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1. Introduction

The classical integrabléwo-dimensional non-linear sigma models are relativeyea solve.
At least, when the corresponding Lax pair is known, one castroct a large class of the so called
finite gap solutions [4]. These solutions are known to ctutstia dense (in the sense of parameters
of initial conditions) subset in the space of solutions @& thodel.

However, the quantization of such classically integralijgna-models usually creates sub-
stantial problems and is known to be virtually impossibleltoin the direct way, in terms of the
original degrees of freedom of the classical action. Thet#g quantum solutions are usually
based on plausible assumptions which are difficult to proveesystematic way.

There were a few successful, though not completely justittgmpts to find the quantum
solutions ofSU(N) x SU(N) principal chiral field model (PCF), starting from the origiraction.
A. Zamolodchikov and Al. Zamolodchikov [5] found the fadable bootstrap S-matrices for the
O(N) sigma models, later generalized to many other sigma modélsO(4) case which we are
focused on in this paper, is equivalent to Big(2) x SU(2) PCF. Polyakov and Wiegmann [6, 7]
found the equivalent non-relativistic integrable Thigimodel reducible in a special limit to the
PCF. Faddeev and Reshetikhin [8] proposed the "equivatimible spin chain for th8U(2) x
SU(2) PCF. In both cases, the equivalence is based on subtle assasnpifficult to verify, though
both approaches perfectly reproduce the solution follgviiom the S-matrix approach [9].

The verification of such solutions is usually based on théupeation theory, larg®&l limit or
Monte-Carlo simulations [5,9-11].

Here we address this question in a more systematic way. Namelwill reproduce all clas-
sical finite gap solutions of a sigma model from the Bethe arsalution for a system of physical
particles on the space circle, in a special large densitylange energy limit. We shall call it the
continuous limit though, as we show, It is the actual clagddimit of the theory. We will see that
in this limit the Bethe Ansartz equations (BAE) diagonailizithe periodicity condition, will be
reduced to a Riemann-Hilbert problem. Such a limit in thenBetnsatz equation is similar to the
one considered in [12—15]) defining the algebraic curve efithite gap method for the underlying
classical model.

We demonstrate the method inspired by [16] and worked ow,i8][for theSU(2) x SU(2)
principal chiral field (PCF) with the actién

S= ‘é—z / dodrtrdagidag,  ge SU). (1.1)

In [2] we also repeated this construction for tB&5) sigma-model and explained how the gener-
alization to theO(2n) model can be done in a trivial way. In fact, as it will be cleatdw, the
method seems to be general enough to work for all sigma-realdsicribed by a factorizable boot-

li.e. having an infinite number of integrals of motion
Znote that the coupling is chosen here as the 'tHooft coupling in the AAS/CFT comwesence context.
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strap S-matrix. Hence it gives a new way to relate, in a gémee systematic way, the classical
and quantum integrability.

The model (1.1) is equivelent to th@(4) sigma model where the fundamental field is the
four dimensional unit vectoK (o, ). Therefore, at least classically, it can be used to study a
string on theS® x Ry background. Indeed, our main motivation for this study Wwasgearch for
new approaches in the quantization of the Green—-Schwaeisadv—Tseytlin superstring on the
AdS x S which is classically (and most-likely quantum-mecharyjcak well) an integrable field
theory. The simplest nontrivial subsector of it is desdatilyy the sigma model on the subspace
S* x R, whereR, is the coordinate corresponding to the AdS time. The timectiion will be al-
most completely decoupled from the dynamics of the resteétting coordinates, appearing only
through the Virasoro conditions. These conditions are ectieh rule for the states of the theory
or, better to say, for the classical solutions appearingnwilie pick the classical limit in Bethe
equations. The degrees of freedom eliminated in this wayrerdongitudinal modes associated
with the reparametrization invariance of the string.

Of course, in the absence of the fermions and of the AdS pénediill 10d superstring theory,
this model will be asymptotically free and will not be suialas a viable (conformal) quantum
string theory. Nevertheless, in the classical limit we kbatounter the full finite gap solution of
the string in theSQ(4) sector found in [1]. The method can be generalized toSB¥6) sector
in [17] and hopefully to the full Green—Schwarts—Metsaeseyflin superstring on thadS x S
space, including fermions, where the finite gap solution eamstructed in [17] (although it appears
to be more difficult for the last, and the most interestingtesm).

At the end of the paper we go slightly further and derive frdrase BAE the conjectured
asymptotic string Bethe ansatz (the so called AFS-equitigf with its nontrivial dressing factor
to the leading order in largé which is known to captures some quantum effects, such af leve
spacing [20].

1.1 Classical SU(2) x SU(2) Principal Chiral Field

In this section we will review the classical finite gap saatiof theSU(2) x SU(2) principal
chiral field. We will essentially go through the construatiof [1]° to fix the notations for the easy
comparison with the quantum Bethe ansatz solution of theatn@dd mentioned in the introduction,
classically this model can be used to describe the strin§fonR c AdS x S°. At the quantum
level, even dropping all the rest of the degrees of freedama, might still expect to capture some
features of the full superstring theory. As we will see inlditter sections, this is indeed the case.

1.1.1 The mode

The action (1.1) possesses the obvious global symmetryr tineleight and left multiplication
by SU(2) group element. The currents associated with this symmegryr@spectively,

jRf=j=g*dg, j-=dgg?’, (1.2)

3with a little generalization to the excitations of both laftd right sectors
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and the corresponding Noether charges read

dotr(jRt3), dotr (jit3). (1.3)

In the quantum theory these charges are positive intkgers
Virasoro conditions read f; + jo)*> = —2k2, where we used the residual reparametrization

symmetry to fix theAd Sglobal timeY to

(r+o)+£(r—o). (1.4)

K
Y =
2

o4
2
Finally, from the action, we read off the energy and momerdism

2
EC'iPC':—\S/—Z A tr(jrijg)zda:gxi. (1.5)

1.2 Classical Integrability and Finite Gap Solution

The equations of motion and the fact that the current is ofdha j = g~*dg can be encoded
into a single flatness condition for a Lax connection oventbed-sheet [4],

XJT+JU Xja+jr

In particular, we can then use this flat connection to defieartbnodromy matrix

Xjr+ o
Q(x) = Pexp do 21 a.7)

By constructionQ(x) is a unimodular matrix (and also unitary for reqlwhose eigenvalues can
therefore be written as

(é‘ ﬁ(X)’e—iﬁ(X)> (1.8)

wherep(x) is called the quasi-momentum. Thedsactions of xdo not depend on time due to
(1.6) and provide therefore an infinite set of classicalgraés of motion of the model.

From the explicit expression (1.7) we can determine the \deha of the quasi-momentum
close tox = £1,0, . Using (1.5) and (1.3), we obtain

TIK +

p(x) ~ _XIF—l’ 1.9
B(X) ~ 2rmm-+ qu}Lx, (1.10)
<o 2mQrl

p(x) ~ — ) < (1.11)

41t will be important for future comparisons to notice tha thormalization of the generators is such that the smallest
possible charge is 1 as follows from the Poisson bracketthéocurrent.
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Figure1: Algebraic curve from the finite gap method. u and v cuts cpoad to cuts inside and outside the
unit circle respectively.

Since, by constructior(x) is analytical in the whole plane exceptxat +1 where it develops
essential singularities, it follows from eq.(1.12) that Xa# +1 the only singularities of

p'(x) = —;dgtrfz(x). (1.12)
4— (rQ(x)? %%
are of the form
~ N 1
P (x— %) = = (1.13)

If we are looking for a finite gap solution the numid€of these cuts is finite and we conclude
that p'(x), — ' (x) are two branches of an analytical function defined by a hyiigtie curve (see
fig.1),

2 _ P?(x)

Q)

whereQ(x) has X zeros and the order ¢¥(x) is fixed by the largex asymptotics eq.(1.11). We
denote the branch cuts @f(x) by u (v) cuts if they are inside (outside) the unit circle. These
cuts are the loci where the eigenvalues of the monodromyixri@acome degenerate. Thus, when
crossing such cut the quasi-momentum may at most jump by tpheudf 277 which characterizes
each cut,

() (1.14)

f)=m,  xeC (1.15)

wherepg(x) is the average of the quasi-momentum above and below the cut,

NI

B(X) = = (B(x+i0) + p(x—i0)) . (1.16)

Each cut is parameterized by the filling fraction numbersciwhive define as integrals along
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A-cycles of the curve (see fig.})

Sg_%;ym@@_%%m QZ%; mmo—%%m (1.17)

u

Finally, imposing (1.15,1.17,1.9,1.10,1.11) one fixes plately the undetermined constants in
(1.14).

2. Quantum Bethe Ansatz and Classical Limit: O(4) Sigma-M odel

We will describe a quantum state of t¢4) sigma model by a system bfrelativistic particles
of massu /2 put on a circle of the length72 The momentum and the energy of each particle can
be suitably parametrized by its rapidity ps= %sinhe ande= %cosh@ so that the total energy
and momentum will be given by

_Hosg

P= 2nazlsmh(nea), (2.1)
_ K

E = 2nazlcosr(n6a). (2.2)

These particles transform in the vector representatioren®d4) symmetry group or in the bi-
fundamental representations 88(2)r x SU(2),.. The scattering of the particles in this theory
is known to be elastic and factorizable: the relativistin8trix é(el— 6,) depends only on the
difference of rapidities of scattering particl8sand 8, and obeys the Yang—Baxter equations. As
was shown in [5] (and in [7,9,23,24] for the general prineiphiral field) these properties, together
with the unitarity and crossing-invariance, define esséigtuinambiguously the S-matr& Let us
recall briefly how the bootstrap program goes. From the syimyneé the problem we know that

S=§ x& (2.3)
whereS§_r are built by use of the tw8U(2) invariant tensors and can therefore be written as

/ 1/ 6 / . /
0t - 29 (oa e ~11(0)67 )
Imposing the Yang-Baxter equation 8wyields f (8) =1, while the unitarity constrains the remain-
ing unknown function to obey
S(0)S(-6) =1 (2.4)

and crossing symmetry requires

[ ,
S(6) = (1— 5) S(i-6). (25)
51t was pointed out in [17, 21] and shown in [22] trﬁt" are the action variables so that quasi-classically they
indeed become integers. We will also find a striking evidefoeethis quantization on the string side when finding
the classics from the quantum Bethe ansatz where theseitipgmate naturally quantized. Indeed, from the AAS/CFT
correspondence these filling fractions are expected totbgens since this is obvious on the SYM side [1, 21].
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From (2.4), (2.5) and the absence of poles on the physidpl Gt 8 < 2 one can compute the

2]

scalar factorSy(6) = W For our purpose we just need the much easier to extract large
2 272

6 asymptotics,

ilogS5(6) ~1/6 +0(1/63). (2.6)

2.1 Bethe Equationsfor Particles on a Circle

When this system of patrticles is put into a finite 1-dimenalgreriodic box of the lengtl?
the set of rapidities of the particld®, } is constrained by the condition of periodicity of the wave
function |) of the system,

<— —
- a+1

W) é“S'”h’T@aﬂ —6p) |‘| S(6q — 6p) |W) (2.7)

where the first term is due to the free phase of the particletla@decond is the product of the
scattering phases with the other particles. The arrowsl $tarordering of the terms in the product.
U =mp.Z is a dimensionless parameter. Diagonalization of both thad_R factors in the process
of fixing the periodicity (2.7) leads to the following set obtie equations which may be found
from eq.(2.7) by the algebraic Bethe ansatz method [25 26]

L
2rmmg = psinhmdy — 5 1109 (6a — 63)

fZa
L +i/2 X By —wH+i/2
- SYilog———— ilog———, 2.8
Z gea—UJ i/2 Z ge —V—1i/2 (2.8)
L uj +|
u __ ; l
2mf = %HOQ 6,3+ /2+%| T (2.9)
Vk — /3_ Vk—WV +i
2my _%IIOQVK—GB—H/ZJF; gvk—v|—| (2.10)

whereu's andv’s are the Bethe roots appearing from the diagonalizatid®.@) and characterizing
each quantum state. A quantum state with no such roots pormds to the highest weight ferro-
magnetic state where all spins of both kinds are up. Adding\g roots corresponds to flipping
one of the right (leftSU(2) spins, thus creating a magrfoiThe left and right charges of the wave
function, associated with the twalJ(2) spins are given by

Q.=L-23,, Qr=L-2J,. (2.12)

6We took the logarithms of the Bethe ansatz equations in gtaitdard, product form. This leads to the integers
mo,,nL]-‘, n‘j’ defining the choice of the branch of logarithms.

"This is particularly clear from equations (2.9,2.10) whiichthe limit A — 0, when8, ~ 0, are precisely the usual
Bethe equations for the diagonalization of an Heisenbemgjlt@nian for the periodic chain of length originally soved
by Hans Bethe [27], provided we identify the momentum of ntagwith

eip _ u-+ |/2 .
u—i/2

(2.11)
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-2 -1 1 2

Figure 2: We plotV(z) for M = 1,5,9,13 (lighter to darker gray). It is clear that the potentigbayaches
the box potential aM — co.

This model with massive relativistic particles and the agtatically free UV behavior cannot
look like a consistent quantum string theory. Only in thessieal limit we can view it as a string toy
model obeying the classical conformal symmetry. In thesitas case it is also easy to impose the
Virasoro conditions. In the quasi-classical limit , welstdn try to impose the Virasoro conditions
as some natural constraints on the quantum states. We sélisk this point latter.

2.2 Quasi-classical limit
In the classical limit the physical mass of the patrticle

K VA2
= , (2.13)

whereA is the physical coupling at the scala,2/anishes sincé — . Moreover we should focus
on quantum states with large quantum numbers, i.e. we shiadlider a large numbér — co of
particles on the ring.

Let us now think of (2.8-2.10) as of the equations for the lgiuiim condition for a system
of three kinds of particles: 6, uj andv), interacting between themselves and experiencing the
external constant forces 1@, 2nn‘jJ and 2my). The particles of thé kind are also placed into
the external confining potential

V(z) = ucoshmMz) , z=06/M (2.14)
where
logu VA
M=-— -~ (2.15)

In the classical limit the potential becomes a square boariat with the infinite walls at = +2
(see fig.2). Moreover, since this is a large box for the odbuariables we can use the asymptotics



Classical limit of Quantum Sigma-Models from Bethe Ansatz Vladimir Kazakov

(2.6) for the force between particles of tA€or 2) type. The box potential provides the appropriate
boundary conditions for the density of particles interagthy the Coulomb force. Since they repeal
each other the density should be peaked araundt2. To find the correct asymptotics close to
these two points, we can consider eq.(2.8) as the equitibdandition for the gas of Coulomb
particles in the box.

If the right and left modes (magnons) are not excited we halietbe states withJ (1) modes.
In the classical limit, using the Coulomb approximation(2d), we have for this sector the fol-
lowing Bethe equation

1L 1

psinhniMzy —2mm = —— .
M (7o 20— 2

In the continuous limit, the equation for the asymptoticsignL ~ M — oo, is given, through the
resolventGo(2) = § Y51 75, by

Go(z) = —2mm, z€ %y, (2.16)

with inverse square root boundary conditions n¢&: The analytical functiorGg(x) having a
real part on the cut defined by eq.(2.16), with suppe, 2], with inverse square root boundary
conditions (the only compatible with the asymptoticg at c: Gg(2) — ﬁ% is completely fixed:

2rmm z+ &
Go(2) = —=—M —2m |, L > 4mm|M 2.17
which gives for the density
1(2mz+ L
= —M . 2.1
Po(2) n( N ) (2.18)

Notice that the distribution has a singular behavior at tha@peints which will be the typical be-
havior even for the general multi-cut solution consideretbl. Notice also that applying to the
eq.(2.17) the Zhukovsky map

z:x+% (2.19)

we obtain

L L
m+2nm W—an

Go(z(¥) = = — v ]
which shows the poles at= +1, typical for the finite gap solution of the section 1. The Kinsky
map will be the central piece of our proof of the identificatiof the continuous limit of Bethe
ansatz equations with general classical solutions obtimodel considered in this paper. By this
solution we reproduced from the quantum Bethe ansatz thalkmclassical BMN vacuum for
the corresponding string theory [2]. Hence we already mypred the correct classical solution for
his simple state. From the general formula eq.(1.5) (seeaiq2.23)) the momentum of such a
state is

(2.20)

L

P—mL E=—,
mb 47

(2.21)
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All this demonstrates that also for the general solutionhef Bethe ansatz equations in the
continuum limit we will have the singularities of the type

-

p(z) = % 0(z—2zy) ~ 2K+ zZ— 2. (2.22)
a

1 V2F7

with k. yet to be determined through the energy and momentum forahergl case.

We will be considering the scenario where we have the same mothbem, = m for all
z particles. As proposed in [2, 16] this is the adequate setavés which will obey the Virasoro
constraints in the classical limit.

First, we will relate the behavior close to the walls, characterized by the constantgith the
energy and momentui®, P of the quantum state, as given by (2.23,2.2). Then we shalirelte
the 8's from the system of Bethe equations by explicitly solviig first one in the considered
limit. Finally, we will justify why we take the same mode nuertim for all 6’s by identifying the
longitudinal modes to the excited mode numbersn the Bethe ansatz setup. This constraint on
the states will correspond to the Virasoro conditions, astién the classical limit.

2.2.1 Energy and momentum

The total momentum can be calculated exactly, before amgicial limi
P= %_[Zsinh(rrea) =Mplp— 5 MpSy— 5 NS, (2.23)
a p p

whereLp, S;, § are the filling fractions, or the numbers of Bethe roots wigven mode numbers
Mp, Ny, p, Nyp. TO prove this, it suffices to sum the eq.(2.8) for all ro6ts The contribution of
S(0) terms cancels due to antisymmetry while the second andshirts in the r.h.s. of (2.8) are
replaced using (2.9) and (2.10), respectively.

Let us show how to calculate the energy (2.2) which is a fage tevial task [2]. As a byprod-
uct we will also reproduce the total momentum from the beatraat the singularities at = +2
described by the residua.. We want to compute the sum

_H
E= ZHZCOSF(HGG),

but we cannotsimply replace this sum by an integral and use the asymptigtitsity pg(2) to
compute the energy. That is because the main contributidhet@nergy comes from larg#s,
near the walls, where the expression for the asymptoticityeissno longer accurate. It is natural
for the classical limit since the particles become effadfivmassless and the contributions of right
and left modes are clearly distinguishable and located'déem ® = 0. We notice that the energy is

8For the closed string theory we should téke: 0 which gives the level matching condition. Moreover, as tls
explain latter, we should also pick the same mode numberlifpagticles,my = m. For the perturbative super SYM
applications one should moreover taﬂigaz 0 [28]. Then we have the well known formufg, npS,g = mL (see [1] for
details).

10
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dominated by larg@’s where, with exponential precision, we can replace ethby + sinhrf,
for positive (negativep,. Furthermore, the contribution from tis in the middle of the box is
also exponentially suppressed sincés very small. Thus we can pick a poiasomewhere in the
box not too close to the walls. One can thinkaads being somewhere in the middle. Then,

E= z ﬂsinh(nzaM) - Z ﬁsinh(nzaM) ,

Za>a2n Za<&2rr

where, let us stress, the resultimrect independently of the point a within the intervd2 < a < 2
with the exponential precisiorcach sum of sinlt6, can be substituted by the corresponding r.h.s.
of the Bethe equation (2.8), thus giving

E~~ > log S (M [za—zg])Jersign(za—a) (2.24)
5<a<2a a
1 . . Mzyg—uj+i/2 Mzy — v +1i/2
— ﬁjéggn(za—a)llog—MZa_uj 2 o S|gn(za a)”Og—Mza V—i/2

As mentioned above we assumem} to be the sam&. Now we can safely go to the continuous
limit since in the first term the distances betwetsnare now mostly of the ordertd. This allows
to rewrite the energy, with /M precision, as follows

/dz/d pe W ZH/MSIQI‘(Z a)dzdw

_ ZT/WTV\E)sign(z—a)dszmM/pg(z)sign(z—a)dz (2.25)

where we are now free to use the asymptotic demsity). By the use of Bethe equations, we man-
aged to transform the original sum over cosh’s, highly pdaktethe walls, into a much smoother
sum where the main contribution is now softly distributeohal the bulk and where the continuous
limit does not look suspicious. From the previous discussi@ know that this expression does
not depend om provideda is not too close to the walls. In fact, we can easily see thadés not
depend ora at all after taking the continuous limit leading to the perfect H#ike potential. To
prove it one notices that due to Bethe equations eq.(2.8)-thexivative of eq.(2.25) is zero for all
a€]—2,2[. Hence we can even seaclose to a walla= —2+ ¢, wheree is very small. But then
the last three terms in (2.25) are precisely the momentugB)2as explained in the beginning of
this section. To compute the first term we can now use the asfitg(2.6,2.22). The contribution
of this term is then given by

—2+¢ 2 2+¢ 2
—M/ dz/ qwPe@Pe(W) —/ dz / dw AMK- ~ 2MK?
mJj—2 2+¢€

_2te z—w M(z—W)V2+2/2+W

9as we will show it is this choice of states which reproducesfitite gap solution of [1] we mentioned in the first
section. We will come back to this point at a latter stage
10Moreover, it is very important that the contribution frata near the wallst2 is now suppressed since eq.(2.6)

[logS5(M(2—25))| > |logF(M(2—a))| ~ 1/M.

11
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so that
E~2Mk?m+P. (2.26)

If we compute the-independent integral (2.25) near the other wall, i.e.afer2— ¢, we find
E~2MkZm—P.

Therefore, equating the results one obtains the desiragssipns for the energy and momentum
E+P=2nM«k2 (2.27)

through the singularities of the density of rapiditieszat +2, described by... Together with
(2.15) this is precisely the classical formula (1.5).
2.2.2 Elimination of 8’sand AFS equations

It is useful for what follows, to introduce some new notaiollsing the Zhukovsky map

z=x(2) + , [X(2)| > 1 (2.28)

)

we define

with the similar expressions fay given byyft andyj.

In this section, for the purposes of comparison with the ggtic AFS Bethe ansatz for the
N=4 SYM theory, let drop th& magnons,}, = 0. Their contributions will be easily restored later.
As explained at the beginning of this section we can writefiise Bethe equation, (2.8) as

2 p(w) Lo Mz—uj+i/2

2zZ— de__ZIIOgMz—uj—i/Z

—2mm, ze [-2,2].

The solution to this Riemann-Hilbert problem with the boandconditions and the normalization
given by (2.22) looks as follows [3]

1 Cxyy L x/1 1
2) = ——— || 2m+i § log=L- | z+ — +2i — -
P2 m/4— 27 [( Z gyf) mt2a2 (y.+ yj>]

=1

1% 2ly; —1 x(2)-y;
__z| < Iy 1 x(z)—y;+>' (2.29)

We want to focus on such states that the momeruiated to the asymptotics close to the walls
by (2.27), vanishes. Thus we should set to zero the first terimei r.h.s. of eq.(2.29):

i &y
=m—— ) log— =0. (2.30)
21 ,Zl Yj

12
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Then, plugging this density into (2.9), integrating over thpidities and exponentiating the result,
we find [3]

ANE X
<y_k> =[N oW, (2.31)
where the “dressing" factar? is given by
1-1/(v-v)\ 2 /yve — 1yt — 1) 2w
o2 (uj, U) = /(yiy'i) y’,yi yiy‘i : (2.32)
1_1/(yj Y ) YiYek —1yjy -1

These are precisely the AFS equations conjectured in [18leaasymptotic Bethe ansatz equation
for the SU(2) sector ofN = 4 SYM theory!!. The dispersion relation for these dressed magnons
can be read off from the asympotics of the density eq.(2.B@8edo the walls?

/1 1
A=VAKk=L+2Mi — . (2.33)
le<yj+ yj)

2.2.3 Classical limit and KMMZ algebraic curve

To consider the classical limit we trivially restore theoots from the previous calculation, to
find

+\ L J
Y U —Uj+i |
and similarly foryg, and consider the limit wher&, J,,L ~ M, so that thes andv roots also scale
asM. Then the expansion of this equation, after taking the |agjises to the Ieading order iryM

L J
o1 Yk -+ 21mm yk 1
_ + il _ (2.35)
1-y; y&—lM;l/yk—yl —1M, yk—y,
Finally we can define the quasimomentum [3]
Lx42m 1 1 X 1 ¥ 1x 1
_ 2™ = 2.36
PN =" T e—im Jle/x—yj+ 1sz v (2.36)

Let us explain how it becomes precisely the quasimomentunhatein the context of the alge-
braic curve in section 1.2 in the classical theory. It is cliat we indeed have the asymptotics
(1.10,1.11) close ta = 0,0. Then, to relate the residues of eq.(2.36) to the ones foumd the
algebraic curve in eq.(1.9), we expand (2.33) in our limitdl®ws:

A= L+Z2 +Zy| (2.37)

and check that this is indeed what one finds from the quasimtanvee just defined. Finally, when
we consider a large number of magndpsl, the roots in eq.(2.36) condense into a number of one
dimensional supports, the sums becoming the integralgdlwse lines giving the same square
root cuts as we had in the finite gap construction.

1A similar derivation of the BDS equation in N=4 SYM theory wgigen in [29] starting from the Hubbard model
12n the context of the AdS/CFT correspondence: k_ = k.. is the energy with respect to the AdS global tithe
equal to the dimension of the corresponding SYM operater(s&).
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2.2.4 Geometric proof

The roots solving (2.8,2.9,2.10) with the same mode numiiecandense into a single square
root cut. When we consider more than one type of mode numbesewithat the particles condense
into a few distinct supports, one for each distinct mode neimb

C=6c1U---U%k.

We can now rescale the Bethe roots

(u,v,8) = M(xy.2) (2.38)
and define
12 1 1 L 1
PL= pz_mi: Z—X NBZ ~z
1 1 1L 1
Pa=—Ps=7 ) 0 — 57 . (2.39)
M Z -y 2M le —2Zg
Then we can recast the Bethe equations in this scaling lsrfibliows
x € Cy, P —p2 =2my
x € Cg, pot —p3” =2mm (2.40)
xeCy, p3s"—ps =2m,
x€Cq, pa—p~ =2rm,

where we
e considered, as in the preceding section, one single modeeumfor all rapidities;

e dropped the momentumsinh8. As we explained in section 2.2 we can do this provided we
replace it by the boundary conditions (2.22).

These equations tell us thpf(z), p5(z), p5(2), P4 (2) form four sheets of the Riemann surface of an
analytical functionp/(z) (see f|g.3).
They can also be written as holomorphic integrals aroundhtiivéite B-cycles:

fdp:ZnnuJ nj=1,...,Ky
BU
J

dp = 2mrmy;j nj=1,...,Ky (2.41)
BY '

j{ dp = 2rmm
B¢

where the the first two conditions correspond to the equatiorhe first and third line of (2.40),
respectively, while the last one corresponds to any of theons of the second and fourth lines
of (2.40). TheB cycles are defined as in fig.3.
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Figure 3: Structure of the curve coming from the Bethe ansatz side. quasi momenta; >3 4(z) are
defined in (2.39). This figure is related with fig.1 by meandefZhukovsky map.

We found two Riemann surfaces which we plotted in figures 13arithe equivalence between
these two curves is achieved through the Zhukovsky map [2]

1
Z=X+—
X

and amounts to the equivalence between the finite gap swdutar the classical theory and the
Bethe ansatz solutions in the scaling limit.

2.2.5 Virasoro modes

We established the equivalence between

e all classical solutions following from the PCF action (1ahd subject to the Virasoro condi-
tions tr(j; + )2 = —2k2 as described by the construction of the algebraic curveatiose
1.2.

¢ and the Bethe ansatz quantum solution (2.8-2.9) in thergchinit (2.38) with all rapidities
6, having the same mode number

In the context of string theory one is interested in quangizhe Polyakov string action

S= 8—\/7)_; / dodtvh® (trd.g'dhg — 42 ApY) (2.42)

Due to its local reparametrization and Weyl symmetries @methen fix the target space tirfeas
in (1.4) and reduce the action to (1.1). However, due to thigloal reparametrization symmetry

T+0— fi(t+0), (2.43)

one must keep in mind that the original presence of the wahkekt metric field imposes that the
stress energy tensor vanishes. This is precisely the Yoasmditions.
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On the other hand, from the field theory point of view the Beathsatz equations (2.8-2.10)
should describe all possible states of the theory, not drdge for which

(@|T®|p) = 0. (2.44)

Thus, in view of the equivalence we proved, we are lead to tmelasion that if we start
with some classical solution with or® cut and someas andv cuts, the excitation of additional
microscopic cuts should correspond to the inclusion of the longitudmatles which we drop in
the context of string theory. Indeed, these massless (fhemmorld-sheet point of view) excitations
coming from our conformal gauge choice, appear if one expainéd action around the classical
solution without fixing the Virasoro conditions from the ragng (see for instance expression 2.7
and the discussion following it in [30]). In this section werify this claim therefore justifying this
single @ cut restriction, first proposed in [16] and given the intetption as the Virasoro condition
in [2].

In (2.24) we computed the energy of a quantum state wherealemumbersn, were the
same. If we change the mode numbers of a Bawe will have a macroscopic support with
particles having the mode numbersurrounded by some microscopic domains, linear supports,
with mode numbersy < m (to the left of it) andm; > m (to its right).

Let us assume that we excite them one at a time and focus orrghediticle whose mode
number we change. Before we do it, it is in equilibrium duehe éxponential force exerted by
the wall of the box (2.14) and by (an equal) force produced Ibtha other particles and by the
constant force #m — see (2.8). When we change the particle mode number theatristce
increases pushing the particle against the wall. Howeweedihe forces are exponential the shift
will be very small, much smaller than/l - the characteristic distance between the neighboring
rapidities. Then let us consider the particles in the middltghe box, the ones whose position is
well described by the asymptotic densfiyz). They only feel the change in mode number through
the new position of the correspondirfyparticle. Since this shift is very small the asymptotic
density, to the order we are interested, is not changed. , Tintisis procedure of changing a few
mode numbers we conclude that, when going to the contintimitsinh (2.24) only the second term
will lead to a different result so that

OE =3 [n|Sn (2.45)

whereSy, . is the number of particles with mode numimer- n. We found in this way the mass-
less (world-sheet) modes associated with the local repetreaation symmetry of the world-sheet.
These modes appear when considering the fluctuations aeocdlagdsical solution [30] and are the
only ones not taken into account by the finite gap algebraieecj20].
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