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1. Introduction

The eight vertex model was introduced into physics by Bapitpas the natural generalization of
the six vertex model which satisfies the star triangle equatand because the six vertex model is
solved by the same ansatz for eigenvectors which was intemtby Bethe [2] in his famous 1931
computation of the eigenvectors and eigenvalues of theojsiot Heisenberg chain it is a common
practice of many authors to present the computation of tgerngalues and eigenvectors of the
eight vertex model as a generalization of the methods ofé@dtiteed it is for this reason that the
8 vertex model is the topic of many talks at this conferenasohiog the 75 anniversary of Bethe’s
original paper.

Nevertheless there are several profound distinctions dmtvthe 6 and 8 vertex model which
make the methods used to study the properties of the 8 veddelnaery different from the methods
used in the Bethe’s ansatz solution of the 6 vertex model esepted, for example, in the classic
1967 papers by Lieb [3] and by Sutherland, Yang and Yang [d]tha corresponding 1966 papers
of Yang and Yang [5] for the anisotropic Heisenberg modelrhBgs the most visible of these
differences in solution is that while the Bethe ansatz fer ¢igenvectors of the 6 vertex model
is valid for all values of the crossing parametgr(and the corresponding anisotrofgyof the
anisotropic Heisenberg chain) a very important role fordbktions of the 8 vertex model given
in [1] is played by what is called the “root of unity” conditio

2Ln =2mK+ imzK/ (1.2)

where X and X' are the real and imaginary periods of the quasiperiodictfons which charac-
terize the Boltzmann weights of the 8 vertex model. In patiicthe condition (1.1) is necessary
for the original solution of the eigenvalue problem of theeBtex model transfer matrix of [1] to
hold and for the solution for eigenvectors given in [6]-[B8]Hold it is necessary that the related
root of unity condition

Ln = 2mK +impK’ (1.2)

be imposed. A study of the eigenvalue problem for generiaeslofn is given in [6] and [9]
however none of these classic studies either for roots ¢f anifor generic values revealed all the
properties of the eigenvalue spectrum. In particular it feamd in [10] that the condition (1.1)
is not sufficient and for the method of [1] to hold we must regun (1.1) withm, = 0 that for a
system withN lattice sites in a chain that the case wittodd andm; even must be excluded for
N >L—1if Niseven and for alN if N is odd.

The eigenvectors at generic valuesyhre briefly mentioned in [11],[12], and [13] and in the
recent paper of Bazhanov and Mangazaeev [14] presentes abtiference.

It is the purpose of this paper to present recent progredseistudy of the eigenvalues and
eigenvectors of the 8 vertex model at the roots of unity (vith mp, = 0 andL is even or both.
andm, are odd for even values ®. We found in [10] that one has to distinguish two types of
eigenstates of :

1. singlet states for the nondegenerate eigenvalues.
2. states appearing in multiplets for degenerate eigeesalu
The singlet states are eigenstates of the spin reflectiomtmpeThis should be compared with the
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limiting case of the six vertex model where only a few statél & = 0 are singlets. Furthermore

in the Bethe ansatz treatment of [2]-[5] the eigenvectoth@Hamiltonian are by definition eigen-
vectors of the operatd® and thus fors* # 0 none of the Bethe states can be an eigenstate of the
spin reflection operator.

Little attention has usually been paid to the second cagatdeke fact that depending on the
sizeN and the value of the crossing paramejghe overwhelming majority of states is degenerate.
As an illustration we mention that fod = 12 andn = K/2 there are 128 non degenerate states in
the eigenspace of dimension 4096. This same phenomenog@fei@cies at roots of unity which
are larger than the symmetry required un8ér~ —S occurs in the six-vertex model where it is
explained by the existence of ah loop algebra [15]. The explanation of the multiplets as bgih
weight representations of this algebra based on the aligebethe ansatz of [11] was first given in
[16] and a rigorous proof in terms of representation thesigiven in [17]. A treatment in terms of
the coordinate Bethe ansatz is given in [13].

The more complicated problem of obtaining all degenerajeretates of in the algebraic
Bethe-Ansatz of the eight-vertex model has been solvedhtiyca [18]. A parallel investigation
for the description of the eight-vertex model given in [12Hone in [19, 20].

2. Degenerate eigenvectorsof T in the eight-vertex model.

Our goal is to find a general procedure allowing the congtncif all degenerate eigenstates of the
transfer matrixT. The powerful and elegant algebraic Bethe-Ansatz [11]esdkal tool to develop
the analytic framework in a transparent manner. Furtheertawill allow the interpretation of the
result in the context of symmetry algebras.

We shall first describe the important results obtained in.[Ebr the six vertex model the authors
find that eigenstates df are given by a product dB-operators acting on a reference state. In
the six-vertex model this works for all irrational crossipgrameters. For rational multiples of
1T not all eigenstates are obtained but only those which afeebigweight states of loop algebra
multiplets. To construct the remaining elements of thes#iphets in addition toB-operators the
more complicated creation operators of strings are neéldegse creation operators of strings were
introduced in [16]. Besides being creation operators dafigsrthey have an important algebraic
meaning: They are current operators of the loop algebra stmof the six-vertex model. The
description of the loop-algebra symmetry of the six-verteodel is given in [15].

In the eight-vertex model the situation is more complicatéicst the well developed results [8, 11]
are valid only at roots of unity. In [11] eigenvectors Dfare given by finite sums of products
of B-operators acting on generalized reference states. Likireirsix-vertex model one gets by
this method all singlet states. But unlike the case of theveixex model theB-operators and
the reference states of the eight vertex model depend oniaddifree parameters,t and by
varying these parameters one gets a subspace of dimensgyem taan one for each degenerate
eigenspace. However there still remain a large number téssttates in the multiplets which
cannot be constructed in this way. For the construction edeétmissing eigenstates one needs the
additional string creation operators which were found 8][IT'here are also missing eigenvectors
in the solution of the eight-vertex model by Felder and Vardto [12]. They have been studied by
Deguchi in [19, 20].
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3. Thedimension of degenerate subspacesin the eight-vertex model.

The transfer matriX (v) has the property that it satisfies the famadu@ equation derived in [1]

T(V)Q(V) = [ph(v—n)NQ(v+2n) + [ph(v+n)NQ(v—2n) (3.1)

where
h(v) = ©(0)O(V)H (v). (3.2

and©(v) andH(v) are the standard Jacobi theta functions. It is importanetognize that the
matrix Q(v) in (3.1) is not unique. The origind) matrix was discovered [1] in 1972 under the
condition (1.1) and has been further studied in detail in.[1@® 1973 Baxter constructed [6] a
secondQ-matrix which is different from that of [1] and is defined fogmgeric values of the crossing
parametem. To distinguish between these two rather different matriwve denote them a37»
andQy3. Both matrices have the form

Q(v) = Qr(V)Qx (Vo) (3.3)

whereQg 72 is only defined when (1.1) holds. Like the transfer-mafrix) the matrixQgr(v) is the
trace of a product of local matrices which are in this casezafls x L

[Qr(V)]a|p = TrR(01, B1)SR(02, B2) - - - SR(AN, ) (3.4)

wherea; andf; = +1 and for the casey, =0 in (1.1)

K(a,B)(Vk| = &1 U (VHK—=2KN)T g +& i1 U (VHK+2N)T 5+

3.5
101 UM (V+K)Top +o LA U (V+HK+2Ln)T g (3-5)
forl<k<L,1<I| <L and where
ut(v) = H(V) u(v) = O(v) (3.6)
We have shown in [10] thaDgr 72(Vv) has the (quasi)periodicity properties
Qr72(V+ 2K) = SQr 72(V) (3.7
where
S=03003®---®03
and :
. _ —ITNvV
Qr72(v+2iK") =g Nexp( 7 )Qr72(V) (3.8)

Q72 can be formed in accordance with (3.3) onI)Q;}72 exists.
Whethengﬁ2 exists depends on the sikkof the spin chain. IN is so large that exact complete
strings could exist then as we found in [10]

QrY, does NOT EXIST for reaj if my is even and L is odd.

It exists only for odd mand even or odd L.
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It follows that for oddm; and even or odd the matrixQy; exits. It can be shown that it commutes
with T. From (3.7) and (3.8) it follows that its root structure diff from that 0fQ73. It is shown
in [10] that

Qr2(v) = 7 (g vk)exp(i(ng — v)1v/2K) ﬁh(v— V)
-

X ﬁ H(v—iwj)H(v—iwj—2n)---H(v—iw; —2(L—-1)n) (3.9)
=1

2ng+Ln.=N. (3.10)

ng is the number of Bethe rootg andn_ the number of exad-strings of length_.
Note that i is always even.

Q7> satisfies a functional relation conjectured in [10] and proforL = 2 in [22]:
For N even and eithel even or. andm; odd

e—NT[iV/ZK Q72(V— IK/)

_ AILZj Nv— (2 +1)n) Qra(V)

Qr2(v—=2In)Qz2(v—2(1+1)n)

(3.11)

whereA is a normalizing constant matrix independent/¢fiat commutes witlQ7».
(3.11) determines the complete set of zeros of each eigenedl)7,. So it delivers more informa-
tion than Bethe’ equations (which are contained in (3.1t))letermines the regular roots as well
as the roots appearing in exact strings: If there existsgenealue ofQ7, havingn, exact strings
in its set of zeros with string centers

Ver, Voo (3.12)

then there exist eigenvalues @y, having the same regular roots and strings with centers
Vcl_|_gliK”..-7Van —l—SnLiK/ (313)

for all 2" sets
§=01 i=1---n (3.14)

It follows [18] : The eigenspace of a degenerate eigenvdilieltas the dimension

2n or 2t
It is the purpose of the following sections to construct &leavectors of T in these degenerate
subspaces.
We conclude this section with three remarks:
1.

Recently aQ-matrix has been found [21] for eve¥ which has the same properties @s and
which exists forn = 2mK /L whereQy, does not exist.

Lit is not sufficient to prove this functional equation in théospace oR-invariant states [14]. It is important to
show its validity in the degenerate subspaces .of



An Elliptic Current Operator for the Eight Vertex Model Klaus Fabricius

2.

The matrixQr(u) defined by (3.4)-(3.6) is which is the definition given litdyan [1] only satisfies
the T Qr equation (C22) of [1] when (1.1) holds with, = 0. To extend the working of [1] to the
casemp £ 0 the definitions of all theta functions must be modified asedion[6] for the related
root of unity condition (1.2). The required modification is

O(v) = O(v)explimy(v— K)?/(8KLn)]
H (v) = H(v)expimm(v—K)?/(8KLn)] (3.15)

With the replacements in (3.6) @(v) — ©(v) andH (v) — H(v) the matrixQz(V) of (3.3) will
satisfy theT Q equation (3.1) whenever it exists for gliwhich satisfy (1.1).

3.

In [14] itis claimed in equ. (A.33) that (in Baxter's notatip

Qra(v+iK') = g N4 exp(—Nmv/2K )RQr2(V) (3.16)

where
R=o1@o®- -0

However, the relation (3.16) cannot possibly hold becaifisee recall that the eigenvectors of
Q72(v) are independent of, we see that (3.16) would imply that all eigenvector€X$(v) would
be eigenvectors d® which we demonstrated in [10] is not the case.

To isolate more explicitly the reason why (3.16) fails tochwle note that it follows from the
quasiperiodicity properties ¢ (v) and®(v) that form, = 0 from (3.4)-(3.6)

SR(ZE,B)k,k+1(V+iK/) = f(v)exp(inkn /K)RR(%, B)kk+1(V)
R(+, Bks1k(V+iIK") = f(v)exp(—inkn /K)RKR(E, B)kr1k(V)
KR(+,B)11(V+iK') = F(VRR(E,B)1.1(V)
KR+, B)LL(V+IK) = (=)™ F(VRR(+£, B)LL(V) (3.17)
where .
F(v) = q-l/“exp(—'z%’) (3.18)

The relation (3.16) will follow only if(—1)™ = 1 which requires thaty be even. But we found
in [10] that if my is even then when the number of lattice sitess sufficiently large thaQr(v) is
singular for allu and thatQ7»(Vv) as given by (3.3) does not exist. Consequently (3.16) faiteotd
for the matrixQg».

3.1 Thestring-free eigenstatesof T.

Here we state the important result derived in [11]: If thessing parameter is restricted to (1.2)
with mp = 0 andN is even there are eigenstates of the transfer matgiwven by

L-1 )
qu = Zj e2n|m|/L BI+1.I71()\1) e BIJrn,Ifn()\n)Q‘\rn (3-19)
1=



An Elliptic Current Operator for the Eight Vertex Model Klaus Fabricius

whereAy,---, Ay are chosen to satisfy

MNA+N) — amme &y (A —A+2n)
—— =€ — (3.20)

hN(Aj - ’7) k=1 ]| h(}\j — Ak — 2’7)

with N = 2n+integerxL and
O\ =w® 2 (3.21)
| H(s+2(n+1)n—n)

= 3.22
“h (e(s+2(n+l)n—r;) (3.22)

We call the sefiy, - - -, A, which solves the Bethe-equations (3.20) regular BethesrodheBy -
operators are elements of the gauge transformed monodratrixm

Ta =M Z MM ) = (éf: o ) .

As mentioned above the state vectors (3.19) give all sirgkges as well as a subset of each
degenerate multiplet of states.

3.2 Eigenstates of T with strings.

The remaining much larger set of eigenvectord dfas been obtained in [18]. These eigenvectors

are given by
L-1 n
W=3 &'B*(Aq)-B M (Ae) ] Bremi-m(AmQN" (3.23)
=0 m=Ls+1

wherew = exp(2miml /L) and the contribution of an exaktstring is

Ls OB 1 . OB
BILJ()‘C):ZB|+17|—1()‘1)"’<7;HJ J(Aj)—zjig/{’l J(M))“'BHLSJ—LS(/\LS) (3.24)
=1 r’

and where\, are the centers of strings
Ak=Ac—2(k—=1)n k=1,---,Ls (3.25)

We shall refer to (3.24) as B-string operator which createsB-string (3.25). The string centers
are free parameters. The string lengths for oddL

LS:L

and for everlL
Ls=L/2

The key of our method is the functi(ﬁ'] in (3.24). Its definition is

Zi(Ae) = Za(Ac— (j —1)20) (3.26)
Ls—1 w*Z(k%»l) ki1

5 2o K mmr

2= 2" (3.27)
2k20 ~ RAo:
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P =h"(Ac— (2k—1)n) (3.28)
and .
A= [] h(Ac—Am—2kn). (3.29)
m=Ls+1

w = e#MM/L s a Lth root of unity. The constants, in (3.29) are the regular Bethe-roots of the
state under consideration. We see that each string opelgpe@nds on its string cent&g , ons;t
and on all regular roots defining the eigenvalud of

We briefly describe how the result (3.23)-(3.29) has beeivelir The attempt to generate the
missing eigenstates by adding a complete exact string

Ak=Ac—2(k—1)n, k=1,---Ls (3.30)
to the set of Bethe roots fails because
Bii11-1(A1) - By -L(A) =0 (3.31)
To circumvent this problem we insert instead of (3.30) theregsion
M=Ac—2(k—1)n —Zk(Ac)e, k=1,---Ls (3.32)

and perform the limitt — 0. TheO(¢) term gives the desired result.The functigig(A.) is an
essential ingredient of our method.
We follow the same path as Takhtadzhan and Faddeev [11W betthe candidate for an eigenstate
of T and

TW= t(\)¥ + additional terms (3.33)
SN—~— ——
wanted term unwanted

In the work of [11] the unwanted terms can be removed by adgishe set of free parameters
A1,---,Ap to satisfy ” Bethe’s equations”. In our case a first set of umed terms is removed by
again invoking Bethe’s equations to determme- - - Ap,.

The remaining second set of unwanted terms is removed byppately choosing the functions
Zx(A¢) which leads to

W(Zir1— Zk—2)pe-1Pe= w0 H(Zk— Zi1 — 2) kP2 (3.34)

wherep andP and are defined in (3.28) and (3.29). The solution of (3.343.17).
The total number of operatoBbuilding an eigenvector is restricted by

2(ng+ng)+rL =N (3.35)

whereng is the number of regular roots andis the number of roots belonging Bsstrings. It is
important to note that the integemay be positive and negative. It follows that there is noriest
tion on the number oB-string-operators in a state vector. To understand theafoRe strings we
note that the analytical expression for eigenstates ofigig-gertex model without strings given by
equ. (3.19) depends on two free paramesarsFor degenerate eigenstates which form a space of
dimensiond a subspace of dimensialy < d can be constructed by the variationsadndt without
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applying B-string operators (3.24) . Detailed numericatigts have revealed that the variation of
s,t will give only for very small d (e.gd=2) the full degenerate eigenspace. In all other cases one
has to add B-string operators with the additional freedorohimose the string center to generate
the full subspace. After this is achieved by adding a certaimber of B-strings (the exact number
depends on the system sikieand the value of;) the addition of more and more B-strings will
only map this subspace into itself. In particular addingtiigs to a singlet state withg = N/2
Bethe-roots does not destroy this state but reproduces it.
Itis obvious that the B-string operators (3.24) play the mflsymmetry operators in the eigenspaces
of the transfer matrix. As they generate for each eigenvddedull degenerate subspace they must
contain all information about the hidden symmetry algefiriae properties described above raise
the possibility that the B-string operators (3.24) areteslao elliptic current operators in cyclic
representations. We expect that the- 0 limit of this algebra is thel,-loop algebra which has
been found in [15] and [16] to describe the symmetry of thevestex model. This suggests that
the symmetry is related tdq(slz) To our knowledge the theory of cyclic representatlon@@fslz
is still undeveloped?
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