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1. Introduction

Seventy five years after its discovery, Bethe famous ansafp( the solution of the Heisen-
berg model [2] has created a wide, active and incrediblytftluarea of scientific activity in the
domain of Mathematical Physics connected both to pure Ntadities and to the forefront of sev-
eral problems of modern Theoretical Physics ranging frondeased matter theory to high energy
physics. These success could certainly be traced back todteasing importance of non pertur-
bative effects in several domains of Physics and the carrelipg need for exact methods that
became crucial for their deep understanding. Along thesyBathe ansatz has been playing a cen-
tral role in this and has been extended and generalized iougways that enable to tackle more
and more sophisticated models in low dimensions of stegisthechanics and field theory, see
[3,4,5,6, 7, 8] and references therein. In particular, tivemtion of the algebraic Bethe ansatz, by
Faddeev, Sklyanin and Takhtajan [9, 10], merging developsnffom one dimensional quantum
spin chains, two dimensional models of statistical medsaand the classical inverse scattering
methods of soliton theory opened a way to construct and s@wemodels while providing the
Mathematical framework for them [11, 12, 13, 14] leadinghte tliscovery of the theory of quan-
tum groups [15, 16, 17, 18]. New extensions, like the Skiyagparation of variables method
[19, 20, 21] and its link to the Baxt&p operator [3] will certainly continue to push the field of
integrable models forward to more success in the future.

In this lecture | would like to address what is today in my a@mnthe main challenging
problem in the theory of quantum integrable models (aftenmating their spectrum), namely to
obtain exact and manageable representations for theilation functions. This issue is of great
importance not only from theoretical and mathematical vimints but also for applications to
relevant physical situations. Although several importagitances have been obtained over the
years, we are still looking for a general method that cowe gi systematic solution to this prob-
lem. The purpose of this article is to give a review of an apphoto this question elaborated in
[22, 23, 24, 25] and in [26, 27, 28, 29], together with a brie¢@unt of the more recent progress
obtained in [30, 31, 32, 33, 34, 35, 36, 37].

In our search for a general method to compute correlationtimms of quantum integrable
models our strategy was to consider a simple but representaiodel where it is possible to
develop new tools to solve this problem. Such an archetyppiaftum integrable lattice models
is provided by the originaK X X andXXZspin—; Heisenberg [2] chain in a magnetic field solved
by Bethe and his followers [1, 38, 39, 40, 41, 42, 3, 4, 5, 6, 7].

TheXXZspin—% Heisenberg chain in a magnetic field is a quantum interactindel defined
on a one-dimensional lattice with Hamiltonian,

H=HO -hs, (1.1)

{oﬁﬁpﬁwﬁr o0y +D(0n0m 1 — 1)}, (1.2)

on  [H9.5]=0 (1.3)
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HereA is the anisotropy parametdr,denotes the magnetic field, aogh¥* are the local spin op-
erators (in the spi@-representation) associated with each sitef the chain. The quantum space
of states is# = @M_,.#,, where.#, ~ C? is called local quantum space, witim7 = 2M.
The operatorgX¥* act as the corresponding Pauli matrices in the spdgeand as the identity
operator elsewhere. For simplicity, the length of the ciMiis chosen to be even and we assume
periodic boundary conditions; note however that the opambary conditions case can be con-
sidered as well [73, 74]. Since the simultaneous reversall apins is equivalent to a change of
sign of the magnetic field, it is enough to consider the ¢aseD.

The first task to solve such a model is to describe the spedfitsiHamiltonian. The method
to compute eigenvectors and associated energy levels éfdlsenberg spin chains goes back to
Bethe in 1931 [1, 39, 40, 41, 42] and is known as the Bethe anéatalgebraic version of it has
been invented in the late 70’s by Faddeev, Sklyanin and jeak{8, 10].

The next fundamental problem is to compute matrix elemehspio operatorssx¥“ in the
eigenvectors basis ¢ and then all correlation functions of spin operators : abzemperature
they reduce to the average value of products of spin operatothe lowest energy level state
(the ground state). Let us denote layy) the normalized ground state vector. Ll‘gﬁq'wfm be the
elementary operators acting at sitas the 2« 2 matricefﬁ(’ﬁ = q,g,%. Any n-point correlation
function can be reconstructed as a sum of the following eteang blocks,

Fn({€). ]}, ) = (g BE?‘J | Wg)- (1.4)

The knowledge of such correlation functions was for a lomgetrestricted to the free fermion
point A = 0, a case for which nevertheless tremendous works have leeessary to obtain full
answers [43, 44, 45, 46, 47, 48, 49, 50, 51]. Going beyondrédeFermion case has been a major
challenge for the last twenty years.

For integrable quantum spin chains and lattice models [3hé]first attempts to go beyond
free Fermion models relied on the algebraic Bethe ansatnitgaees [9, 10] and was undertaken by
Izergin and Korepin (see e.g. [52, 53, 7] and referenceiterTheir approach yields formulae
for the correlation functions written as vacuum expectatialues of some determinants depending
on so-called “dual fields" which were introduced to overcaheehuge combinatorial sums arising
in particular from the action of local operators on Bethe¢esta However these formulae are not
completely explicit, since these “dual fields" cannot bengiated in a simple way from the final
result.

In the last fifteen years, two main approaches to a more édixptimputation of form factors
and correlation functions have been developed, mainlyafitice models.

One of these approaches was initiated by Jimbo, Miwa and¢b#aborators [54, 8] and en-
ables, using some hypothesis, to compute form factors amdlation functions of quantum spin
chains of infinite length (and in their massive regime) byregping them in terms of traces @f
deformed vertex operators over an irreducible highest hteigpresentation of the corresponding
guantum affine algebra. These traces turn out to satisfy immaxic system of equations called
g-deformed Knizhnik-Zamolodchikow{KZ) equations, the solutions of which can be expressed
in terms of multiple integral formulae. Using these equaisimilar formulae can be conjectured
in the massless regime [55]. Recently, a more algebraieseptation for the solution of these
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g-deformed Knizhnik-Zamolodchikov equations have beemiokt for the XXX and XXZ (and
conjectured for the XYZ) spin 1/2 chains; in these repres@nis, all elementary blocks of the
correlation functions can be expressed in terms of somedesmaental functions [56, 57, 58, 59].
A detailed review of the approach can be found in [58]. Thetmesent advances along these
lines are described in this workshop in the seminars of Miméh@mirnov.

These results together with their extension to non-zeronetig field have been obtained
in 1999 [23, 24] using the algebraic Bethe ansatz framew®rki, 6] and the actual resolu-
tion of the so-called quantum inverse scattering probleBy 255]. At zero magnetic field it gives
a complete proof of the multiple integral representatiobtaimed in [54, 8, 55] both for mas-
sive and massless regimes. Hence, together with the wok3[%H5], it also gives a proof that
correlation functions of the XXZ (inhomogeneous) chaineied satisfy (reduced}-deformed
Knizhnik-Zamolodchikov equations, an essential ingretia the promising approach presented
in this workshop by Miwa and Smirnov. Moreover, time or temgbere dependent correlation
functions can also be computed [30, 31, 60] using such tgabsi

This method allows also for the computation of the matrixredats of the local spin operators
and the above elementary blocks of the correlation funstfonthe finite chain. Hence, thermo-
dynamic limit can be considered separately. In particulsing both analytical results from Bethe
ansatz for these matrix elements of the spin operators 224, 25] and numerical methods to
take the summation over intermediate states it has beeibf@escently to compute [35, 36] dy-
namical structure factors (i.e., Fourier transform of tlieainical spin-spin correlation functions)
for finite X XZ Heisenberg spin chain in a magnetic field (with for examplé 601000 sites) and
to compare successfully these theoretical results withahcteutron scattering experiments, for
example on KCuF3. As motivation for the method to be preskmtehis review article, 1 would
like to give here this comparison :

B 5(Q,w) Bethe Ansatz @Spig{ﬂhéiﬁ“ KCuF3™ |

100 -

80

Energy @ (meV)

-1 -0.5 ) 0.5 1
Wavevector g along chain (units of 2mn)

Here, the functionS(q, w) is the Fourier transform of the dynamical spin-spin cotreta
function. The Bethe ansatz curve (on the left) is computee far a chain of 500 sites while
the experimental curve obtained by A. Tennant and his tedhl inelastic neutron scattering
experiments on KCuF3 is presented on the right. Colors atdithe height of the functio®(q, w)
(picture and experimental data courtesy A. Tennant).
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This article is meant to be a rather brief review of the probte correlation functions. More
detailed account of the results sketched here togethetthathproofs can be found in the original
articles [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and in 3,35, 36, 37].

This article organized as follows. The space of states oH#isenberg spin chain will be
described in the next section. It includes a brief introdurcto the algebraic Bethe ansatz and
to various tools of importance in the computation of comiefafunctions, like in particular the
solution of the quantum inverse scattering problem and #terchinant representations of the
scalar products of states. Section 3 is devoted to the atioelfunctions of the finite chain. In
particular we describe the method leading to the computaifathe dynamical structure factor
presented in the above figure. Correlation functions inieerbodynamic limit are studied in the
section 4. In the section 5 we describe several exact andpstimresults together with some
open problems. Conclusions and perspectives are giver ilash section.

2. The space of states : algebraic Bethe ansatz

The space of states is of dimensidh. 2As can be observed from the definition of the Hamil-
tonian in (1.1), the construction of its eigenvectors ifeanon trivial. The purpose of this section
is to briefly explain the basics of the knowledge of the spdcstaies in the framework of the
algebraic Bethe ansatz, leading in particular to the detetion of the spectrum of (1.1).

2.1 Algebraic Bethe ansatz

The algebraic Bethe ansatz originated from the fusion obtlginal (coordinate) Bethe ansatz
and of the inverse scattering method in its Hamiltonian fdation [9, 10, 6]. At the root of the
algebraic Bethe ansatz method is the construction of thetgomamonodromy matrix. In the case
of theXXZchain (1.1) the monodromy matrix is a2 matrix,

_ [AA) B(A)
T(A) = (C()\) D(A)>, 2.1)

with operator-valued entrie&, B,C andD which depend on a complex parameite(spectral pa-
rameter) and act in the quantum space of statésf the chain. One of the main property of these
operators is that the trace ©f namelyA + D, commutes with the Hamiltoniad, while operators

B andC can be used as creation operators of respectively eigemgeand dual eigenvectors of
A+ D and hence oH itself. The monodromy matrix is defined as the following aedeproduct,

T(A) =Ly(A)... L)L), (2.2)

whereLn(A) denotes the quantuinroperator at the site of the chain:

_ [sinh(A +2 0% sinhnoy
La(A) = ( sinhn o sinh(A =1 0?) )" (2:3)

The parameten is related to the anisotropy parametedas coshn. It follows from this defini-
tion that the monodromy matrix is an highly non local operatderms of the local spin operators
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ox¥*. However, the commutation relations between the oper&tdsC,D can be computed in a
simple way. They are given by the quantiymatrix,

1 0 0O O
_ ;1) c(A,u) O
RO =10 cd ) bA,w) 0 @4
0O O 0 1
where
_ sinh(A — ) B sinh(n)
b()\al‘l) _Slnh()\ _u_l_r’)v C()\al‘l) _Slnh()\ _u_l_r’)a (25)

The R-matrix is a linear operator in the tensor prod\¢tz V,, where eachV; is isomorphic to
C?, and depends generically on two spectral parameigesdA, associated to these two vector
spaces. Itis denoted B¥,(A,,A,). Such arR-matrix satisfies the Yang-Baxter equation,

Ri2(A1,A2) Rig(A1,A3) Roz(An,Ag) = Roz(As,A3) Ris(Ag,Az) Rix(Ag,Ay). (2.6)

It gives the following commutation relations among the apers entries of the monodromy ma-
trix,

Rip(A, 1) Ty (A) Ty(H) = Ty(H) To(A) Ryp(A, p), (2.7)

with the tensor notation$ (A) = T(A)®Id andT,(u) = Id® T (u). These commutation relations
imply in particular that the transfer matrices, defined as

TA)=trT(A)=A(A)+D(A), (2.8)
commute for different values of the spectral paramét&(A),.7 (u)] = 0 and also withS,,

[.7(A),S] =0. The Hamiltonian (1.2) &t =0 is related to7 (A) by the ‘trace identity’

H(© = 2sinhn %91()\) — 2Mcoshn. (2.9)

oy

Therefore, the spectrum of the Hamiltonian (1.1) is giventliyy common eigenvectors of the
transfer matrices and &,.

For technical reasons, it is actually convenient to intceda slightly more general object, the
twisted transfer matrix

T(A) =AA) +KkD(A), (2.10)

wherek is a complex parameter. The particular caseZpfA ) at k = 1 corresponds to the usual
(untwisted) transfer matri¥” (A ). It will be also convenient to consider an inhomogeneousioar
of the X XZ chain, for which

T, ém) =Lby(A =&u+n/2)...Ly(A =&, +n/2). (2.11)

Here,¢,,..., &, are complex parameters (inhomogeneity parameters) atieoheach site of the
lattice. The homogeneous model (1.1) corresponds to treeveasres; = n/2forj=1,....,M.

6
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In the framework of algebraic Bethe ansatz, an arbitraryntiima state can be obtained from
the vectors generated by multiple action of operai(4) on the reference vectd0) with all
spins up (respectively by multiple action of operat6(a ) on the dual reference vect(0|),

N

N
=[18(*)[0 = (0| []Cc, =0,1,...,M. 2.12
) DB( PIoy,  (wl=( |,D1 (A),  N=01...M (2.12)

2.2 Description of the spectrum

Let us consider here the subspa#&M/2-N) of the space of state¢” with a fixed num-
berN of spins down. In this subspace, the eigenvectgrs({A})) (respectively{ Y, ({A})|) of
the twisted transfer matrix, (1) can be constructed in the form (2.12), where the parameters
Aqs..., Ay satisfy the system of twisted Bethe equations

%(A”{)\}):O, j=1,...,N. (2.13)
Here, the functiort?, is defined as

N N
Piul{A)) =2l [ i -+-1) + k(1) [ inih st m), (2.14)
—1 =1

anda(A), d(A) are the eigenvalues of the operaté(? ) andD(A) on the reference sta{@). In
the normalization (2.3) and for the inhomogeneous mod&[Lj2we have

alA) = |M| sinh(A — & +n), d(A) = |M| sinh(A — &,). (2.15)
a=1 a=1

The corresponding eigenvalue .6% (1) on| Yy ({A})) (or on a dual eigenvector) is

_ N sinh(A —p+n) N sinh(u — A +n)
TK(H|{)\})—a(H)k|1 Sinh(A, — 1) -I-Kd(u)kﬂ Snh—A)

The solutions of the system of twisted Bethe equations [ha@e been analyzed in [62]. In
general, not all of these solutions correspond to eigeovecif 7, (U).

(2.16)

DEFINITION 2.1. A solution{A } of the system (2.13) is calledimissiblef

N
d()\j)nsinh()\j—)\kJrn);éO, i=1,...,N, (2.17)
and un-admissibleotherwise. A solution is calledff-diagonalif the corresponding parameters
A,...,Ay are pairwise distinct, andliagonalotherwise.

One of the main result of [62] is that, for generic paramekeasid{ ¢ }, the set of the eigenvectors
corresponding to the admissible off-diagonal solutionshefsystem of twisted Bethe equations
(2.13) form a basis in the subspagg™/2-N) |t has been proven in [31] that this result is still
valid in the homogeneous cage=n/2, j=1,...,N, at least ifk is in a punctured vicinity of
the origin (i.e. 0< |K| < Kk, for k, small enough). Note however that, for specific valuex of
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and {&}, the basis of the eigenvectors i M/2-N) may include some states corresponding to
un-admissible solutions of (2.13) (in particular in the fogeneous limit ak = 1).

At k = 1, it follows from the trace identity (2.9) that the eigentars of the transfer matrix
coincide, in the homogeneous limit, with the ones of the Himmian (1.1). The corresponding
eigenvalues in the case of zero magnetic field can be obt&ioed(2.9), (2.16):

N
PN = (3 B4 WD), 218)

where the (bare) one-particle enefgfA ) is equal to

2sintfn

EA) = sinh(A + 1) sinh(A — )"

(2.19)

2.3 Drinfel'd twist and F-basis

As already noted, the operatdksB, C, D are highly non local in terms of local spin operators.
There exists however an interesting description of theseadprs by means of a change of basis
of the space of states. In particular, this basis will prevéddirect access to the scalar products of
states. The root of this new basis is provided by the notioDrirfel'd twist [18] associated to
the R-matrix of theXXZ chain. It leads to the notion of factorizirlggmatrices. To be essentially
self-contained we briefly recall here their main properted refer to [22] for more details and
proofs.

DEFINITION 2.2. For inhomogeneity parametei in generic positions and for any integer n
one can associate to any elementof the symmetric group,Sof order n a unique R-matrix
R{ ,(&;,...,&n), denoted for simplicity R , constructed as an ordered product (depending on
o) of the elementary R-matrices; &;,¢;).

We have the following property for arbitrary integer

PROPOSITIONZ2.1.

R n T (A&, 6 = Ta(l)...a(n) (A; Ea(l), e Ea(n)) RY o (2.20)
We can now define the notion of factorizikgmatrix :

DEFINITION 2.3. A factorizing F-matrix associated to a given elementary Rrix& an invert-
ible matrix F_,(&;,...,&n), defined for arbitrary integer n, satisfying the followinglation for
any element of §;:

Foty..om Eony - Eom) RnlEnr &) =Fy (& &), (2.21)

In other words, such aR-matrix factorizes the correspondiiggmatrix for arbitrary integen.
Taking into account the fact that the paramet&rsare in one to one correspondence with the
vector spacesz;,, we can adopt simplified notations such that

Fl n(EJ_"."En):Fl n
Fa(l)__.a(n)(f ’ vf ) o(l) o(n)’
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THEOREM 2.1. [22] For the XXZ model with inhomogeneity parametérsn generic positions,
there exist a factorizing, triangular F-matrix. It is constted explicitly from the R-matrix.

It has two important properties :
PROPOSITION2.2. [22] In the F-basis, the monodromy matrix

-Fl...M()‘;Elv---vfM) = FLmTom(Asés,.,8m) Fli.]-Mv (2.22)

is totally symmetric under any simultaneous permutationthe lattice sites i and of the corre-
sponding inhomogeneity parametefs

The second property gives the explicit expressions of theatimmy matrix in thd--basis.
For the XXZ—% model, the quantum monodromy operator issa2matrix with entriesA, B, C, D
which are obtained as sums of'2! operators which themselves are productdvbfocal spin
operators on the quantum chain. As an exampleBthperator is given as

Zlo Q —|-; (o] oY) Q; + higher terms (2.23)
7k

where the matrice®;, Q, k> are diagonal operators acting respectively on all sites lon all sites
buti, j,k, and the hlgher order terms involve more and more exchanigetespns IlkeaJ o .
It means that th@® operator returns one spin somewhere on the chain, thistapetzeing how-
ever dressed non-locally and with non-diagonal operatgmatitiple exchange terms of the type
o o .

So, whereas these formulas in the original basis are quitdvied, their expressions in the

F-basis simplify drastically :

PROPOSITION2.3. [22] The operators D, B and C in the F-basis are given by therfolas

61...M()\;Ela'-'7fM) = i(l\igl <b()\6£|) 2) : (224)
i
b(A,¢;) 0
Zl g c(A,&) ( bl(fjvfi)>“]. (2.25)
S b(A,&) b(&,&;) O
=_210i c(A,&) ® - ) (2.26)
= 7 il

and the operatoﬁ can be obtained from quantum determinant relations.

We wish first to stress that while the operat&sENE, C,D satisfy the same quadratic com-
mutation relations a#, B, C, D, they are completely symmetric under simultaneous exahang
of the inhomogeneity parameters and the of the spaggslt really means that the factorizing
F-matrices we have constructed solve the combinatoriallpnoinduced by the non-trivial action
of the permutation grouﬁVI glven by theR-matrix. In theF-basis the action of the permutation
group on the operaton& C D is trivial.
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Further, it can be shown that the pseudo-vacuum vector tisriedriant, namely, it is an
eigenvector of the totdF-matrix with eigenvalue 1; in particular, the algebraic lBetnsatz can
be carried out also in thE-basis. Hence, a direct computation of Bethe eigenvectatatheir
scalar products in thiB-basis is made possible, while it was a priori very involvedhie original
basis. There, only commutation relations between the tqard, B, C, D can be used, leading
(see [7]) to very intricate sums over partitions.

2.4 Solution of the quantum inverse problem

The very simple expressions of the monodromy matrix opesatatriesD, B, C in the F-
basis suggests that any local operzﬁﬁrsl, acting in a local quantum spacﬁéoj at sitej, can be
expressed in terms of the entries of the monodromy matriis iBlthe so-called quantum inverse
scattering problem. The solution to this problem was foum[28, 25]:

THEOREM2.2.
fe -1 j 1
B = 1 7(&) Ty (&) [ 77 (). (2.27)

The proof of this theorem is elementary (see [23, 25]) anddéénhcan be obtained for a large
class of lattice integrable models. It relies essentialiytiee property that th&-matrix R(A, u)
reduces to the permutation operator Ao . An immediate consequence of this theorem is that
the operatord\, B, C, andD generate the space of all operators acting#h

2.5 Scalar products

We give here the expressions for the scalar product of amedgéor of the twisted transfer
matrix with any arbitrary state of the form (2.12). Thesdacproducts can be expressed as deter-
minant of rather simple matrices. The root of all these deiants is in fact the determinant rep-
resentation for the partition function of the 6-vertex moagith domain wall boundary conditions
[63]. Let us first define, for arbitrary positive integersY (n < n') and arbitrary sets of variables
Als--osAn, Uy, ... M @andvy,..., v, such thafA} C {v}, thenx nmatrix Q, ({A},{u}|{v}) as

n!

(Qu) (A AV} = alp) t(A;, 1) EllSinh(Va — Hy+1)
— Kd(H)tHeA)) []SMHVa— H— ), (2.28)
a=1
with

_ sinhn
~ sinh(A — p)sinh(A —p+n)°

t(A, ) (2.29)

10
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PROPOSITION2.4. [64, 23, 30]Let {A,,...,Ay} be a solution of the system of twisted Bethe
equations (2.13), angl,, ..., iy be generic complex numbers. Then,

N N
<0|J|10(u,-)|wx({)\})>=<wK({)\})|J]18(u,-)IO>
aﬁld()\a)aﬁlsinh(ub—)\a) P
B R Y
|‘|bsinh()\a —Ap) sinh(p, — ua) ]
(2.30)
N
,d(A)
- & -detQy ({A}, {H}H{AY).
|‘|bsinh()\a —Ap) sinh(, — Ua)
(2.31)

These equations are valid for any arbitrary complex paranrein particular akk = 1. In this case
we may omit the subscript and denotéy, T,%,Q) = (Y, T, @, Q)| —1- If the sets{A } and
{u} are different, the eigenvectory, ({A})) is orthogonal to the dual eigenvectow, ({u})|.
Otherwise we obtain a formula for the norm of the correspagdiector [65, 66, 23],

|:|1d()\a)
(WA W({A)) = = -dk(IaK)K({A},{/\H{A})

TAK%(A]'{A})) |

2.6 Action of operatorsA, B, C, D on a general state

An important step of the computation of correlation funetie to express the action of any
product of local operators on any Bethe eigenvector. Fraenstiiution of the quantum inverse
scattering problem, this is given by the successive actfoA,d3, C, D operators on a vector
constructed by action @& operators on the reference vector. ActiorAoB, C, D on such a vector
are well known (see for example [7]). They can be written mfibllowing form:

N
N N-1 |_| sinhA,—Ay+1n) N

(0] [TCA) AlAy, 1) Z a(h,) Sk (0| T1C(A (2.32)
kll M sinh(A, —A,) klja,

k;éa’

N N1 ﬂ sinhAa—Ac+n) N1

(0] [1C(A) D(Ay,y) Z d(Aa)'E (ol ] ca (2.33)
k=1 r] smh()\ -A) a2

k;éa

11
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The action of the operatd(A ) can be obtained similarly,

N
N N+1 kl:llSir‘h(7\a— Act+1)

(O[T1CAIB(AN;1) = Y d(Aa) 77 X
k=1 a=1 N sinh(Aa— A,)

k#a

N+
I smh()\ —Ay+Nn)

Z sinh(A ( a),\ n) J#N+1 (0] n C(A (2.34)
ar#l N+1 a |‘| sinh()\j —)\ ktadl

j#aa

and the action of is obvious.

3. Correlation functions : finite chain

To compute correlation functions of some product of locaragors, the following successive
problems have to be addressgd): determination of the ground statgy, |, (ii) evaluation of the
action of the product of the local operators on it, dilig computation of the scalar product of the
resulting state with (). Using the solution of the quantum inverse scattering @mblogether
with the explicit determinant formulas for the scalar prodiand the norm of the Bethe state, one
sees that matrix elements of local spin operators and etioBl functions can be expressed as
(multiple) sums of determinants [24]. It should be stregbeadl this result is purely algebraic and
is valid for finite chains of arbitrary lengthl.

3.1 Matrix elements of local operators

We begin with the calculation of the one-point functions.e3$é results follow directly from
the solution of the quantum inverse scattering problematim/e action of operatoss, B, C and
D, and the determinant representation of the scalar pradiésonsider,

N-+1 N
Fi (M {13, 4 = {01 ] Co) o3 []B 10) (3.1)
and
N N+1
AN (M AAS {13 = (0] TTC(A) om |'|18(u,-) 10), (3.2
k=1 =

where{A }n and{y;},,, are solutions of Bethe equations.

PROPOSITION3. 1. For two Bethe states with spectral parametgig}y and{y; }y,;, the matrix
element of the operatar,;, can be represented as a determinant,

N+1

LD ,Ul Sinh(k; = &m-+11)

(»q’n— ({ k}) kglsinr(Ak_Em_i_n)

defy,  H (M {p; 1, {A})

_osinh(ge —p;) [ sinh()\B—)\a)’
N+1>k>j>1 1<B<a<N

Ay (Ml AL =

(3.3)

12
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En({A}) = |1|1b (M €)), (3.4)

and the(N + 1) x (N+ 1) matrix H™ is defined as

¢ N+1 N+1
Hap(m) = I ( |‘l (U —A,+n)— |‘l o(u ) (3.5)
J#a ]#a
for b<N+1,
_ _ ¢(n)
e (M = G )6 (e &) (3:6)

The matrix elementf(m, {A,},{1;}) we get,

Gn(A) Bn1(Ay)
G2 (H)) @n(H;)

RV (M A {m; ) = A (M {1 1 {AG)- 38.7)

The matrix elements of the operatmf, between two Bethe states have been obtained similarly
[23].
3.2 Elementary blocks of correlation functions

In this section we consider a more general case of corraldtinctions : the ground state
. E’,E _ .
mean value of any product of the local elementasy2matricesE - = § .1 .

(Yol H Efj’€j|4’g>
j=1
(g Wg)

An arbitraryn-point correlation function can be obtained as a sum of sueimvalues. Using the
solution of the quantum inverse scattering problem, wecedhis problem to the computation of
the ground state mean value of an arbitrary ordered produmboodromy matrix elements,

Fm({;,€}) = (3.8)

(Wg[Te e (&0) - T e (&m)| Ug)
(g | W) ’

To calculate these mean values we first describe generit&lgroduct of the monodromy matrix
elements. For that purpose, one should consider the twanfinly sets of indicesgt = {j : 1 <
j<meg =1} carda”’) =s, max o (§) = Jmax m'nj€a+(j) = jrin and similarlya™ = {j :
1<j<meg =2} carda™) =5, ma>3€0r i) = imax mmlm (J) = jmin- The intersection of
these two sets is not empty and corresponds to the operla@6[$ Consider now the action,

F({g),6]}) = @ ({A}) (3.9)

(0] r] CAT, el (Ans1) -+ Te o (Angm)» @pplying one by one the formulae (2.32)-(2.34). For

EmEm
all the indicesj from the setex™ anda~ one obtains a summation on the corresponding indices
a’j (for j € o, corresponding to the action of the operatéa ) or B(A)) or g (for j e a™,
corresponding to the action of the operatdi@ ) or B(A)). As the product of the monodromy
matrix elements is ordered these summations are also drdedethe corresponding indices should
be taken from the following set#,; = {b: 1 <b<N+m, b# a8, k< j} andA’;={b:1<

13
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b<N+mbs#a,k<j,b#a,k< |} Thus,

(O |_| C(A 51’ N+1) Tg,m (AN+m) =

= 3 G a(Are M) (0L T CA) (3.10)

{aj7 ’} beAerl
The summation is taken over the indiczajsfor j €a” and a’j for j € at such that 1< a; <
N-+j,a €A, 1<aj<N+j, & A’ The functionsG{aj,a,j}()\l,...)\N+m) can then be easily
obtained from the formulae (2.32)-(2.34) taking into addhatA, = &, for a > N:

N+j—1
[ sinh(Ay —A,+1n)
beA.
{a a’}(A -7AN+m):_|_| d(Aaj) ,\J|+j X
jea- b[ll sinh(Aa, —Ap)
bej%’j
N+j—1

M sinh(A, — )‘a’,- +n)

UN
beAJ

% |_| a()\a’j) N+j
jear M sinh(A,—A,)
b=1 ]

beAJerl

(3.11)

Now to calculate the normalized mean value (3.9) we applydéterminant representation
for the scalar product. It should be mentioned that the nurabeperatorsC(A) has to be equal
to the number of the operatoB{A), as otherwise the mean value is zero, and hence the total
number of elements in the sats” anda~ is s+ = m. Taking into account that in (3.9), for
b> N, A, =&, \ one has to consider the following scalar products,

(0 N CAy) M B(AYI0)

beA 1 =1

N
(0] 11 C(Ay)
k=1

?

B(A)]0)

Foy
Il z
H:| -

for all the permitted values cafj, Finally we obtain:

i

Fm({g;,&]}) = Z Hi pa’ s Angm)s (3.12)

|‘| smh(Ek {a 3)

the sum being taken on the same set of indies| as in (3.10). The functionlsl{a_ a,_}({)\}) can
J7
be obtained using (3.11) and the determinant represemsafiio the scalar productsj.

3.3 Two-point functions

The method presented in the last section is quite straighdial and gives formally the pos-
sibility to compute any correlation function. However, #shbeen developed for the computation
of the expectation values of the monomiﬁ;isol(fl) -+ Ta b, (ém), leading to the evaluation of el-
ementary building blocks, whereas the study of the two4dinctions involves big sums of such

14
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monomials. Indeed, let us consider for example the cofoeldtinction{ oy oz, , ). Then, accord-
ing to the solution of the inverse scattering problem (2.2% need to calculate the expectation
value

m+1

(WEAD [(A=D)(&y) |_Le7§a (A=D)(&mr1) |_|<7 (&) [W(HAD)). (3.13)

Since|@({A})) is an eigenvector, the action pfirl.71(&,) on this state merely produces a
numerical factor. However, it is much more complicated taleate the action of]3., -7 (&a).
Indeed, we have to act first with— D) (&;) on (@/({A }) | (or with (A—D)(&,,1) on|@W({A}))),
which gives a sum of states which are no longer eigenvectdtgedransfer matrix, and on which
the multiple action of7 is not simple. In fact, the produf}iL,(A+D)(&,) would lead to a sum of
2™-1 elementary blocks. This is not very convenient, in particak large distanos. Therefore, to
obtain manageable expressions for such correlation fumsitit is of great importance to develop
an alternative and compact way to express the multiple mctighe transfer matrix on arbitrary
states or, in other words, to make an effective re-summatidine corresponding sum of th&2
terms. This can be achieved in the following way :

PROPOSITIONS3.2. Letk, X;,...,Xm and ,,..., Ly be generic parameters. Then the action of
Maz1 7« (%a) on a state of the fornO| n'j\'zlc(uj) can be formally written as

0 N c m P B 1 N de m N 1
SO RO R 1 =0 L Peee

roqur{u} 1=
< ] SmME R i (21, () (2)- (0] []Cz). (319
11, Sinn, ) rl )

i<k

where the integration contour{x} U {u} surrounds the pointsx,,...,xn and ...,y and
does not contain any other pole of the integrand.

One of the simplest applications concerns the generatimgfifin of the two-point correlation
function of the third components of spin, which is definedlas normalized expectation value
(Qm) of the operator

1+K 1

Qﬁmzﬂ( >t ) ﬂysj |‘|9 (&) |‘|19* (&), (3.15)

where| ¢({A})) is an eigenvector of7 (u) in the subspace?M/2-N),| The two-point correlation
function of the third components of local spins in the eiganeor | @({A})) can be obtained in
terms of the second ‘lattice derivative’ and the secondsdévie with respect t& of the generating
function (Q,,) atk = 1:

(07 0Fm) = () + (0 m) —1
02
+ ZW (Qm = Aim1 = Qe riem T 1m 1 >‘ . (3.16)
K=1

IMore precisely, for a set of complex variablgs,, ..., v, }, the notatiorT {v} should be understood in the follow-
ing way: I'{v} is the boundary of a set of poly-diskga(r) in CV, i.e. T{v} = U,_; Za(r) with Za(r) = {ze CN :
|z —val =1, k=1,...,N}.
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Due to the translational invariance of the correlation fioms in the homogeneous model, we will
simply consider the expectation val(@’im). For any given eigenvector, we obtain the following
result:

THEOREM 3.1. Let{A} be an admissible off-diagonal solution of the system of it Bethe

equations, and let us consider the corresponding expectatlue( Q’im) in the inhomogeneous
finite XXZ chain. Then there existg > 0 such that, forlk| < k, the following representations
hold:

N dZ TK(EaHZ} |—|
a: T(&al{A}) ah %( Zal{Z})

det, Q({A}.{Z}{A})
dey, (A}, (A Ay) Ot

The integration contours are such that the only singulastof the integrand which contribute to
the integral are the pointg,,...,émandA, ..., A.

(A= f

r{gyur{ay 1=

x detQy ({z},{A}{z})-

From this result, we can extract a compact representatichddwo-point function oty [30].
Similar expressions exists for other correlation funatiohthe spin operators, and in particular for
the time dependent case [30, 31]. Moreover, this multiplgaar integral representation permits
to relate two very different ways to compute two point catiein functions of the typeg,, =
(Wg|ai“ajﬁ|wg), namely,

(i) to compute the action of local operators on the ground mﬁteﬂll—'g) = |9) and then to
calculate the resulting scalar prodiggt = (LIJg|LTJ> as was explain in the previous sections.

(i) to insert a sum over a complete set of statgs (for instance, a complete set of eigenvectors
of the Hamiltonian) between the local operatof$ and ojﬁ and to obtain the representation for
the correlation function as a sum over matrix elements dalloperators,

O12= Z(W9|‘7ia|q"i>'(q"i|ajp|wg>- (3.18)
|
In fact the above representation as multiple contour imlsgrontains both expansions. Indeed
there is two ways to evaluate the corresponding integraithereto compute the residues in the
poles insidd™, or to compute the residues in the poles within strips of tigtw T outsider .

The first way leads to a representation of the correlatiortfan (o7ay, ;) in terms of the
previously obtained [26j+multiple sums. Evaluation of the above contour integraéims of the
poles outside the contolirgives us the expansidii) of the correlation function (i.e. an expansion
in terms of matrix elements af? between the ground state and all excited states). Thisaelat

holds also for the time dependent case [30, 31].

3.4 Towards the comparison with neutron scattering experirents

In this section, we first briefly review all elements necegdar the computation of the dy-
namical spin-spin correlation functions of the anisotcodieisenberg model, following [35, 36]
and leading in particular to the successful comparison métitron scattering experiments, see the
figure given in the introduction. We start by giving our natas and discussing the eigenstates in
some details. The reference state is taken to be the stét@Mépins up|0) = @M, | 1);. Since the
total magnetization commutes with the Hamiltonian, theoklit space separates into subspaces of
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fixed magnetization, determined from the number of revespatsN. We take the number of sites
M to be even, and® < M, the other sector being accessible through a change in filienee
state.

Eigenstates in each subspace are completely charactéoiz8N < M by a set of rapidities
{Aj}, 1 =1,...,N, solution to the Bethe equations

. . M i i
Fnh()\j+|6/2)] _ (& Sinh(A; — A +id) j=1,...,N (3.19)

sinh(A; —i{/2) k#sinh()\j—)\k—iZ)’

whereA = cos{. In view of the periodicity of the sinh function in the complplane, we can re-
strict the possible values that the rapidities can takedsttip—11/2 < ImA < 17/2, or alternately
define an extended zone scheme in whichndA + i7iZ are identified.

A more practical version of the Bethe equations is obtaingdviiting them in logarithmic

form,
tanh(A;) N tanh(A; — Ay) l;
atar[tan 772 ] Z r[ tan? ]—nm. (3.20)

Here,l; are distinct half-integers which can be viewed as quantumbaus: each choice of a set
{Ij}, j=1,...,N (with I; defined modM)) uniquely specifies a set of rapidities, and therefore an
eigenstate. The energy of a state is given as a function aghfidities by

N —sinf¢ M

whereas the momentum has a simple representation in terthe qliantum numbers,

N sinh()\j+iZ/2) 2 N

The ground state is given U)? = —% +1j,i=1,...,N, and all excited states are in principle
obtained from the different choices of s¢ts}.

To study dynamics, some ingredients have to be added to tthee Besatz: the matrix el-
ements of spin operators between eigenstates (form factémsterms of form factors for the
Fourier-transformed spin operatc#§ = ﬁ |1, €9, the structure factor can be written as a
sum

Shaw) =21 Y [(WlS|W)0(w— ) (3.23)

YTy,

over the whole set of intermediate eigenstats (distinct from the ground statéy)) in a fixed
magnetization subspace. Each term in (3.23) can be obt§3¢ds a product of determinants
of specific matrices, which are fully determined for givea bnd ket eigenstates by a knowledge
of the corresponding sets of rapidities. The analytical mation of this series remains for the
moment out of reach, but numerically, for chains of lengtlew hundred sites, quite feasible.
Moreover, we know that the correlation functions of the &mihain approach their thermodynamic
limit with errors of orderﬁ, hence ifM = 200 for example the error is usually quite acceptable to
make comparison with experiments.
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The strategy to follow is now clear. We compute 8téandS~" structure factors by directly
summing the terms on the right-hand side of equation (3.28) a judiciously chosen subset
of eigenstates. The momentum delta functions are broadenettith € ~ 1/M using d(x) =
ﬁe*xz/fz in order to obtain smooth curves. We scan through the eigessin the following
order. First, we observe that the form factors of the spirratpes between the ground state and
an eigenstatéA } are extremely rapidly decreasing functions of the numbérotés that need to
be inserted in the configuration of the lowest-energy siatthé same base) in order to obtain the
configuration{l } corresponding tdA }. We therefore scan through all bases and configurations
for increasing number of holes, starting from one-holeestéidr S and zero-hole states f& .
Although the number of possible configurations for fixed baiseé number of holes is a rapidly
increasing function of the number of holes, we find that thaltoontributions for fixed bases
also rapidly decrease for increasing hole numbers. Weftireréimit ourselves to states with up
to three holes, corresponding to up to six-particle exoitat We can quantify the quality of the
present computational method by evaluating the sum rutabédongitudinal and transverse form
factors. Namely, by integrating over momentum and frequene should saturate the values

*d
/,w 22% gszz(q’ @) = %1_ (89" = %1 [1_ (- %)Z] (3:29)
*dw 1 1 N
a5 =5 S =g (3.29)

For all intermediate states involving strings, we exgljoitheck that the deviations from the string
hypothesis are small. We find in general that states invglgimings of length higher that two

are admissible solutions to the Bethe equations for higlugimanagnetizations. At zero field,

only two-string states have exponentially small deviatidnand all higher-string states must be
discarded.

The relative contributions to the structure factors frorffiedént bases is very much depen-
dent on the system size, the anisotropy, and the magnetizdti general, we find that two- and
four-particle contributions are sufficient to saturatehweéer 90% of the sum rules in all cases, for
system sizes up tM = 200. Interestingly, however, we find that string states atsatribute no-
ticeably in many cases. For example, the contribution taz#re-field transverse structure factor
coming from intermediate states with one string of lengtb &md up to three holes is of the order
of six or seven percent of the weight , and similar or somevdwér figures are found in other
cases. Strings of length higher than two do not contribugeifstantly. The imperfect saturation
of the sum rules that we obtain in general can be ascribedrdithhigher states in the hierarchy
which are not included in our partial summations, or stdtasdre in principle included, but which
are rejected in view of their deviations from the string hyy@sis. As the proportion of excluded
string states can be rather large (ranging anywhere fromtadifty percent), we believe the latter
explanation to be the correct one. In any case, these resalfgecise enough to be compared suc-
cessfully to different data from neutron scattering experits for several magnetic compounds.
From our results covering the whole Brillouin zone and fiemgy space, it is straightforward to
obtain space-time dependent correlation functions byrgm/€ourier transform:

1

(SaOSIO)e =7 5 [(PolS,|¥) "I (3.26)

Wy
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It is possible to compare these results to known exact seefuitequal-time correlation functions
at short distance, and to the large-distance asymptotig fiiatained from conformal field theory.
This comparison can only be made at zero field, where botlo§e¢sults are known exactly. The
comparison turns out to be extremely good, as can be expfeotadhe high saturation of the sum
rules [36].

4. Correlation functions : infinite chain

In the thermodynamic limitMi — o and at zero magnetic field, the model exhibits three dif-
ferent regimes depending on the value/of3]. For A < —1, the model is ferromagnetic, for
—1< A< 1, the model has a non degenerated anti ferromagnetic giiate] and no gap in the
spectrum (massless regime), while for- 1, the ground state is twice degenerated with a gap in
the spectrum (massive regime). In both cases, the groutaltsia spin zero. Hence the number
of parameters in the ground state vectors is equal to half the dizef the chain. FOM — oo,
these parameters will be distributed in some continuowsvat according to a density functign

4.1 The thermodynamic limit
In this limit, the Bethe equations for the ground state, temitin their logarithmic form, be-
come a linear integral equation for the density distributid theseA’s,

Po,, (@)

A
Prot(A) ’|‘/_AK(0’ —B)pt(B)dB = o 4.1)

where the new real variablesare defined in terms of general spectral paramétati$ferently in
the two domains. From now on, we only describe the masslggaedsee [24] for the other case)
—1< A< 1wherea = A. The densityp is defined as the limit of the quanti UEE and

the functionsK (A ) and pgwt()\) are the derivatives with respect Aoof the functions—% and
potot()\ ):

K _ sin
(@) =3 rsinia +i7) sina —i7) _ _
sinZ for —1<A<1, with{ =in, (4.2)
p6(a) = 7N 7
sinh(a +i3)sinh(a —i3)
M
with ph, (@) = %_Z ph(@ — B~ i%). (4.3)

wheref, = ¢,. The integration limit\ is equal to+oo for —1 < A < 1. The solution for the equa-
tion (4.1) in the homogeneous model where all paramef{gase equal ta]/2, that is the density
for the ground state of the Hamiltonian in the thermodynalinitgt, is given by the following
function [41]:
p(a) = 1
2( cosr(%)

For technical convenience, we will also use the function,

M
Prot(@) = %_ZP(U —B— '%)
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It will be also convenient to consider, without any loss ohgelity, that the inhomogeneity pa-
rameters are contained in the regield < ImBJ- < 0. Using these results, for arg™ function

f (rm-periodic in the domai > 1), sums over all the values dfat the pointa;, 1< j <N,
parameterizing the ground state, can be replaced in thetuymamic limit by an integral:

1 X A

25 f :/ £(a) pr(@) dar + O(M Y.
M = —A

Thus, multiple sums obtained in correlation functions wi#come multiple integrals. Similarly,
it is possible to evaluate the behavior of the determinamhitas for the scalar products and the
norm of Bethe vectors (and in particular their ratios) inlihgt M — .

4.2 Elementary blocks

From the representations as multiple sums of these elemdritacks in the finite chain we
can obtain their multiple integral representations in tre¥iodynamic limit. Let us now consider
separately the two regimes of theXZ model. In the massless regimme= —i{ is imaginary,
the ground state parametersare real and the limit of integration is infinitf = . In this case
we consider the inhomogeneity parametéjr$uch that 0> Im(EJ-) > —(. For the correlation
functions in the thermodynamic limit one obtains the folilogvresult in this regime:

PROPOSITIONA4.1.

sinhZ(&§ —¢&) s " dr, 7oA

Aok A i |
&, . [

({ J J}) / 14

I!] sinh(§, — &) |

j-1
h h(u
ﬂsmh -y Jgi <k|:|ls|n (U —&—i4) I(_Hlsm Ek)>

y » sinhZ (Aa—Ap)
jL—GL I!:|1sm( —§+id) I_l sinh(4; — &) !:LSinh()\a—)‘b_iZ)’

k=j+1

with the parameters of integration ordered in the followingy

{Al,...Am} == {“]I;nax”ullr

min’ “jmin’ T ujmax}'

The homogeneous limit§( = —i{/2,Vj) of the correlation functiorFm({¢;,&j}) can then be
taken in an obvious way. We have obtained similar repretientafor the massive regime, and
also in the presence of a non-zero magnetic field [24]. Far mexgnetic field, these results agree
exactly with the ones obtained by Jimbo and Miwa in [55], gdimparticularg-KZ equations. It
means that for zero magnetic field, the elementary block®wtlation functions indeed satisfy
g-KZ equations. Recently, more algebraic representatidnsolutions of theq-KZ equations
have been obtained that correspond to the above correfatimtions [56, 57, 58, 59]. From the
finite chain representation for the two-point functionsiiso possible to obtain multiple integral
representations for that case as well, in particular foir thenerating function [26, 28]. They
correspond different huge re-summations and symmetizaif the corresponding elementary
blocks, as in the finite chain situation [26]. Moreover, tlase of time dependent correlation
functions as also been obtained [30, 31]. Finally, let ug nioat at the free fermion point, all the
results presented here lead, in a very elementary way,gadirknow results [27, 32, 34].
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5. Exact and asymptotic results

5.1 Exact results atA =1/2

Up to now, two exact results have been obtained for the casmisbtropyA = 1/2 : the
exact value of the emptiness formation probability for @y distancan [28] and the two point
function of the third component of spin [33]. These two restibllow from the above multiple
integral representations for which, due to the determisémicture of the integrand, the corre-
sponding multiple integrals can be separated and henciidyptomputed for this special value
of the anisotropy.

5.1.1 The emptiness formation probability

This correlation functiorr(m) (the probability to find in the ground state a ferromagnetic
string of lengthm) is defined as the following expectation value

m1-—
=[] L%y, (5.1)

where|)y) denotes the normalized ground state. In the thermodynamiic(M — ), this quan-
tity can be expressed as a multiple integral witintegrations [54, 55, 8, 23, 24].

PROPOSITIONS.1. ForA=cos{,0< { < 1, 1(m) = Iimfl,nfmﬁi% t(m,{;}), where
1 [ Za({AL{ED) i m
1) = = d . dmA :
rmA&h =5 4 H sinh(Ea—&,) € <2Z sinhZ7(A; — fk)> ’ -2
a<b

m m _; Ao inh A& i
Zul((A} (€)= [1 [ S bnl0).

det“(smr()\ g@éﬂ?u - |z))

|‘| sinh(&a— Eb)

(5.3)

The proof is given in [26]. Due to the determinant structuiréhe integrand, the integrals can be
separated and computed for the special cﬁase% (¢ =m/3):

PROPOSITIONS.2. Leté, = ¢, —im/6ande b = €a— &, We obtain,

- : inhZl
~1)"z" M sinh¥.,. ™ 1 3sinhk
T(m,{sj})=( ?n2 |_L £ ba |—| — -dety, 7352 g (5.4)
2 AL sinhe,, bt sinhe, sinh=&
m m—1
1\ ™ ™1 (3k+ 1)1
T(m):<§> I!:Lm (5.5)

Observe that the quantifim = [y (3k+1)!/(m+K)! is the number of alternating sign matrices
of sizem. This result was conjectured in [67].
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5.1.2 The two point function of g*

The two point functions can be obtained, as in the finite clséumtion, from a generating
function (Q, (m)); in the thermodynamic limit, we use the following multiplgegral representa-
tion [33]:

m k=" dmz N men m ¢m(zj)
— d"A [ d™ A -
=2 i r{ f/z} @) R_/iZ [ T g
n m sinh(z; — A —1J) m m sinh(A, —z; —i{)
le{ 24| I_l smh(z -z —iQ) }jzlll{t()\j’zj)ﬂl sinh(zk—zjj—iZ)}

ﬁﬁ s_inh()\k—Zj —i.Z) - det, <;—z)> . (5.6)

J-hkh sinh(A, — Ay —id) 2 sinhZ(A
Here,
= _ —isin{ _sinh(z—i%)
Amcost, N =giensmz-A-10° *? T gmenis ©F

and the integrals over the variablgsare taken with respect to a closed contbuwrhich surrounds
the point—i{ /2 and does not contain any other singularities of the inteyrd he equation (5.6)

is valid for the homogeneou$§X Z chain with arbitrary—1 < A < 1. If we consider the inhomoge-
neousX XZ model with inhomogeneitieg,, ..., ém, then one should replace in the representation
(5.6) the functionp™ in the following way:

. m sinh(z— &, —i{) m T sinh(A — &)
A= "simz—gy ¢ M2 - -0

(5.8)

In order to come back to the homogeneous case, one shod=seti{/2,k=1,...,min (5.8).
In the inhomogeneous model, the integration confowsurrounds the points,,...,¢m, and the
integrals overz; are therefore equal to the sum of the residues of the intdgrathese simple

poles. It turns out that again for the special CAS-@% integrals can be separated and computed to

give :

PrRoOPOSITIONS.3.

m m h m R
Q) = 25 [] e 3 ™ et
2™ b sinfP(§a— &) o (&= {zy Juig, 1 ™
‘V+‘ n
y sinh(§, — &a— ') sinh(&— &)
ay, bey sinf? (&, — &a+ I ’

D&, — &) ‘d»(f,- -&—%)
sinh}
sinh%X

({8, }.{& D = , O(X) =

D& - &+F)| D& -&)
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Here the sum is taken with respect to all partitions of the{ggtinto two disjoint subset§s,, } U
{&, } of cardinality n and m- n respectively. The first n lines and columns of the mabfiX are
associated with the parametefsc {¢,, }. The remaining lines and columns are associated with

&e{é }

Thus, we have obtained an explicit answer for the generdétingtion (Q, (m)) of the inho-
mogeneousX XZ model. It is also possible to check that the above sum oveitipas remains
indeed finite in the homogeneous lingjt — 0.

5.2 Asymptotic results

An important issue is the analysis of the multiple integegdresentations of correlation func-
tions for large distances. There it means analyzing asyioptehavior ofm-fold integrals for
m large. An interesting example to study in this respect ivipled by the emptiness formation
probability. This correlation function reduces to a singlementary block. Moreover, we already
described its exact value for an anisotrafpy= % in the previous section. In fact, it is possible
to obtain the asymptotic behavior ofm) using the saddle-point method for arbitrary values of
the anisotropyA > —1 . This was performed for the first time in [27] in the case ekffermions
(A=0), but it can be applied to the general case as well. We praseathe results in the massless
and massive regimes [29, 34].

To apply the saddle-point method to the emptiness formatrobability, it is convenient to
express its integral representation in the following form:

7(m) = / d™ G({A}) @S, (5.10)
9
with
S )= fblog[sinh(Aa—Ab+ ) sinh(a— Ay — )]
1m . :
+ aa;log[smh()\a—l- n/2) sinh(A; —n/2)]
1 —2imr\m (deto(A}, &)
T 51.__.|§mq/2 log [(sinhn) gbsinh(éa— Eb)} (5.11)
and
Gm({A})=_lim detn [ﬁt()\j’fk)]. (5.12)

&.&nin/2  detnp(A}, &)

In (5.10), the integration domaif is such that the variable of integratiady, ...,An are ordered
in the interval@” = [-A, Ay] (i.e. =N <Ap <--- < An < A, in the massless case, and/\, <
IA; <--- <iAm <A\, in the massive case).

The main problem in the saddle point analysis is that, aipsa do not know any asymptotic
equivalent of the quantit,(A) whenm — . Nevertheless, in the case of zero magnetic field,
it is still possible to compute the asymptotic behavior ofl(§ in the leading order, provided we
make the following hypothesis: we assume that the integodirfl. 10) admits a maximum for a
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certain valuel;, ..., A, of the integration variables,,. .., Ay, that, for largem, the distribution of
these parameters, ..., A}, can be described by a density functiosfA’) of the form

Ps()\jl) = n'{inw ﬁ (5.13)

on the symmetric interval-A,A] and that, at the leading ordernm we can replace the sums over
the set of parametefs\'} by integrals weighted with the densipg(A’).

First, it is easy to determine the maximum of the functig({A}). Indeed, Iet{ﬂ} be
solution of the system

0, Sn({A})=0, 1<j<m (5.14)

In the limitm — o, if we suppose again that the parameﬁelr,s .. ,Zm become distributed accord-
ing to a certain densitys(A) and that sums over trﬁej become integrals over this density, the
system (5.14) turns again into a single integral equatiopdothat can be solved explicitly in the
case of zero magnetic field. It gives the maximungaf{A }) whenm — o2,

The second step is to show that the fadBy({A }) gives always a negligible contribution
compared tcSn({j\ }) at this order inm, at least for any distribution of the variablgs satisfying
the previous hypothesis of regularity. We obtain,

lim |ogGm({A P = (5.15)

for any distribution of{A } with good properties of regularity, in particular for theddée point.
This means that, at the main ordemmthe factorGn,({A }) does not contribute to the value of the
maximum of the integrand.

Finally we obtain the following result concerning the asyatic behaviour ofr (m) for m— o
(see [29, 34)):

S9) = rm()w, (5.16)

7 & e sinhng)
2 n; n cosh2nl)’

dw sinh% (- ) cosit &
4 ZR o ) sinh™@ sinh % coshw?’

(A=cosh > 1), (5.17)

Iog (-1<A=cos( <1). (5.18)

It coincides with the exact known results obtained in [68] &7the free fermion point and in
[67, 28] atA = 1/2, and is in agreement with the expected (infinite) value énlfing limit. Simi-

lar techniques can be applied to the two point function. Hagehe result that has been extracted
so far is only the absence of the gaussian term. Unfortunatel do not know up to now how to
extract the expected power law corrections to the gausshavior from this saddle point analy-
sis. More powerful methods will certainly be needed to gahier.

2At this main order irm, there exists a unique solution of the integral equatioBfpand we know it corresponds
to a maximum becaus®,({A }) — —co on the boundary of.
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Conclusion and perspectives

In this article, we have reviewed recent results concertiimgcomputation of correlation
functions in theXXZ chain by the methods of the inverse scattering problem amdldebraic
Bethe ansatz. In conclusion, we would like to discuss somsppetives and problems to be
solved.

One of the most interesting open problems is to prove theocovdl field theory predictions
[69, 70] concerning the asymptotic behavior of the corretafunctions. This is certainly a very
important issue not only for physical applications but dism a theoretical view point. Moreover,
it also would open the route towards the generalization ®htlethods presented here to quantum
integrable models of field theory. We have seen that in pdaticcases, the multiple integral
representations enable for a preliminary asymptotic amalyNevertheless, this problem remains
one of the main challenges in the topics that have been 8eskim this article.

A possible way to solve this problem would be to find the thedymamic limit of the master
equations (like the one obtained for the two point corretafiunctions). It is natural to expect
that, in this limit, one should obtain a representation Fase correlation functions in terms of a
functional integral, which could eventually be estimatedl&rge time and distance.

Note that the master equation shows a direct analytic osldietween the multiple integral
representations and the form factor expansions for theledion functions. It seems likely that
similar representations exist for other models solvablalggbraic Bethe ansatz. It would be in
particular very interesting to obtain an analogue of thist@aequation in the case of the field
theory models, which could provide an analytic link betwetort distance and long distance
expansions of their correlation functions. Preliminargulés in this direction have been obtained
recently in [71] for the quantum non-linear Schroedingedeio

From the condensed matter view point there is also quite dotaeest in the extension of
the results presented here for different other models.cludes spin chains with impurities [72]
or with open boundaries [73, 74], and also electronic moliledsthe Hubbard model for which
progress in the understanding of the space of states arssaggeo apply our method.
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