvalues,T(u), do not have any singularities inϕ .

7
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Evidently,Q(u) in (2.11) can be substituted by any of the two Bloch solutionsQ±(u), so there
are two alternative expression for eachTk(u). Further, multiplying (2.14) and (2.15) byQ−(u−2η)

andQ+(u−2η) respectively, subtracting resulting equations and using (2.13) one obtains

2i W(ϕ)T(u) = Q+(u+2η)Q−(u−2η)−Q+(u−2η)Q−(u+2η) . (2.18)

The last result, combined with the determinant formula (2.8), gives

2i W(ϕ)Tk(u) = Q+(u+kη)Q−(u−kη)−Q+(u−kη)Q−(u+kη), (2.19)

wherek = 0,1,2, . . . ,∞.
All the functional relations presented above are general corollaries ofthe TQ-equation (2.2),

(2.3).

2.3 Rational values ofη

Let us now assume that

2Lη = mπ, 1≤ m≤ L−1, L ≥ 2, (2.20)

wheremandL are mutually prime integers. Evidently,

2kη 6= 0 (modπ), 1≤ k≤ L−1 . (2.21)

Combining the expression (2.11) with (2.2) and (2.12), one immediately obtains the following
functional relation,

TL+k(u) = 2cos(mϕ)Tk(u+ 1
2mπ)+TL−k(u), k = 1,2, . . . . (2.22)

which shows that, for the rationalη of the form (2.20), all higherTk(u) with k ≥ L are the linear
combinations of a finite number of the lowerTk(u) with k≤ L. This relation is a simple corollary
of the TQ-equation. It always holds for the rational values ofη and does not require the existence
of the second Bloch solution in (2.12) (indeed, Eq.(2.22) is independent of the sign ofϕ). Setting
k = 1 in (2.22) one obtains

TL+1(u) = 2cos(mϕ) f(u+ 1
2mπ)+TL−1(u) . (2.23)

This allows one to bring Eq.(2.5) withk = L to the form

TL(u+η)TL(u−η) =
(
f(u+ 1

2mπ)+eimϕ TL−1(u)
)(

f(u+ 1
2mπ)+e−imϕ TL−1(u)

)
(2.24)

where the periodicity (2.2) of the functionf(u) was taken into account. Thus, for the rationalη , the
equations (2.5) withk = 2,3, . . . ,L−1 together with Eq.(2.24) form a closed system of functional
equations for a set ofL−1 eigenvalues{T(u),T3(u), . . . ,TL(u)}. Given that allTk(u) with k≥ 3
are recursively defined throughT(u), this system of equation leads to a single equation involving
T(u) only. Indeed, substituting the determinant formulae (2.8) into (2.23) one obtains

det
∥∥∥Mab(u)

∥∥∥
1≤a,b≤L

= 0 , (2.25)

where theL by L matrix reads

Mab(u) = Mab(u)−ω δa,1 δb,L f(u−3η)−ω−1δa,L δb,1 f(u+η) (2.26)

with Mab(u) given by (2.9) andω = e±imϕ .

8
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2.3.1 Non-zero quantum Wronskian

Continuing the consideration of the rational case (2.20), let us additionally assume that both
quasi-periodic solutions (2.12) exist and that their quantum Wronskian (2.13) is non-zero. It is
worth noting that the functionsQ±(u) in this case cannot containcomplete exact strings. A com-
plete exact string (or, simply, acomplete string) is a ring ofL zeroesu1, . . . ,uL, where each consec-
utive zero differs from the previous one by 2η , closing over the periodπ,

uk+1 = uk +2η , k = 1, . . . ,L, uL+1 = u1 (modπ) . (2.27)

It is easy to see that any such string manifests itself as a factor in the RHS of (2.13), but not in its
LHS (unless, of course,W(ϕ) = 0).

It follows from (2.12) that

Q±(u+mπ) = e±imϕQ±(u) . (2.28)

Using (2.19) and (2.20) one easily obtains the two equivalent relations,

e+imϕ Tk(u)+TL−k(u+ 1
2mπ) = C(ϕ) Q+(u+kη)Q−(u−kη) , (2.29a)

and
e−imϕ Tk(u)+TL−k(u+ 1

2mπ) = C(ϕ) Q+(u−kη)Q−(u+kη) , (2.29b)

wherek = 0,1, . . . ,L and

C(ϕ) =
sin(mϕ)

W(ϕ)
. (2.30)

In particular, fork = 0 one gets,

TL(u+ 1
2mπ) = C(ϕ) Q+(u)Q−(u) . (2.31)

Quote also one simple but useful4 consequence of (2.29),

log
Q+(u+kη)

Q−(u+kη)
− log

Q+(u−kη)

Q−(u−kη)
= log

(
e+imϕ Tk(u)+TL−k(u+ 1

2mπ)

e−imϕ Tk(u)+TL−k(u+ 1
2mπ)

)
(2.32)

This first-order finite difference equation relates the ratioQ+/Q− with the eigenvalues of the
(higher) transfer matrices.

Introduce the meromorphic functions

Ψ±(u) = e±imϕ
L−1

∑
ℓ=0

f(u+(2ℓ+1)η)

Q±(u+2ℓη)Q±(u+(2ℓ+2)η)
, (2.33)

such that

TL(u+ 1
2mπ) =

(
Q+(u)

)2
Ψ+(u) =

(
Q−(u)

)2
Ψ−(u) . (2.34)

4Namely this relation withk = 1 was used in [21] to show that for rational values ofη the expression for the
non-linear mobility for the quantum Brownian particle in a periodic potential obtained in [9] exactly coincide with that
of [22] found from the thermodynamic Bethe Ansatz.
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With this definition all the relations (2.29) reduce to a single relation which again can be written in
two equivalent forms

Ψ+(u) = C(ϕ)
Q−(u)

Q+(u)
, Ψ−(u) = C(ϕ)

Q+(u)

Q−(u)
. (2.35)

Obviously,

Ψ+(u)Ψ−(u) =
(
C(ϕ)

)2
,

Ψ+(u)

Ψ−(u)
=
(Q−(u)

Q+(u)

)2
. (2.36)

2.3.2 The RSOS regime and its vicinity

Further reduction of the functional relation in the rational case (2.20) occurs for certain special
values of the field from the set

mϕ = (r +1)π, r = 0,1,2, . . . . (2.37)

Consider the effect of varyingϕ in the relation (2.31). The eigenvalueTL(u) in the LHS will
remain finite, so as the eigenvaluesQ±(u) in the RHS. The latter also do not vanish identically (as
functions ofu) at any value ofϕ (see the discussion of our normalization assumptions before (2.17)
above). Therefore the coefficientC(ϕ), defined in (2.30), is always finite. This means that in the
rational case (2.20), the quantum Wronskian,W(ϕ), can only vanish at zeroes of the numerator in
(2.30). However, the converse is not true:W(ϕ) does not necessarily vanish whenC(ϕ) = 0. Here
we are interested in this latter case where

C(ϕ) = 0, W(ϕ) 6= 0 (2.38)

with ϕ from the set (2.37). By definition we call it theRSOS regime. The relations (2.29) and
(2.31) reduce to

Tk(u) = (−1)r TL−k(u+ 1
2mπ), k = 1, . . . ,L−1, (2.39a)

and

TL(u) = 0. (2.39b)

All these relations can be written as a single relation (in two equivalent forms involving onlyQ+(u)

or Q−(u) respectively),

Ψ+(u) = Ψ−(u) = 0, (2.40)

with Ψ±(u) defined by (2.33).

The special “truncation” relations (2.39), exactly coincide with those appearing in the RSOS-
model [18]. These were obtained [23, 24] by the algebraic fusion procedure [25] and hold for
all eigenvalues of the RSOS model. The above analysis shows thatall eigenvalues of the RSOS
model are non-singular. The quantum Wronskian of the Bloch solutions (2.12) is always non-zero
(otherwise the coefficientC(ϕ) in (2.29) would not have vanished). For this reason the solutions of
the Bethe Ansatz equations for the RSOS model cannot contain complete strings. Since, as argued
in [14] the complete strings are necessary attributes of degenerate states,one arrives to a rather
non-trivial statement:the spectrum of the transfer matrix in the RSOS model is non-degenerate.

10
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Consider now the vicinity of the RSOS regime, whenη andϕ are approaching their limiting
values given by (2.20) and (2.37) respectively. Interestingly, one can express someη- and ϕ-
derivatives

∂ηTk(u) =
∂

∂η
Tk(u|η ,ϕ), ∂ϕTk(u) =

∂
∂ϕ

Tk(u|η ,ϕ) , (2.41)

calculated at the “RSOS point”,

(η , ϕ) = (mπ/2L, π(r +1)/m) , (2.42)

in terms of the corresponding values ofQ±(u) and their first orderu-derivatives

Q′
±(u) =

∂
∂u

Q±(u|η ,ϕ) . (2.43)

Using (2.19) one obtains,

∂η

[
Tk(u)− (−1)r TL−k(u+mπ/2)

]
+L∂vTk(u) =

=
L

iW(ϕ)

[
Q′

+(u+kη)Q−(u−kη)−Q+(u−kη)Q′
−(u+kη)

]
,

∂ϕ

[
Tk(u)− (−1)r TL−k(u+mπ/2)

]
=

=
m

2W(ϕ)

[
Q+(u+kη)Q−(u−kη)+Q+(u−kη)Q−(u+kη)

]
,

(2.44)

where the expressions in the RHS are calculated directly at the point (2.42). According to the
definitions (2.6),T0(u) andT1(u) do not depend onη andϕ at all, therefore, one can expressη-
andϕ-derivatives ofTL−1(u) andTL(u) at the RSOS point (2.42) in terms of the of valuesQ±(u)

andQ′
±(u).

2.4 Zero field case

Consider now the zero field limitϕ = 0. Let us return to the case of an irrationalη/π where
the spectrum of the transfer matrix is non-degenerate. The eigenvaluesQ±(u), corresponding to the
same eigenstate smoothly approach the same value atϕ = 0. Moreover, adjusting aϕ-dependent
normalization ofQ±(u) one can bring their smallϕ expansion to the form

Q±(u) = Q0(u)∓ϕ Q0(u)/2+O(ϕ2), ϕ → 0 , (2.45)

where

Q0(u) = Q±(u)|ϕ=0, Q0(u) = −2
dQ+(u)

dϕ

∣∣∣
ϕ=0

= 2
dQ−(u)

dϕ

∣∣∣
ϕ=0

. (2.46)

From (2.12) it follows that

Q0(u+π) = Q0(u), Q0(u+π) = Q0(u)+2iQ0(u) . (2.47)

It it easy to see that the quasi-periodic part ofQ0(u) is totally determined byQ0(u),

Q0(u) =
2iu
π

Q0(u)+Q
(per)
0 (u) . (2.48)

11
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However, the periodic part

Q
(per)
0 (u+π) = Q

(per)
0 (u), (2.49)

can only be determined up to an additive term proportional toQ0(u). Indeed, consider the effect of
an inessential normalization transformation

Q±(u) → e±αϕQ±(u) , (2.50)

whereα is a constant. The value ofQ0(u) remains unchanged while the periodic part ofQ0(u)

transforms as
Q

(per)
0 (u) → Q

(per)
0 (u)−2α Q0(u) . (2.51)

The quantum Wronskian relation (2.13) reduces to

Q0(u+η)Q0(u−η)−Q0(u−η)Q0(u+η) = 2i Ẇ(0) f(u) , (2.52)

where

W′(0) =
dW(ϕ)

dϕ

∣∣∣
ϕ=0

. (2.53)

The expression (2.19) now becomes

2iW′(0)Tk(u) = Q0(u+kη)Q0(u−kη)−Q0(u−kη)Q0(u+kη) . (2.54)

It is easy to see that atϕ = 0 the TQ-equation (2.3) is satisfied ifQ(u) there is replaced by either
of Q0(u) or Q0(u). The same remark applies to the more general equation (2.11).

The Bethe Ansatz equations (2.4) for the zeroes ofQ0(u) are the standard equations [2] arising
in the analysis of the symmetric 8V-model. Exactly the same equations also hold forthe zeroes
of Q0(u), but their usefulness is very limited. Even thoughQ0(u) is an entire function ofu, it
lacks the simple periodicity (cf. (2.47)) and, therefore, does not possess any convenient product
representation. Moreover, the transformation (2.51) affects the positionof zeros ofQ0(u), making
them ambiguous. All this renders the Bethe Ansatz equations forQ0(u) useless. Fortunately, these
equations are not really required for determination ofQ0(u). Once the zeros ofQ0(u) are known
the functionQ0(u) is explicitly calculated from (2.52).

Additional functional relations arise in the rational case (2.20). These relations are straightfor-
ward corollaries of (2.29), (2.31) and (2.35). For instance, Eq.(2.29)gives

Tk(u)+TL−k(u+mπ/2) = C(0) Q0(u+kη)Q0(u−kη), ϕ = 0 , (2.55)

where
C(0) = m/W′(0) . (2.56)

All these relations (with differentk) can be equivalently re-written as a single relation

L−1

∑
ℓ=0

f(u+(2ℓ+1)η)

Q0(u+2ℓη)Q0(u+(2ℓ+2)η)
= C(0), ϕ = 0 , (2.57)

which is theϕ = 0 version of (2.35). Settingk = 0 in (2.55) one gets

TL(u+mπ/2) = C(0)(Q0(u))2, ϕ = 0 . (2.58)

12
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Thus, atϕ = 0 the eigenvalueTL(u+mπ/2) becomes a perfect square. It only hasdoublezeroes,
whose positions coincide with the zeroes ofQ0(u).

As is well known, in the rational case (2.20) the transfer matrix of the 8V-model has a de-
generate spectrum (for sufficiently large values ofN ≥ 2L). We would like to stress here that the
above relations (2.55)–(2.58) hold only fornon-degeneratestates. Actually, the assumption made
in the beginning of this subsection, thatQ+(u) coincides withQ−(u) whenϕ = 0, is true only for
non-degenerate states. Removing this assumption and takingϕ → 0 limit in (2.31), while keeping
η fixed by (2.20), one obtains

TL(u+mπ/2) = C(0)Q+(u)Q−(u), Q± = lim
ϕ→0

Q±(u) . (2.59)

For a degenerate state the eigenvaluesQ+(u) andQ−(u) can only differ by positions ofcomplete
exact strings. This ambiguity does not affect any transfer matrix eigenvaluesTk(u), since the com-
plete strings trivially cancel out from (2.11). In principle, the complete strings can take arbitrary
positions, however, forQ±(u) they take rather distinguished positions. Indeed, due to (2.59), the
zeroes ofQ±(u) manifest themselves as zeroes ofTL(u+mπ/2) which are uniquely defined even
for the degenerate states. From the above discussion it is clear thatTL(u) has either double zeroes
or complete strings of zeroes. Further analysis of the degenerate case iscontained in [16].

2.5 Particular models

So far our considerations were rather general and covered several related models at the same
time. For each particular model, one needs to specify additional properties,namely, (i) the explicit
form of the functionf(u) and (ii) detailed analytic properties of the eigenvaluesQ±(u). In this
Section we will do this for three different models: the 8V/SOS-model, the 6V-model and thec < 1
conformal field theory.

2.5.1 The symmetric eight-vertex model

There are only eight “allowed” vertex configurations, shown in Fig.1, which have non-vanishing
Boltzmann weights. These weights are not arbitrary; they parameterized byonly four arbitrary con-
stantsa,b,c,d,

ω1 = ω2 = a, ω3 = ω4 = b, ω5 = ω6 = c, ω7 = ω8 = d . (2.60)

The remaining eight configurations are forbidden; their Boltzmann weight iszero. Following [2]
we parameterize the Boltzmann weightsa, b, c, d as

a = ρ ϑ4(2η |q2) ϑ4(v−η |q2) ϑ1(v+η |q2),

b = ρ ϑ4(2η |q2) ϑ1(v−η |q2) ϑ4(v+η |q2),

c = ρ ϑ1(2η |q2) ϑ4(v−η |q2) ϑ4(v+η |q2), (2.61)

d = ρ ϑ1(2η |q2) ϑ1(v−η |q2) ϑ1(v+η |q2),

Note, that our notations are slightly different from those in Baxter’s original papers [2–5]. The
variablesq, η , v andρ used therein (hereafter denoted asqB, ηB, vB andρB) are related to our
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ω1 ω2 ω3 ω4

ω5 ω6 ω7 ω8

Figure 1: Eight allowed vertex configuration and their Boltzmann weights. Thin lines represent the
“spin-up” states and the bold lines represent the “spin-down” states of the edge spins

variablesq, η , v andρ as

q2 = qB = e−πK
′
B/KB, η =

πηB

2KB
, v =

πvB

2KB
, ρ = ρB , (2.62)

whereKB andK′
B are the complete elliptic integrals associated to the nomeqB. Here we the fix the

normalization of the Boltzmann weights as

ρ = 2 ϑ2(0|q)−1 ϑ4(0|q
2)−1 , (2.63)

where
ϑi(u|q), i = 1, . . . ,4, q = eiπτ , Imτ > 0, (2.64)

are the standard theta functions [7] with the periodsπ andπτ.
We denote the transfer matrixT and theQ-matrix from [2,3] asTB(v) andQB(v), remembering

that our variablev is related tovB by (2.62). Below we often use a shifted spectral parameter

u = v−πτ/2 , (2.65)

simply connected to the variablev in (2.62). We also consider the re-defined matrices

T(u) = (−i q−1/4)N eivN TB(v), Q(u) = eivN/2QB(v) (2.66)

whereN is the number of columns of the lattice. The eigenvaluesT(u) andQ(u) of these new
matrices enjoy the following periodicity properties

T(u+π) = T(u), T(u+πτ) = (−q)−N e−2iuN T(u) , (2.67)

and

8V-model: Q(u+π) = seiπN/2Q(u), Q(u+2πτ) = q−2N e−2iNuQ(u) . (2.68)
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Here the “quantum number”s= ±1, is the eigenvalue of the operatorS , defined as

S = σ (1)
3 ⊗σ (2)

3 ⊗·· ·⊗σ (N)
3 , R = σ (1)

1 ⊗σ (2)
1 ⊗·· ·⊗σ (N)

1 . (2.69)

This operator always commutes withT(u) andQ(u).

Baxter’s TQ-equation (Eq.(4.2) of [2] and Eq.(87) of [3]) now takes the form (2.3) with

f(u) =
(
ϑ4(u|q)

)N
. (2.70)

The main reason for the above redefinitions is to bring the TQ-equation to the universal form (2.3),
whereT(u) andf(u) are periodic functions ofu (see Eq.(2.2)) for an arbitrary, odd or even, number
of sites,N. This also helps to facilitate the considerations of the scaling limit in our next paper [26].

Comparing the first equation in (2.68) with the periodicity of the Bloch solutions (2.12) one
concludes that the exponentsϕ read

ϕ(8V) =





0 (modπ), N = even

π
2

(modπ), N = odd
(2.71)

Thus, for an evenN the exponents of the symmetric 8V-model, with the cyclic boundary conditions,
always belong to the “dangerous” set (2.17). For an oddN the exponents (2.71) fall into this set only
for certain rational values ofη/π. A notable example is the caseη = π/3, considered in [26–28].

The imaginary period relations in (2.67) and (2.68) certainly deserve a detailed consideration.
First, note that in (2.68) we only stated the periodicity with respect to thedoubleimaginary period
2πτ, which always holds in all cases when the 8V-model has been exactly solved5. Actually,
this is a rather overcautious statement which can be easily specialized further. For the following
discussion assume a generic (i.e., irrational) value ofη/π. Then for evenN the Bloch solutions
(2.12) always coincide (just as in the zero-field case of Sect.2.4). For odd N there are always
two linearly independent Bloch solutions for each eigenvalueT(u), one withs= +1 and one with
s= −1 (remind that in this case each eigenvalue of the transfer matrix is double-degenerate [29]).
The existence of the “imaginary” period imposes rather non-trivial restrictions on the properties of
the eigenvalues. Indeed, the second relation in (2.67) immediately implies that thefunction

Q̃(u) = r qN/2eiuNQ(u+πτ) (2.72)

wherer is a constant, satisfies the TQ-equation (2.3) as well asQ(u). Further, ifQ(u) is a Bloch
solution

Q(u+π) = eiϕ Q(u) (2.73)

with someϕ thenQ̃(u) is also such a solution with the exponent

ϕ̃ = ϕ +Nπ (mod 2π). (2.74)

5Ref. [2] applies to rationalη and arbitrary values ofN, while ref. [3] applies to arbitraryη and even valuesN. It
is reasonable to assume that (2.68) holds in general, however, the case of an arbitraryη and an oddN has never been
considered.
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Obviously, there are two options, eitherQ̃(u) is proportional toQ(u) or it is proportional to the
other linearly independent Bloch solution with the negated exponent “−ϕ”. The first option is
realized for evenN,

8V-model,N even: Q(u+πτ) = r q−N/2e−iuNQ(u),

(2.75)
The constantr = ±1 is then the eigenvalue of the spin-reversal operatorR defined in (2.69). The
second option requires the exponentϕ to be a half-an-odd integer fraction ofπ, it is realized for
oddN,

8V-model,N odd: Q±(u+πτ) = q−N/2e−iuNQ∓(u).

(2.76)
The above relations (2.75) and (2.76) were derived for irrational values ofη/π, however they

also hold in the rational case (2.20), if no additional degeneracy of the eigenvalues of the trans-
fer matrix occurs (apart from the one related with the spin-reversal symmetry for odd N). The
functional relation (2.31) can be then written in the form

TL(u+ 1
2mπ) = AeiNuQ+(u)Q+(u+πτ) (2.77)

whereA is a constant. This relation is identical to the one conjectured in [15]6.

2.5.2 The solid-on-solid model

The main idea of this paper is to study deformations of the eigenvaluesT(u) andQ(u) under
continuous variations of the exponentsϕ from their discrete values (2.71). As explained in the
Introduction the resulting eigenvalues correspond to the unrestricted SOS-model. We will therefore
assume the more general periodicity relations (1.6) for the Bloch wave solutionsQ±(u), which hold
for both odd and evenN,

SOS-model: Q±(u+π) = e±iϕ Q±(u), Q±(u+2πτ) = q−2N e±ψ e−2iuN Q±(u),

(2.78)
where the exponentϕ is arbitrary. The second exponentψ is not an independent parameter, it is
determined byϕ (see the discussion in Section 4 of [16]).

The second relation in (2.78) can be further refined for evenN

SOS-model, N even: Q±(u+πτ) = q−N/2e±ψ/2e−iuN Q±(u), (2.79)

whereas the periodicity ofT(u) remains the same (2.67) as in the 8V-model. However, there is
no a general SOS-model analog of (2.76), as it is specific to half-odd exponents only. As a result
Eq.(2.67) is replaced with

SOS-model, N odd: T(u+π) = T(u), T(u+2πτ) = q−4N e−4iuN T(u) . (2.80)

Strictly speaking the use of the term “SOS-model” here is justified for evenN only [4]. Nonethe-
less, we will use this term to indicate arbitrary values of the field parameterϕ in general.

6The conjecture of [15] also covers a special case of degenerate states for rational values ofη , where the relation
(2.76) holds for the eigenvalues of theQ-matrix of [2] for evenN.

16



P
o
S
(
S
o
l
v
a
y
)
0
0
1

Functional relations in the eight-vertex model Vladimir V. Bazhanov

2.5.3 Six-vertex model in a horizontal field

The allowed vertex configurations of the six-vertex model form a subsetof those shown in
Fig.1. Namely, the Boltzmann weightsω7 andω8 are equal to zero. The remaining six weights
will be parameterized as

ω1 = e+H−iη a, ω2 = e−H−iη a, ω3 = e+H+iη b,

ω4 = e−H+iη b, ω5 = eiu−2iη c, ω6 = eiu−2iη c,
(2.81)

whereH stands for the horizontal field

a = h(u+η), b = h(u−η), c = h(2η), h(u) = 1−e2iu . (2.82)

The above parametrization is simply related to that given in Eq.(12) of [14] (where the vertical field
V is set to zero). The TQ-equation (eq.(11) of [14]) takes the form (2.2), (2.3), where

f(u) = (h(u))N . (2.83)

The Bloch solutions (2.12), corresponding to the eigenvectors of the transfer matrix withn “up-
spins”, can be written as

Q±(u) = e±iϕu/π A±(e2iu) , (2.84)

whereA+(x) andA−(x) are polynomials inx of the degreesn and(N−n), respectively, and

ϕ =
iπHN

2η
+

π
2

(N−2n) . (2.85)

Introduce new variables7

x = e2iu, q = e2iη , z= e2iηϕ/π . (2.86)

Regardingx as a new spectral parameter instead ofu and writingT(u) andf(u) asT(x) andf(x),
respectively, one can rewrite (2.3) in the form

T(x)A±(x) = z±1 f(q−1x)A±(q2x)+z∓1 f(qx)A±(q−2x) , (2.87)

where the polynomialsA±(x) are defined in (2.84). This form is particularly convenient for the
6V-model.

2.5.4 Conformal field theory

The continuous quantum field theory version of Baxter’s commuting transfer matrices of the
lattice theory was developed in [9, 10, 30]. These papers were devotedto the c < 1 conformal
field theory (CFT). The parametersβ andp used there define the central chargec and the Virasoro
highest weight∆,

c = 1−6(β −β−1)2, ∆ =

(
p
β

)2

+
c−1
24

. (2.88)

7The parameterq should not be confused with the nomeq in the 8V-model
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They are related to ourη andϕ as

2η = β 2π, ϕ = 2π p/β 2 . (2.89)

The multiplicative spectral parameterλ used in those papers is related to our variableu as

λ 2 = −e−2iu . (2.90)

The eigenvalues of the CFTQ-operatorsQ±(u) are entire functions of the variableu, satisfying the
periodicity relation (2.12). Their leading asymptotics at large positive imaginaryu read

logQ±(u) =
A

cos( πη
π−2η )

eiπu/(π−2η) +O(1), u→ +i∞, |Reu| < π/2 , (2.91)

whereA is a known constant [9]. Here we assumed thatη does not belong to the set

η =
π
2

(
1−

1
2k

)
, k = 1,2, . . . ,∞ . (2.92)

At these special values ofη the theory contains logarithmic divergences and the asymptotics (2.91)
should be replaced with

logQ±(u) = 2i(−1)k Aue2iuk/π +Ce2iuk +O(1), u→ +i∞, |Reu| < π/2 , (2.93)

whereC is a regularization-dependent constant. The factorization formulae read8

Q±(u) = e±iuϕ/π A±(u), A±(u) =
∞

∏
k=1

(
1−e−2i(u−u±k )

)
, (2.94)

where the zeroesu±1 ,u±2 , . . . accumulate at infinity along the straight line

u = π/2+ iy, y→ +∞ . (2.95)

Finally, the functionf(u) in the case of CFT should be set to one9,

f(u) ≡ 1 . (2.96)

With these specializations the functional relations given above become identical to those previously
obtained in [9,10,30].

2.6 Related developments and bibliography

The literature on the functional relation in solvable models is huge; thereforeit would not be
practical to mention all papers in the area. Our brief review is restricted onlyto a subset of publica-
tions directly related to the eight-vertex/six-vertex models and associated models of quantum field
theory.

8Here we assumed that 0< η < π/4. Whenπ/4 < η < π/2 the product in (2.94) should contain the standard
Weierstrass regularization factors [9].

9Again, we have assumed thatη does not fall into the set (2.92), otherwisef(u) = exp(4Aηe2iuk/π).
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2.6.1 Transfer matrix relations

In the above presentation the entire functionsTk(u) with k≥ 3 were defined by the recurrence
relation (2.5), which allows one to express them solely in terms ofT(u), as in (2.8). No other addi-
tional properties ofTk(u) were used. However, as is well known, these functions are eigenvalues of
the higher transfer matrices, usually associated with the so-called fusion procedure. This algebraic
procedure provides a derivation of the functional relations for the higher transfer matrices based on
decomposition properties of products of representations of the affine quantum groups. Originally,
all these “transfer matrix relations” were obtained essentially in this way. We would like to stress
that the logic of these developments was exactly opposite to that employed in ourreview. The
goal was to find new techniques, independent of the TQ-relation, ratherthan to deduce everything
from the latter. The first important contribution was made by Stroganov [31]. He gave an algebraic
derivation of the first nontrivial relation in (2.5) (withk = 2),

T(u+η)T(u−η)− f(u+2η) f(u−2η) = O
(
(u−u0)

N
)

(2.97)

in the vicinity of the pointu = u0 where the transfer matricesT(u0 + η) andT(u0−η) become
shift operators. Remarkably, this single relation alone contains almost all information about the
eigenvaluesT(u). To illustrate this point consider, for instance, the 6V-model. For a chain ofthe
lengthN each eigenvalueT(u) is a trigonometric polynomial of the degreeN, determined byN+1
unknown coefficients. The mere fact that the LHS of (2.97) has anN-th order zero immediately
givesN algebraic equations for these unknowns. Similar arguments, obviously, apply to the 8V-
model. One additional equation is usually easy to find from some elementary considerations (e.g.,
from the largeu asymptotics in the 6V-model). Further, in the thermodynamic limit,N → ∞ with u
kept fixed, Eq.(2.97) becomes a closed functional relation for the eigenvalues (its RHS vanishes).
This is the famous “inversion relation” [31–33]. With additional analyticity assumptions it can be
effectively used to calculate the eigenvalues of the transfer matrix atN = ∞. Recently, Eq.(2.97)
was used to derive a new non-linear integral equation [34], especially suited for the analysis of
high-temperature properties of lattice models.

Soon after [31] Stroganov derived [35] a particular case of (2.23) for the 6-vertex model with
η = π/6 (i.e., forL = 3 andm= 1). He also found that for the case of an odd number of sites10

Eq.(2.25) takes the form

T(u−2η)T(u)T(u+2η)= f(u)f(u+2η)T(u−2η)+f(u−2η)f(u+2η)T(u)+f(u−2η)f(u)T(u+2η) .

(2.98)
He then used this equation to obtain Bethe Ansatz type equations for the zeroes of T(u) and to
reproduce Lieb’s celebrated result [36] for the residual entropy ofthe two-dimensional ice. Unfor-
tunately, these results were left unpublished.

The ideas of [31, 35] were further developed in theanalytic Bethe Ansatz[37] where the TQ-
equation (or an analogous equation) is used essentially as a formal substitution to solve the transfer
matrix functional equations. The notion of “higher” or “fused” R-matriceswas developed in [20]
from the point of view of representation theory. These R-matrices were calculated in [38] for the
6V-model, in [39–42] for the 8V-model and in [25] for the SOS-model. Thefunctional relations

10In our notations this corresponds toϕ = π/2 (modπ).
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(2.7) were given in [38] for the 6V-model and in [24] for 8V/SOS-model.The determinant identity
(2.25) was discussed in [24, 43]. An algebraic derivation of the truncation relations (2.39) for the
RSOS model [18] was given in [24]. A particular case of this truncation for the hard hexagon
model [44] was previously discovered in [23]. An algebraic derivationof (2.23) in the zero-field
six-vertex model is given in [45]. The idea of calculation ofϕ- andη-derivatives (2.44) at the
RSOS point given in Sect.2.3.2 is borrowed from [46] and [47].

Remarkably, the same functional equations (2.5) (along with all their specializations in the
rational case) arise in a related, but different context of the thermodynamic Bethe Ansatz [48];
see [49] for its application to the 8V-model. Usually this approach in lattice modelsis associ-
ated with non-linear integral equations. Here we refer to the functional form of these equations
discovered in [50]. Further discussion of the correspondence of thefunctional relation method
with the thermodynamic Bethe Ansatz and its generalizations for excited states can be found
in [19,30,51–54].

2.6.2 Q-matrix and TQ-relations

As noted before, a full algebraic theory of theQ-matrix in the 8V-model is not yet developed.
The idea of the construction of theQ-matrix in terms of some special transfer matrices belongs to
Baxter. It is a key element of his original solution of the 8V-model. Readersinterested in details
should familiarize themselves with the Appendix C of [2] (along with other four appendices and, of
course, the main text of that paper, which contain a wealth of important information on the subject).
The results of [2] only apply for certain rational values ofη . The construction of [2] and the set of
allowed values ofη were recently revised in [15]. A different construction for theQ-matrix, which
works for an arbitraryη , was given [4].

There are many related solvable models connected with the R-matrix of the 8V-model but
having differentL -operators and differentquantum spaces. The general structure of the functional
relations in all such models remains the same. In particular, they all possess aTQ-relation (though
it may contain different scalar factors and require different analytic properties of the eigenvalues).
In [4] Baxter also presented an extremely simple explicit formula for the matrix elements of the
Q-matrix for the zero-field 6V-model in the sector withN/2 “up-spins” (the half filling). How-
ever, no such expression is known for the 8V-model, or the other sectors of the 6V-model. The
quantum space of the 6V-model is build from the two-dimensional highest weight representation
of Uq(sl2)) at every site of the lattice. Curiously enough, if this representation is replaced with the
general cyclic representation (arising at roots of unity,qL = 1) then all matrix elements of theQ-
matrix can be explicitly calculated [55] as a simple product involving only a two-spin interaction11.
Remarkably, the resultingQ-matrix exactly coincides with the transfer matrix of the chiral Potts
model [56–58]; this allows one to view the latter as a “descendant of the six-vertex model” [55].
The generalization of this construction to the eight-vertex and the Kashiwara-Miwa model [59] is
considered in [60]. Further developments of the theory of theQ-matrix and related topics (along
with many important applications to various solvable models) can be found in [61–70].

11The factorization of the matrix elements of theQ-matrix is typical for quantum space representations without
highest and lowest weights.
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Baxter’s original idea of the construction ofQ-operators which utilizes traces of certain mon-
odromy matrices was extended in [9,10] for trigonometric models related with thequantum affine
algebraUq(ŝl(2)). It turned out that in the trigonometric case the situation is considerably sim-
pler than for the 8-vertex model and theQ-operators coincide with some special transfer matrices.
The correspondingL -operators are obtained as specializations of the universalR-matrix [71] to
infinite-dimensional representations of theq-oscillator algebra in the “auxiliary space”. Although
the calculations of [9,10] were specific to the continuous quantum field theory, the same procedure
can readily be applied to lattice models (see, e.g., [72–75] for the corresponding results for the 6V-
model). In the case of the 6V-model with non-zero horizontal field this construction leads to two
Q-matrices12, whose eigenvaluesQ± are precisely the “Bloch wave” solutions of the TQ-equation.

Note that functional relations which involves bi-linear combinations ofQ±, namely (2.19),
(2.29) and (2.31) are universal in the sense that they do not involve themodel-specific function
f(u). These relations were derived in [9, 10] in the context of the conformalfield theory. Similar
relations previously appeared in the chiral Potts model [55, 76, 77], though the correspondence is
not exact because there is no an additive spectral parameter in that model. Eq.(2.19) in the eight-
vertex and the XXX-models was found in [11] and [78]. A special case (2.77) of the relation (2.31)
involving Baxter’s originalQ-matrix [2] for the 8V-model was conjectured in [15]. Another special
(zero-field) case (2.55) of the same relation (2.31) in conformal field theory was conjectured in [53].

3. Conclusion

In this paper we developed some new ideas in the classical subject of Baxter’s celebrated
eight-vertex and solid-on-solid models. Our primary observation concerns a (previously unnoticed)
arbitrary field parameter in the solvable solid-on-solid model. This parameter isanalogous to the
horizontal field in the six-vertex model. This fact might not be so surprisingto experts, since all
the hard work has been done before and one just needs to lay side-by-side the papers [5,12,13] to
realize that an arbitrary field parameter is, in fact, required to describe thecontinuous spectrum of
the unrestricted solid-on-solid model.

The introduction of an arbitrary field allowed us to develop a completely analytictheory of
the functional relations in the 8V/SOS-model. As demonstrated in [16], the solutions of the Bethe
Ansatz equations are multivalued functions of the field variable, having algebraic branching points.
It is plausible that many (if not all) eigenvalues of the transfer matrix can be obtained from each
other via analytic continuation in this variable.

It appears that the analytic structure of eigenvalues in the eight-vertex/SOS model certainly
deserves further studies. Somewhat simpler (but still very interesting) structure arises in the six-
vertex model and, especially, in thec< 1 conformal field theory [79]. In the latter case the Riemann
surface of the eigenvalues closes within each level subspace of the Virasoro module.
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