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1. Introduction

Seventy five years after its discovery, Bethe famous ansatz [1] for the solution of the Heisen-
berg model [2] has created a wide, active and incredibly fruitful area of scientific activity in the
domain of Mathematical Physics connected both to pure Mathematics and to the forefront of sev-
eral problems of modern Theoretical Physics ranging from condensed matter theory to high energy
physics. These success could certainly be traced back to theincreasing importance of non pertur-
bative effects in several domains of Physics and the corresponding need for exact methods that
became crucial for their deep understanding. Along the years Bethe ansatz has been playing a cen-
tral role in this and has been extended and generalized in various ways that enable to tackle more
and more sophisticated models in low dimensions of statistical mechanics and field theory, see
[3, 4, 5, 6, 7, 8] and references therein. In particular, the invention of the algebraic Bethe ansatz, by
Faddeev, Sklyanin and Takhtajan [9, 10], merging developments from one dimensional quantum
spin chains, two dimensional models of statistical mechanics and the classical inverse scattering
methods of soliton theory opened a way to construct and solvenew models while providing the
Mathematical framework for them [11, 12, 13, 14] leading to the discovery of the theory of quan-
tum groups [15, 16, 17, 18]. New extensions, like the Sklyanin separation of variables method
[19, 20, 21] and its link to the BaxterQ operator [3] will certainly continue to push the field of
integrable models forward to more success in the future.

In this lecture I would like to address what is today in my opinion the main challenging
problem in the theory of quantum integrable models (after computing their spectrum), namely to
obtain exact and manageable representations for their correlation functions. This issue is of great
importance not only from theoretical and mathematical viewpoints but also for applications to
relevant physical situations. Although several importantadvances have been obtained over the
years, we are still looking for a general method that could give a systematic solution to this prob-
lem. The purpose of this article is to give a review of an approach to this question elaborated in
[22, 23, 24, 25] and in [26, 27, 28, 29], together with a brief account of the more recent progress
obtained in [30, 31, 32, 33, 34, 35, 36, 37].

In our search for a general method to compute correlation functions of quantum integrable
models our strategy was to consider a simple but representative model where it is possible to
develop new tools to solve this problem. Such an archetype ofquantum integrable lattice models
is provided by the originalXXX andXXZspin-12 Heisenberg [2] chain in a magnetic field solved
by Bethe and his followers [1, 38, 39, 40, 41, 42, 3, 4, 5, 6, 7].

TheXXZspin-12 Heisenberg chain in a magnetic field is a quantum interactingmodel defined
on a one-dimensional lattice with Hamiltonian,

H = H(0)�hSz; (1.1)

H(0) = M

∑
m=1

n
σ x

mσ x
m+1+σ y

mσ y
m+1+∆(σ z

mσ z
m+1�1)o ; (1.2)

Sz = 1
2

M

∑
m=1

σ z
m; [H(0);Sz℄ = 0: (1.3)
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Here∆ is the anisotropy parameter,h denotes the magnetic field, andσ x;y;z
m are the local spin op-

erators (in the spin-12 representation) associated with each sitemof the chain. The quantum space
of states isH = 
M

m=1Hm, whereHm � C 2 is called local quantum space, withdimH = 2M .
The operatorsσ x;y;z

m act as the corresponding Pauli matrices in the spaceHm and as the identity
operator elsewhere. For simplicity, the length of the chainM is chosen to be even and we assume
periodic boundary conditions; note however that the open boundary conditions case can be con-
sidered as well [73, 74]. Since the simultaneous reversal ofall spins is equivalent to a change of
sign of the magnetic field, it is enough to consider the caseh� 0.

The first task to solve such a model is to describe the spectrumof its Hamiltonian. The method
to compute eigenvectors and associated energy levels of theHeisenberg spin chains goes back to
Bethe in 1931 [1, 39, 40, 41, 42] and is known as the Bethe ansatz. An algebraic version of it has
been invented in the late 70’s by Faddeev, Sklyanin and Taktajan [9, 10].

The next fundamental problem is to compute matrix elements of spin operatorsσ x;y;z
m in the

eigenvectors basis ofH and then all correlation functions of spin operators : at zero temperature
they reduce to the average value of products of spin operators in the lowest energy level state
(the ground state). Let us denote byjψg i the normalized ground state vector. LetEε 0m;εm

m be the
elementary operators acting at sitemas the 2�2 matricesEε 0;ε

lk
= δl ;ε 0δk;ε . Any n-point correlation

function can be reconstructed as a sum of the following elementary blocks,

Fm(fε j ;ε 0jg; h) = hψg j m

∏
j=1

Eε 0j ;ε j
j

jψg i: (1.4)

The knowledge of such correlation functions was for a long time restricted to the free fermion
point ∆ = 0, a case for which nevertheless tremendous works have been necessary to obtain full
answers [43, 44, 45, 46, 47, 48, 49, 50, 51]. Going beyond the free Fermion case has been a major
challenge for the last twenty years.

For integrable quantum spin chains and lattice models [3, 7], the first attempts to go beyond
free Fermion models relied on the algebraic Bethe ansatz techniques [9, 10] and was undertaken by
Izergin and Korepin (see e.g. [52, 53, 7] and references therein). Their approach yields formulae
for the correlation functions written as vacuum expectation values of some determinants depending
on so-called “dual fields" which were introduced to overcomethe huge combinatorial sums arising
in particular from the action of local operators on Bethe states. However these formulae are not
completely explicit, since these “dual fields" cannot be eliminated in a simple way from the final
result.

In the last fifteen years, two main approaches to a more explicit computation of form factors
and correlation functions have been developed, mainly for lattice models.

One of these approaches was initiated by Jimbo, Miwa and their collaborators [54, 8] and en-
ables, using some hypothesis, to compute form factors and correlation functions of quantum spin
chains of infinite length (and in their massive regime) by expressing them in terms of traces ofq-
deformed vertex operators over an irreducible highest weight representation of the corresponding
quantum affine algebra. These traces turn out to satisfy an axiomatic system of equations called
q-deformed Knizhnik-Zamolodchikov (q-KZ) equations, the solutions of which can be expressed
in terms of multiple integral formulae. Using these equations similar formulae can be conjectured
in the massless regime [55]. Recently, a more algebraic representation for the solution of these
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q-deformed Knizhnik-Zamolodchikov equations have been obtained for the XXX and XXZ (and
conjectured for the XYZ) spin 1/2 chains; in these representations, all elementary blocks of the
correlation functions can be expressed in terms of some transcendental functions [56, 57, 58, 59].
A detailed review of the approach can be found in [58]. The most recent advances along these
lines are described in this workshop in the seminars of Miwa and Smirnov.

These results together with their extension to non-zero magnetic field have been obtained
in 1999 [23, 24] using the algebraic Bethe ansatz framework [9, 10, 6] and the actual resolu-
tion of the so-called quantum inverse scattering problem [23, 25]. At zero magnetic field it gives
a complete proof of the multiple integral representations obtained in [54, 8, 55] both for mas-
sive and massless regimes. Hence, together with the works [54, 8, 55], it also gives a proof that
correlation functions of the XXZ (inhomogeneous) chain indeed satisfy (reduced)q-deformed
Knizhnik-Zamolodchikov equations, an essential ingredient in the promising approach presented
in this workshop by Miwa and Smirnov. Moreover, time or temperature dependent correlation
functions can also be computed [30, 31, 60] using such techniques.

This method allows also for the computation of the matrix elements of the local spin operators
and the above elementary blocks of the correlation functions for the finite chain. Hence, thermo-
dynamic limit can be considered separately. In particular,using both analytical results from Bethe
ansatz for these matrix elements of the spin operators [22, 23, 24, 25] and numerical methods to
take the summation over intermediate states it has been possible recently to compute [35, 36] dy-
namical structure factors (i.e., Fourier transform of the dynamical spin-spin correlation functions)
for finite XXZHeisenberg spin chain in a magnetic field (with for example 500 or 1000 sites) and
to compare successfully these theoretical results with actual neutron scattering experiments, for
example on KCuF3. As motivation for the method to be presented in this review article, I would
like to give here this comparison :

Here, the functionS(q;ω) is the Fourier transform of the dynamical spin-spin correlation
function. The Bethe ansatz curve (on the left) is computed here for a chain of 500 sites while
the experimental curve obtained by A. Tennant and his team [61] by inelastic neutron scattering
experiments on KCuF3 is presented on the right. Colors indicate the height of the functionS(q;ω)
(picture and experimental data courtesy A. Tennant).
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This article is meant to be a rather brief review of the problem of correlation functions. More
detailed account of the results sketched here together withtheir proofs can be found in the original
articles [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and in [33,34, 35, 36, 37].

This article organized as follows. The space of states of theHeisenberg spin chain will be
described in the next section. It includes a brief introduction to the algebraic Bethe ansatz and
to various tools of importance in the computation of correlation functions, like in particular the
solution of the quantum inverse scattering problem and the determinant representations of the
scalar products of states. Section 3 is devoted to the correlation functions of the finite chain. In
particular we describe the method leading to the computation of the dynamical structure factor
presented in the above figure. Correlation functions in the thermodynamic limit are studied in the
section 4. In the section 5 we describe several exact and asymptotic results together with some
open problems. Conclusions and perspectives are given in the last section.

2. The space of states : algebraic Bethe ansatz

The space of states is of dimension 2M. As can be observed from the definition of the Hamil-
tonian in (1.1), the construction of its eigenvectors is rather non trivial. The purpose of this section
is to briefly explain the basics of the knowledge of the space of states in the framework of the
algebraic Bethe ansatz, leading in particular to the determination of the spectrum of (1.1).

2.1 Algebraic Bethe ansatz

The algebraic Bethe ansatz originated from the fusion of theoriginal (coordinate) Bethe ansatz
and of the inverse scattering method in its Hamiltonian formulation [9, 10, 6]. At the root of the
algebraic Bethe ansatz method is the construction of the quantum monodromy matrix. In the case
of theXXZchain (1.1) the monodromy matrix is a 2�2 matrix,

T(λ ) = A(λ ) B(λ )
C(λ ) D(λ )! ; (2.1)

with operator-valued entriesA;B;C andD which depend on a complex parameterλ (spectral pa-
rameter) and act in the quantum space of statesH of the chain. One of the main property of these
operators is that the trace ofT, namelyA+D, commutes with the HamiltonianH, while operators
B andC can be used as creation operators of respectively eigenvectors and dual eigenvectors of
A+D and hence ofH itself. The monodromy matrix is defined as the following ordered product,

T(λ ) = LM(λ ) : : :L2(λ )L1(λ ); (2.2)

whereLn(λ ) denotes the quantumL-operator at the siten of the chain:

Ln(λ ) = sinh(λ + η
2 σ z

n) sinhη σ�
n

sinhη σ+
n sinh(λ � η

2 σ z
n)! : (2.3)

The parameterη is related to the anisotropy parameter as∆ = coshη . It follows from this defini-
tion that the monodromy matrix is an highly non local operator in terms of the local spin operators

5
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σ x;y;z
n . However, the commutation relations between the operatorsA;B;C;D can be computed in a

simple way. They are given by the quantumR-matrix,

R(λ ;µ) =0BBB�1 0 0 0
0 b(λ ;µ) c(λ ;µ) 0
0 c(λ ;µ) b(λ ;µ) 0
0 0 0 1

1CCCA (2.4)

where

b(λ ;µ) = sinh(λ �µ)
sinh(λ �µ +η) ; c(λ ;µ) = sinh(η)

sinh(λ �µ +η) ; (2.5)

The R-matrix is a linear operator in the tensor productV1
V2, where eachVi is isomorphic to
C2, and depends generically on two spectral parametersλ1 andλ2 associated to these two vector
spaces. It is denoted byR12(λ1;λ2). Such anR-matrix satisfies the Yang-Baxter equation,

R12(λ1;λ2) R13(λ1;λ3) R23(λ2;λ3) = R23(λ2;λ3) R13(λ1;λ3) R12(λ1;λ2): (2.6)

It gives the following commutation relations among the operators entries of the monodromy ma-
trix,

R12(λ ;µ) T1(λ ) T2(µ) = T2(µ) T1(λ ) R12(λ ;µ); (2.7)

with the tensor notationsT1(λ ) = T(λ )
 Id andT2(µ) = Id
T(µ). These commutation relations
imply in particular that the transfer matrices, defined asT (λ ) = trT(λ ) = A(λ )+D(λ ); (2.8)

commute for different values of the spectral parameter[T (λ );T (µ)℄ = 0 and also withSz,[T (λ );Sz℄ = 0. The Hamiltonian (1.2) ath= 0 is related toT (λ ) by the ‘trace identity’

H(0) = 2sinhη
dT (λ )

dλ
T �1(λ )

λ= η
2

�2M coshη : (2.9)

Therefore, the spectrum of the Hamiltonian (1.1) is given bythe common eigenvectors of the
transfer matrices and ofSz.

For technical reasons, it is actually convenient to introduce a slightly more general object, the
twisted transfer matrixTκ(λ ) = A(λ )+κD(λ ); (2.10)

whereκ is a complex parameter. The particular case ofTκ(λ ) at κ = 1 corresponds to the usual
(untwisted) transfer matrixT (λ ). It will be also convenient to consider an inhomogeneous version
of theXXZchain, for which

T1:::M(λ ;ξ1; : : : ;ξM) = LM(λ �ξM +η=2) : : :L1(λ �ξ1+η=2): (2.11)

Here,ξ1; : : : ;ξM are complex parameters (inhomogeneity parameters) attached to each site of the
lattice. The homogeneous model (1.1) corresponds to the case whereξ j = η=2 for j = 1; : : : ;M.

6
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In the framework of algebraic Bethe ansatz, an arbitrary quantum state can be obtained from
the vectors generated by multiple action of operatorsB(λ ) on the reference vectorj0i with all
spins up (respectively by multiple action of operatorsC(λ ) on the dual reference vectorh0j),jψ i= N

∏
j=1

B(λ j)j0i; hψ j= h0j N

∏
j=1

C(λ j); N = 0;1; : : : ;M: (2.12)

2.2 Description of the spectrum

Let us consider here the subspaceH (M=2�N) of the space of statesH with a fixed num-
berN of spins down. In this subspace, the eigenvectorsjψκ (fλg)i (respectivelyhψκ (fλg) j) of
the twisted transfer matrixTκ(µ) can be constructed in the form (2.12), where the parameters
λ1; : : : ;λN satisfy the system of twisted Bethe equationsYκ(λ j jfλg) = 0; j = 1; : : : ;N: (2.13)

Here, the functionYκ is defined asYκ(µ jfλg) = a(µ) N

∏
k=1

sinh(λk�µ +η)+κ d(µ) N

∏
k=1

sinh(λk�µ �η); (2.14)

anda(λ ), d(λ ) are the eigenvalues of the operatorsA(λ ) andD(λ ) on the reference statej0i. In
the normalization (2.3) and for the inhomogeneous model (2.11), we have

a(λ ) = M

∏
a=1

sinh(λ �ξa+η); d(λ ) = M

∏
a=1

sinh(λ �ξa): (2.15)

The corresponding eigenvalue ofTκ(µ) on jψκ (fλg)i (or on a dual eigenvector) is

τκ(µ jfλg) = a(µ) N

∏
k=1

sinh(λk�µ +η)
sinh(λk�µ) +κ d(µ) N

∏
k=1

sinh(µ �λk+η)
sinh(µ �λk) : (2.16)

The solutions of the system of twisted Bethe equations (2.13) have been analyzed in [62]. In
general, not all of these solutions correspond to eigenvectors ofTκ(µ).
DEFINITION 2.1. A solutionfλg of the system (2.13) is calledadmissibleif

d(λ j) N

∏
k=1
k6= j

sinh(λ j �λk+η) 6= 0; j = 1; : : : ;N; (2.17)

and un-admissibleotherwise. A solution is calledoff-diagonal if the corresponding parameters
λ1; : : : ;λN are pairwise distinct, anddiagonalotherwise.

One of the main result of [62] is that, for generic parametersκ andfξg, the set of the eigenvectors
corresponding to the admissible off-diagonal solutions ofthe system of twisted Bethe equations
(2.13) form a basis in the subspaceH (M=2�N). It has been proven in [31] that this result is still
valid in the homogeneous caseξ j = η=2, j = 1; : : : ;N, at least ifκ is in a punctured vicinity of
the origin (i.e. 0< jκ j < κ0 for κ0 small enough). Note however that, for specific values ofκ

7
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andfξg, the basis of the eigenvectors inH (M=2�N) may include some states corresponding to
un-admissible solutions of (2.13) (in particular in the homogeneous limit atκ = 1).

At κ = 1, it follows from the trace identity (2.9) that the eigenvectors of the transfer matrix
coincide, in the homogeneous limit, with the ones of the Hamiltonian (1.1). The corresponding
eigenvalues in the case of zero magnetic field can be obtainedfrom (2.9), (2.16):

H(0) jψ(fλg)i = ( N

∑
j=1

E(λ j)) � jψ(fλg)i; (2.18)

where the (bare) one-particle energyE(λ ) is equal to

E(λ ) = 2sinh2η
sinh(λ + η

2 )sinh(λ � η
2 ) : (2.19)

2.3 Drinfel’d twist and F-basis

As already noted, the operatorsA, B,C, D are highly non local in terms of local spin operators.
There exists however an interesting description of these operators by means of a change of basis
of the space of states. In particular, this basis will provide a direct access to the scalar products of
states. The root of this new basis is provided by the notion ofDrinfel’d twist [18] associated to
theR-matrix of theXXZchain. It leads to the notion of factorizingF-matrices. To be essentially
self-contained we briefly recall here their main propertiesand refer to [22] for more details and
proofs.

DEFINITION 2.2. For inhomogeneity parametersξ j in generic positions and for any integer n
one can associate to any elementσ of the symmetric group Sn of order n a unique R-matrix
Rσ

1:::n(ξ1; : : : ;ξn), denoted for simplicity Rσ1:::n, constructed as an ordered product (depending on
σ ) of the elementary R-matrices Ri j (ξi ;ξ j).
We have the following property for arbitrary integern :

PROPOSITION2.1.

Rσ
1:::n T1:::n(λ ;ξ1; : : : ;ξn) = Tσ(1):::σ(n)(λ ;ξσ(1); : : : ;ξσ(n)) Rσ

1:::n: (2.20)

We can now define the notion of factorizingF-matrix :

DEFINITION 2.3. A factorizing F-matrix associated to a given elementary R matrix is an invert-
ible matrix F1:::n(ξ1; : : : ;ξn), defined for arbitrary integer n, satisfying the following relation for
any elementσ of Sn:

Fσ(1):::σ(n)(ξσ(1); : : : ;ξσ(n)) Rσ
1:::n(ξ1; : : : ;ξn) = F1:::n(ξ1; : : : ;ξn): (2.21)

In other words, such anF-matrix factorizes the correspondingR-matrix for arbitrary integern.
Taking into account the fact that the parametersξn are in one to one correspondence with the
vector spacesHn, we can adopt simplified notations such that

F1:::n(ξ1; : : : ;ξn) = F1:::n;
Fσ(1):::σ(n)(ξσ(1); : : : ;ξσ(n)) = Fσ(1):::σ(n):

8
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THEOREM 2.1. [22] For the XXZ model with inhomogeneity parametersξn in generic positions,
there exist a factorizing, triangular F-matrix. It is constructed explicitly from the R-matrix.

It has two important properties :

PROPOSITION2.2. [22] In the F-basis, the monodromy matrixeTeT1:::M(λ ;ξ1; : : : ;ξM) = F1:::MT1:::M(λ ;ξ1; : : : ;ξM) F�1
1:::M ; (2.22)

is totally symmetric under any simultaneous permutations of the lattice sites i and of the corre-
sponding inhomogeneity parametersξi.

The second property gives the explicit expressions of the monodromy matrix in theF-basis.
For the XXZ-12 model, the quantum monodromy operator is a 2�2 matrix with entriesA; B; C; D
which are obtained as sums of 2M�1 operators which themselves are products ofM local spin
operators on the quantum chain. As an example, theB operator is given as

B1:::M(λ ) = N

∑
i=1

σ�
i Ωi + ∑

i 6= j 6=k

σ�
i (σ�

j σ+
k ) Ωi jk + higher terms; (2.23)

where the matricesΩi, Ωi jk , are diagonal operators acting respectively on all sites but i, on all sites
but i; j;k, and the higher order terms involve more and more exchange spin terms likeσ�

j σ+
k .

It means that theB operator returns one spin somewhere on the chain, this operation being how-
ever dressed non-locally and with non-diagonal operators by multiple exchange terms of the type
σ�

j σ+
k .

So, whereas these formulas in the original basis are quite involved, their expressions in the
F-basis simplify drastically :

PROPOSITION2.3. [22] The operators D, B and C in the F-basis are given by the formulaseD1:::M(λ ;ξ1; : : : ;ξM) = M

i=1

 
b(λ ;ξi) 0

0 1

![i℄ : (2.24)eB1:::M(λ ) = M

∑
i=1

σ�
i c(λ ;ξi) 


j 6=i

 
b(λ ;ξ j) 0

0 b�1(ξ j ;ξi)![ j℄ : (2.25)eC1:::M(λ ) = M

∑
i=1

σ+
i c(λ ;ξi) 


j 6=i

 
b(λ ;ξ j) b�1(ξi;ξ j) 0

0 1

![ j℄ ; (2.26)

and the operatoreA can be obtained from quantum determinant relations.

We wish first to stress that while the operatorseA; eB; eC; eD satisfy the same quadratic com-
mutation relations asA; B; C; D, they are completely symmetric under simultaneous exchange
of the inhomogeneity parameters and the of the spacesHn. It really means that the factorizing
F-matrices we have constructed solve the combinatorial problem induced by the non-trivial action
of the permutation groupSM given by theR-matrix. In theF-basis the action of the permutation
group on the operatorseA; eB; eC; eD is trivial.

9
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Further, it can be shown that the pseudo-vacuum vector is left invariant, namely, it is an
eigenvector of the totalF-matrix with eigenvalue 1; in particular, the algebraic Bethe ansatz can
be carried out also in theF-basis. Hence, a direct computation of Bethe eigenvectors and of their
scalar products in thisF-basis is made possible, while it was a priori very involved in the original
basis. There, only commutation relations between the operatorsA; B; C; D can be used, leading
(see [7]) to very intricate sums over partitions.

2.4 Solution of the quantum inverse problem

The very simple expressions of the monodromy matrix operators entriesD, B, C in the F-
basis suggests that any local operatorEε 0j ;ε j

j
, acting in a local quantum spaceH j at site j, can be

expressed in terms of the entries of the monodromy matrix. This is the so-called quantum inverse
scattering problem. The solution to this problem was found in [23, 25]:

THEOREM 2.2.

Eε 0j ;ε j
j

= j�1

∏
α=1

T (ξα) �Tε j ;ε 0j (ξ j) � j

∏
α=1

T �1(ξα): (2.27)

The proof of this theorem is elementary (see [23, 25]) and hence it can be obtained for a large
class of lattice integrable models. It relies essentially on the property that theR-matrix R(λ ;µ)
reduces to the permutation operator forλ = µ . An immediate consequence of this theorem is that
the operatorsA, B, C, andD generate the space of all operators acting inH .

2.5 Scalar products

We give here the expressions for the scalar product of an eigenvector of the twisted transfer
matrix with any arbitrary state of the form (2.12). These scalar products can be expressed as deter-
minant of rather simple matrices. The root of all these determinants is in fact the determinant rep-
resentation for the partition function of the 6-vertex model with domain wall boundary conditions
[63]. Let us first define, for arbitrary positive integersn;n0 (n� n0) and arbitrary sets of variables
λ1; : : : ;λn, µ1; : : : ;µn andν1; : : : ;νn0 such thatfλg � fνg, then�n matrix Ωκ(fλg;fµgjfνg) as(Ωκ) jk(fλg;fµgjfνg) = a(µk) t(λ j ;µk) n0

∏
a=1

sinh(νa�µk+η)�κ d(µk) t(µk;λ j) n0
∏
a=1

sinh(νa� µk�η); (2.28)

with

t(λ ;µ) = sinhη
sinh(λ �µ)sinh(λ �µ +η) : (2.29)

10
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PROPOSITION2.4. [64, 23, 30]Let fλ1; : : : ;λNg be a solution of the system of twisted Bethe
equations (2.13), andµ1; : : : ;µN be generic complex numbers. Then,h0j N

∏
j=1

C(µ j) jψκ (fλg)i = hψκ (fλg) j N

∏
j=1

B(µ j)j0i= N
∏

a=1
d(λa) N

∏
a;b=1

sinh(µb�λa)
N
∏

a>b
sinh(λa�λb)sinh(µb�µa) �det

N

 
∂

∂λ j
τκ(µkjfλg)!

(2.30)= N
∏

a=1
d(λa)

N
∏

a>b
sinh(λa�λb)sinh(µb�µa) �det

N
Ωκ(fλg;fµgjfλg):

(2.31)

These equations are valid for any arbitrary complex parameterκ , in particular atκ = 1. In this case
we may omit the subscriptκ and denote(ψ ;τ ;Y ;Ω) = (ψκ ;τκ ;Yκ ;Ωκ)jκ=1. If the setsfλg andfµg are different, the eigenvectorjψκ (fλg)i is orthogonal to the dual eigenvectorhψκ (fµg) j.
Otherwise we obtain a formula for the norm of the corresponding vector [65, 66, 23],hψκ (fλg) jψκ (fλg)i = N

∏
a=1

d(λa)
N
∏

a;b=1
a6=b

sinh(λa�λb) �det
N

Ωκ(fλg;fλgjfλg)
= (�1)N

N
∏

a=1
d(λa)

N
∏

a;b=1
a6=b

sinh(λa�λb) �det
N

�
∂

∂λk
Yκ(λ j jfλg)� :

2.6 Action of operatorsA, B, C, D on a general state

An important step of the computation of correlation function is to express the action of any
product of local operators on any Bethe eigenvector. From the solution of the quantum inverse
scattering problem, this is given by the successive action of A, B, C, D operators on a vector
constructed by action ofC operators on the reference vector. Action ofA, B, C, D on such a vector
are well known (see for example [7]). They can be written in the following form:h0j N

∏
k=1

C(λk)A(λN+1) =N+1

∑
a0=1

a(λa0) N
∏

k=1
sinh(λk�λa0 +η)

N+1
∏
k=1
k6=a0 sinh(λk�λa0) h0jN+1

∏
k=1
k6=a0 C(λk); (2.32)

h0j N

∏
k=1

C(λk)D(λN+1) =N+1

∑
a=1

d(λa) N
∏

k=1
sinh(λa�λk+η)

N+1
∏
k=1
k6=a

sinh(λa�λk) h0jN+1

∏
k=1
k6=a

C(λk): (2.33)

11
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The action of the operatorB(λ ) can be obtained similarly,h0j N

∏
k=1

C(λk)B(λN+1) = N+1

∑
a=1

d(λa) N
∏

k=1
sinh(λa�λk+η)

N+1
∏
k=1
k6=a

sinh(λa�λk) �
�N+1

∑
a0=1
a0 6=a

a(λa0)
sinh(λN+1�λa0 +η) N+1

∏
j=1
j 6=a

sinh(λ j �λa0 +η)
N+1
∏
j=1

j 6=a;a0 sinh(λ j �λa0) h0j N+1

∏
k=1

k6=a;a0 C(λk); (2.34)

and the action ofC is obvious.

3. Correlation functions : finite chain

To compute correlation functions of some product of local operators, the following successive
problems have to be addressed:(i) determination of the ground statehψg j, (ii) evaluation of the
action of the product of the local operators on it, and(iii ) computation of the scalar product of the
resulting state withjψg i. Using the solution of the quantum inverse scattering problem together
with the explicit determinant formulas for the scalar products and the norm of the Bethe state, one
sees that matrix elements of local spin operators and correlation functions can be expressed as
(multiple) sums of determinants [24]. It should be stressedthat this result is purely algebraic and
is valid for finite chains of arbitrary lengthM.

3.1 Matrix elements of local operators

We begin with the calculation of the one-point functions. These results follow directly from
the solution of the quantum inverse scattering problem, theabove action of operatorsA, B, C and
D, and the determinant representation of the scalar products. We consider,

F�
N (m;fµ jg;fλkg) = h0j N+1

∏
j=1

C(µ j) σ�
m

N

∏
k=1

B(λk) j0i; (3.1)

and

F+
N (m;fλkg;fµ jg) = h0j N

∏
k=1

C(λk) σ+
m

N+1

∏
j=1

B(µ j) j0i; (3.2)

wherefλkgn andfµ jgn+1 are solutions of Bethe equations.

PROPOSITION3.1. For two Bethe states with spectral parametersfλkgN andfµ jgN+1, the matrix
element of the operatorσ�

m can be represented as a determinant,

F�
N (m;fµ jg;fλkg) = φm�1(fµ jg)

φm�1(fλkg) N+1
∏
j=1

sinh(µ j �ξm+η)
N
∏

k=1
sinh(λk�ξm+η) �� detN+1 H�(m;fµ jg;fλkg)

∏
N+1�k> j�1

sinh(µk�µ j) ∏
1�β<α�N

sinh(λβ �λα) ; (3.3)

12
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φm(fλkg) = N

∏
k=1

m

∏
j=1

b�1(λk;ξ j); (3.4)

and the(N+1)� (N+1) matrix H� is defined as

H�
ab(m) = ϕ(η)

ϕ(µa�λb)�a(λb)N+1

∏
j=1
j 6=a

ϕ(µ j �λb+η)�d(λb)N+1

∏
j=1
j 6=a

ϕ(µ j �λb�η)� (3.5)

for b< N+1;
H�

aN+1(m) = ϕ(η)
ϕ(µa�ξm+η)ϕ(µa�ξm) : (3.6)

The matrix element F+N (m;fλkg;fµ jg) we get,

F+
N (m;fλkg;fµ jg) = φm(λk)φm�1(λk)

φm�1(µ j)φm(µ j)F�
N (m;fµ jg;fλkg): (3.7)

The matrix elements of the operatorσ z
m between two Bethe states have been obtained similarly

[23].

3.2 Elementary blocks of correlation functions

In this section we consider a more general case of correlation functions : the ground state
mean value of any product of the local elementary 2�2 matricesEε 0;ε

lk
= δl ;ε 0δk;ε :

Fm(fε j ;ε 0jg) = hψg j m
∏
j=1

Eε 0j ;ε j
j

jψg ihψg jψgi : (3.8)

An arbitraryn-point correlation function can be obtained as a sum of such mean values. Using the
solution of the quantum inverse scattering problem, we reduce this problem to the computation of
the ground state mean value of an arbitrary ordered product of monodromy matrix elements,

Fm(fε j ;ε 0jg) = φ�1
m (fλg)hψg jTε1;ε 01(ξ1) : : :Tεm;ε 0m(ξm)jψg ihψg jψgi ; (3.9)

To calculate these mean values we first describe genericallythe product of the monodromy matrix
elements. For that purpose, one should consider the two following sets of indices,α+ = f j : 1�
j � m; ε j = 1g, card(α+) = s0, maxj2α+( j) � j 0max, minj2α+( j) � j 0min, and similarlyα� = f j :
1� j � m; ε 0j = 2g, card(α�) = s, maxj2α�( j) � jmax, minj2α�( j) � jmin. The intersection of
these two sets is not empty and corresponds to the operatorsB(ξ j). Consider now the action,h0j N

∏
k=1

C(λk)Tε1;ε 01(λN+1) : : :Tεm;ε 0m(λN+m), applying one by one the formulae (2.32)-(2.34). For

all the indicesj from the setsα+ andα� one obtains a summation on the corresponding indices
a0j (for j 2 α+, corresponding to the action of the operatorsA(λ ) or B(λ )) or a j (for j 2 α�,
corresponding to the action of the operatorsD(λ ) or B(λ )). As the product of the monodromy
matrix elements is ordered these summations are also ordered and the corresponding indices should
be taken from the following sets,A j = fb : 1� b� N+m; b 6= ak;a0k; k< jg andA0

j = fb : 1�
13



P
o
S
(
S
o
l
v
a
y
)
0
0
8

Correlation function Jean - Michel MAILLET

b� N+m; b 6= a0k; k< j; b 6= ak; k� jg. Thus,h0j N

∏
k=1

C(λk)Tε1;ε 01(λN+1) : : :Tεm;ε 0m(λN+m) == ∑faj ;a0jgGfaj ;a0jg(λ1; : : : ;λN+m)h0j ∏
b2Am+1

C(λb) (3.10)

The summation is taken over the indicesa j for j 2 α� and a0j for j 2 α+ such that 1� a j �
N+ j; a j 2A j ; 1� a0j �N+ j; a0j 2A0

j . The functionsGfaj ;a0j g(λ1; : : :λN+m) can then be easily

obtained from the formulae (2.32)-(2.34) taking into acount thatλa = ξa�N for a> N:

Gfaj ;a0jg(λ1; : : : ;λN+m) = ∏
j2α� d(λaj

)N+ j�1

∏
b=1

b2A j

sinh(λaj
�λb+η)

N+ j

∏
b=1

b2A0 j

sinh(λaj
�λb) �

� ∏
j2α+ a(λa0j )N+ j�1

∏
b=1

b2A0 j

sinh(λb�λa0j +η)
N+ j

∏
b=1

b2A j+1

sinh(λb�λa0j ) : (3.11)

Now to calculate the normalized mean value (3.9) we apply thedeterminant representation
for the scalar product. It should be mentioned that the number of operatorsC(λ ) has to be equal
to the number of the operatorsB(λ ), as otherwise the mean value is zero, and hence the total
number of elements in the setsα+ andα� is s+ s0 = m. Taking into account that in (3.9), for
b> N; λb = ξb�N one has to consider the following scalar products,h0j ∏

b2Am+1

C(λb) N
∏

k=1
B(λk)j0ih0j N

∏
k=1

C(λk) N
∏

k=1
B(λk)j0i ;

for all the permitted values ofa j ;a0j . Finally we obtain:

Fm(fε j ;ε 0jg) = 1

∏
k<l

sinh(ξk�ξl) ∑faj ;a0jgHfaj ;a0j g(λ1; : : : ;λN+m); (3.12)

the sum being taken on the same set of indicesa j ;a0j as in (3.10). The functionsHfaj ;a0jg(fλg) can

be obtained using (3.11) and the determinant representations for the scalar products.

3.3 Two-point functions

The method presented in the last section is quite straightforward and gives formally the pos-
sibility to compute any correlation function. However, it has been developed for the computation
of the expectation values of the monomialsTa1b1

(ξ1) � � �Tambm
(ξm), leading to the evaluation of el-

ementary building blocks, whereas the study of the two-point functions involves big sums of such
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monomials. Indeed, let us consider for example the correlation functionhσ z
1 σ z

m+1i. Then, accord-
ing to the solution of the inverse scattering problem (2.27), we need to calculate the expectation
value hψ(fλg) j(A�D)(ξ1) � m

∏
a=2
T (ξa) � (A�D)(ξm+1) �m+1

∏
b=1

T �1(ξb) jψ(fλg)i: (3.13)

Sincejψ(fλg)i is an eigenvector, the action of∏m+1
b=1 T �1(ξb) on this state merely produces a

numerical factor. However, it is much more complicated to evaluate the action of∏m
a=2T (ξa).

Indeed, we have to act first with(A�D)(ξ1) on hψ(fλg) j (or with (A�D)(ξm+1) on jψ(fλg)i),
which gives a sum of states which are no longer eigenvectors of the transfer matrix, and on which
the multiple action ofT is not simple. In fact, the product∏m

a=2(A+D)(ξa) would lead to a sum of
2m�1 elementary blocks. This is not very convenient, in particular at large distancem. Therefore, to
obtain manageable expressions for such correlation functions, it is of great importance to develop
an alternative and compact way to express the multiple action of the transfer matrix on arbitrary
states or, in other words, to make an effective re-summationof the corresponding sum of the 2m�1

terms. This can be achieved in the following way :

PROPOSITION3.2. Let κ , x1; : : : ;xm and µ1; : : : ;µN be generic parameters. Then the action of

∏m
a=1Tκ(xa) on a state of the formh0j∏N

j=1C(µ j) can be formally written ash0j N

∏
j=1

C(µ j) m

∏
a=1

Tκ(xa) = 1
N!

I
Γfxg[Γfµg N

∏
j=1

dzj

2π i
� m

∏
a=1

τκ(xajfzg) � N

∏
a=1

1Yκ(zajfzg)� N

∏
j;k=1
j<k

sinh(zj �zk)
sinh(µ j �µk) �det

N
Ωκ(fzg;fµgjfzg) � h0j N

∏
j=1

C(zj); (3.14)

where the integration contourΓfxg[Γfµg surrounds the points1 x1; : : : ;xm and µ1; : : : ;µN and
does not contain any other pole of the integrand.

One of the simplest applications concerns the generating function of the two-point correlation
function of the third components of spin, which is defined as the normalized expectation valuehQκ

l ;mi of the operator

Qκ
l ;m = m

∏
n=l

�
1+κ

2
+ 1�κ

2
�σ z

n

�= l�1

∏
j=1

T (ξ j) � m

∏
j=l

Tκ(ξ j) � m

∏
j=1

T �1(ξ j); (3.15)

wherejψ(fλg)i is an eigenvector ofT (µ) in the subspaceH (M=2�N). The two-point correlation
function of the third components of local spins in the eigenvector jψ(fλg)i can be obtained in
terms of the second ‘lattice derivative’ and the second derivative with respect toκ of the generating
functionhQκ

l ;mi at κ = 1:hσ z
l σ z

l+mi= hσ z
l i+ hσ z

l+mi�1+2
∂ 2

∂κ2hQκ
l ;l+m�Qκ

l ;l+m�1�Qκ
l+1;l+m+Qκ

l+1;l+m�1 i
κ=1

: (3.16)

1More precisely, for a set of complex variablesfν1; : : : ;νlg, the notationΓfνg should be understood in the follow-
ing way: Γfνg is the boundary of a set of poly-disksDa(r) in CN , i.e. Γfνg = [l

a=1D̄a(r) with D̄a(r) = fz2 CN :jzk�νaj= r; k= 1; : : : ;Ng.
15
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Due to the translational invariance of the correlation functions in the homogeneous model, we will
simply consider the expectation valuehQκ

1;mi. For any given eigenvector, we obtain the following
result:

THEOREM 3.1. Let fλg be an admissible off-diagonal solution of the system of untwisted Bethe
equations, and let us consider the corresponding expectation valuehQκ

1;mi in the inhomogeneous
finite XXZ chain. Then there existsκ0 > 0 such that, forjκ j < κ0, the following representations
hold: hQκ

1;mi= 1
N!

I
Γfξg[Γfλg N

∏
j=1

dzj

2π i
� m

∏
a=1

τκ(ξajfzg)
τ(ξajfλg) � N

∏
a=1

1Yκ(zajfzg)�det
N

Ωκ(fzg;fλgjfzg) � detN Ω(fλg;fzgjfλg)
detN Ω(fλg;fλgjfλg) ; (3.17)

The integration contours are such that the only singularities of the integrand which contribute to
the integral are the pointsξ1; : : : ;ξm andλ1 : : : ;λN.

From this result, we can extract a compact representation for the two-point function ofσ z [30].
Similar expressions exists for other correlation functions of the spin operators, and in particular for
the time dependent case [30, 31]. Moreover, this multiple contour integral representation permits
to relate two very different ways to compute two point correlation functions of the type,g12 =hΨgjσ α

i σ β
j
jΨgi, namely,

(i) to compute the action of local operators on the ground stateσ α
i σ β

j
jΨgi = jΨ̃i and then to

calculate the resulting scalar productg12 = hΨgjΨ̃i as was explain in the previous sections.
(ii) to insert a sum over a complete set of statesjΨii (for instance, a complete set of eigenvectors
of the Hamiltonian) between the local operatorsσ α

i andσ β
j

and to obtain the representation for
the correlation function as a sum over matrix elements of local operators,

g12 = ∑
i

hΨgjσ α
i jΨii � hΨi jσ β

j jΨgi: (3.18)

In fact the above representation as multiple contour integrals contains both expansions. Indeed
there is two ways to evaluate the corresponding integrals : either to compute the residues in the
poles insideΓ, or to compute the residues in the poles within strips of the width iπ outsideΓ.

The first way leads to a representation of the correlation function hσ z
1σ z

m+1i in terms of the
previously obtained [26]m-multiple sums. Evaluation of the above contour integral interms of the
poles outside the contourΓ gives us the expansion(ii) of the correlation function (i.e. an expansion
in terms of matrix elements ofσ z between the ground state and all excited states). This relation
holds also for the time dependent case [30, 31].

3.4 Towards the comparison with neutron scattering experiments

In this section, we first briefly review all elements necessary for the computation of the dy-
namical spin-spin correlation functions of the anisotropic Heisenberg model, following [35, 36]
and leading in particular to the successful comparison withneutron scattering experiments, see the
figure given in the introduction. We start by giving our notations and discussing the eigenstates in
some details. The reference state is taken to be the state with all spins up,j0i=
M

i=1j "ii . Since the
total magnetization commutes with the Hamiltonian, the Hilbert space separates into subspaces of
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fixed magnetization, determined from the number of reversedspinsN. We take the number of sites
M to be even, and 2N � M, the other sector being accessible through a change in the reference
state.

Eigenstates in each subspace are completely characterizedfor 2N � M by a set of rapiditiesfλ jg, j = 1; :::;N, solution to the Bethe equations"
sinh(λ j + iζ=2)
sinh(λ j � iζ=2)#M = N

∏
k6= j

sinh(λ j �λk+ iζ )
sinh(λ j �λk� iζ ) ; j = 1; :::;N (3.19)

where∆ = cosζ . In view of the periodicity of the sinh function in the complex plane, we can re-
strict the possible values that the rapidities can take to the strip�π=2< Imλ � π=2, or alternately
define an extended zone scheme in whichλ andλ + iπZ are identified.

A more practical version of the Bethe equations is obtained by writing them in logarithmic
form,

atan

�
tanh(λ j)
tan(ζ=2)�� 1

M

N

∑
k=1

atan

�
tanh(λ j �λk)

tanζ

�=π
I j

M
: (3.20)

Here,I j are distinct half-integers which can be viewed as quantum numbers: each choice of a setfI jg, j = 1; :::;N (with I j defined mod(M)) uniquely specifies a set of rapidities, and therefore an
eigenstate. The energy of a state is given as a function of therapidities by

E = J
N

∑
j=1

�sin2ζ
cosh2λ j �cosζ

�h(M
2
�N); (3.21)

whereas the momentum has a simple representation in terms ofthe quantum numbers,

q= N

∑
j=1

i ln

"
sinh(λ j + iζ=2)
sinh(λ j � iζ=2)#= πN+ 2π

M

N

∑
j=1

I j mod 2π: (3.22)

The ground state is given byI0
j = �N+1

2 + j, j = 1; :::;N, and all excited states are in principle
obtained from the different choices of setsfI jg.

To study dynamics, some ingredients have to be added to the Bethe Ansatz: the matrix el-
ements of spin operators between eigenstates (form factors). In terms of form factors for the
Fourier-transformed spin operatorsSa

q = 1p
M ∑M

j=1eiq jSa
j , the structure factor can be written as a

sum

Saā(q;ω) = 2π ∑
Ψ 6=Ψg

jhΨgjSa
qjΨij2δ (ω �ωΨ) (3.23)

over the whole set of intermediate eigenstatesjΨi (distinct from the ground statejΨgi) in a fixed
magnetization subspace. Each term in (3.23) can be obtained[23] as a product of determinants
of specific matrices, which are fully determined for given bra and ket eigenstates by a knowledge
of the corresponding sets of rapidities. The analytical summation of this series remains for the
moment out of reach, but numerically, for chains of length a few hundred sites, quite feasible.
Moreover, we know that the correlation functions of the finite chain approach their thermodynamic
limit with errors of order1

M , hence ifM = 200 for example the error is usually quite acceptable to
make comparison with experiments.
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The strategy to follow is now clear. We compute theSzz andS�+ structure factors by directly
summing the terms on the right-hand side of equation (3.23) over a judiciously chosen subset
of eigenstates. The momentum delta functions are broadenedto width ε � 1=M usingδε(x) =

1p
πε e�x2=ε2

in order to obtain smooth curves. We scan through the eigenstates in the following
order. First, we observe that the form factors of the spin operators between the ground state and
an eigenstatefλg are extremely rapidly decreasing functions of the number ofholes that need to
be inserted in the configuration of the lowest-energy state (in the same base) in order to obtain the
configurationfIg corresponding tofλg. We therefore scan through all bases and configurations
for increasing number of holes, starting from one-hole states forSzz, and zero-hole states forS�+.
Although the number of possible configurations for fixed baseand number of holes is a rapidly
increasing function of the number of holes, we find that the total contributions for fixed bases
also rapidly decrease for increasing hole numbers. We therefore limit ourselves to states with up
to three holes, corresponding to up to six-particle excitations. We can quantify the quality of the
present computational method by evaluating the sum rules for the longitudinal and transverse form
factors. Namely, by integrating over momentum and frequency, we should saturate the valuesZ ∞�∞

dω
2π

1
M ∑

q
Szz(q;ω) = 1

4
�hSzi2 = 1

4

�
1� (1� 2N

M
)2
�

(3.24)Z ∞�∞

dω
2π

1
M ∑

q
S�+(q;ω) = 1

2
�hSzi= N

M
: (3.25)

For all intermediate states involving strings, we explicitly check that the deviations from the string
hypothesis are small. We find in general that states involving strings of length higher that two
are admissible solutions to the Bethe equations for high enough magnetizations. At zero field,
only two-string states have exponentially small deviations δ , and all higher-string states must be
discarded.

The relative contributions to the structure factors from different bases is very much depen-
dent on the system size, the anisotropy, and the magnetization. In general, we find that two- and
four-particle contributions are sufficient to saturate well over 90% of the sum rules in all cases, for
system sizes up toM = 200. Interestingly, however, we find that string states alsocontribute no-
ticeably in many cases. For example, the contribution to thezero-field transverse structure factor
coming from intermediate states with one string of length two and up to three holes is of the order
of six or seven percent of the weight , and similar or somewhatlower figures are found in other
cases. Strings of length higher than two do not contribute significantly. The imperfect saturation
of the sum rules that we obtain in general can be ascribed either to higher states in the hierarchy
which are not included in our partial summations, or states that are in principle included, but which
are rejected in view of their deviations from the string hypothesis. As the proportion of excluded
string states can be rather large (ranging anywhere from zero to fifty percent), we believe the latter
explanation to be the correct one. In any case, these resultsare precise enough to be compared suc-
cessfully to different data from neutron scattering experiments for several magnetic compounds.
From our results covering the whole Brillouin zone and frequency space, it is straightforward to
obtain space-time dependent correlation functions by inverse Fourier transform:hSa

j+1(t)Sā
1(0)ic = 1

M ∑
Ψ 6=Ψg

jhΨgjSa
qΨ
jΨij2e�iqΨ j�iωΨt : (3.26)
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It is possible to compare these results to known exact results for equal-time correlation functions
at short distance, and to the large-distance asymptotic form obtained from conformal field theory.
This comparison can only be made at zero field, where both setsof results are known exactly. The
comparison turns out to be extremely good, as can be expectedfrom the high saturation of the sum
rules [36].

4. Correlation functions : infinite chain

In the thermodynamic limit,M ! ∞ and at zero magnetic field, the model exhibits three dif-
ferent regimes depending on the value of∆ [3]. For ∆ < �1, the model is ferromagnetic, for�1< ∆ < 1, the model has a non degenerated anti ferromagnetic groundstate, and no gap in the
spectrum (massless regime), while for∆ > 1, the ground state is twice degenerated with a gap in
the spectrum (massive regime). In both cases, the ground state has spin zero. Hence the number
of parametersλ in the ground state vectors is equal to half the sizeM of the chain. ForM ! ∞,
these parameters will be distributed in some continuous interval according to a density functionρ .

4.1 The thermodynamic limit

In this limit, the Bethe equations for the ground state, written in their logarithmic form, be-
come a linear integral equation for the density distribution of theseλ ’s,

ρtot(α)+Z Λ�Λ
K(α �β )ρtot(β )dβ = p00tot

(α)
2π

; (4.1)

where the new real variablesα are defined in terms of general spectral parametersλ differently in
the two domains. From now on, we only describe the massless regime (see [24] for the other case)�1< ∆ < 1 whereα = λ . The densityρ is defined as the limit of the quantity 1

M(λ j+1�λ j ) , and

the functionsK(λ ) and p00tot
(λ ) are the derivatives with respect toλ of the functions�θ (λ)

2π and
p0tot

(λ ):
K(α) = sin2ζ

2π sinh(α + iζ )sinh(α � iζ )
p00(α) = sinζ

sinh(α + i ζ
2)sinh(α� i ζ

2) for �1< ∆ < 1; with ζ = iη ; (4.2)

with p00tot
(α) = 1

M

M

∑
i=1

p00(α�βk� i
ζ
2
); (4.3)

whereβk = ξk. The integration limitΛ is equal to+∞ for �1< ∆ < 1. The solution for the equa-
tion (4.1) in the homogeneous model where all parametersξk are equal toη=2, that is the density
for the ground state of the Hamiltonian in the thermodynamiclimit, is given by the following
function [41]:

ρ(α) = 1
2ζ cosh(πα

ζ )
For technical convenience, we will also use the function,

ρtot(α) = 1
M

M

∑
i=1

ρ(α�βk� i
ζ
2
):
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It will be also convenient to consider, without any loss of generality, that the inhomogeneity pa-
rameters are contained in the region�ζ < Imβ j < 0. Using these results, for anyC ∞ function
f (π-periodic in the domain∆ > 1), sums over all the values off at the pointα j , 1� j � N,
parameterizing the ground state, can be replaced in the thermodynamic limit by an integral:

1
M

N

∑
j=1

f (α j) = Z Λ�Λ
f (α)ρtot(α)dα +O(M�1):

Thus, multiple sums obtained in correlation functions willbecome multiple integrals. Similarly,
it is possible to evaluate the behavior of the determinant formulas for the scalar products and the
norm of Bethe vectors (and in particular their ratios) in thelimit M ! ∞.

4.2 Elementary blocks

From the representations as multiple sums of these elementary blocks in the finite chain we
can obtain their multiple integral representations in the thermodynamic limit. Let us now consider
separately the two regimes of theXXZ model. In the massless regimeη = �iζ is imaginary,
the ground state parametersλ are real and the limit of integration is infinityΛ = ∞. In this case
we consider the inhomogeneity parametersξ j such that 0> Im(ξ j) > �ζ . For the correlation
functions in the thermodynamic limit one obtains the following result in this regime:

PROPOSITION4.1.

Fm(fε j ;ε 0jg) =∏
k<l

sinhπ
ζ (ξk�ξl)

sinh(ξk�ξl) s0
∏
j=1

∞�iζZ�∞�iζ

dλ j

2iζ

m

∏
j=s0+1

∞Z�∞

i
dλ j

2ζ

m

∏
a=1

m

∏
k=1

1
sinhπ

ζ (λa�ξk) ∏
j2α� j�1

∏
k=1

sinh(µ j �ξk� iζ ) m

∏
k= j+1

sinh(µ j �ξk)!
∏
j2α+ j�1

∏
k=1

sinh(µ 0j �ξk+ iζ ) m

∏
k= j+1

sinh(µ 0j �ξk)!∏
a>b

sinhπ
ζ (λa�λb)

sinh(λa�λb� iζ ) ;
with the parameters of integration ordered in the followingwayfλ1; : : :λmg= fµ 0j 0max

; : : : ;µ 0j 0min
;µ jmin

; : : : ;µ jmax
g:

The homogeneous limit (ξ j = �iζ=2; 8 j) of the correlation functionFm(fε j ;ε 0jg) can then be
taken in an obvious way. We have obtained similar representations for the massive regime, and
also in the presence of a non-zero magnetic field [24]. For zero magnetic field, these results agree
exactly with the ones obtained by Jimbo and Miwa in [55], using in particularq-KZ equations. It
means that for zero magnetic field, the elementary blocks of correlation functions indeed satisfy
q-KZ equations. Recently, more algebraic representations of solutions of theq-KZ equations
have been obtained that correspond to the above correlationfunctions [56, 57, 58, 59]. From the
finite chain representation for the two-point function, it is also possible to obtain multiple integral
representations for that case as well, in particular for their generating function [26, 28]. They
correspond different huge re-summations and symmetrization of the corresponding elementary
blocks, as in the finite chain situation [26]. Moreover, the case of time dependent correlation
functions as also been obtained [30, 31]. Finally, let us note that at the free fermion point, all the
results presented here lead, in a very elementary way, to already know results [27, 32, 34].
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5. Exact and asymptotic results

5.1 Exact results at∆ = 1=2

Up to now, two exact results have been obtained for the case ofanisotropy∆ = 1=2 : the
exact value of the emptiness formation probability for arbitrary distancem [28] and the two point
function of the third component of spin [33]. These two results follow from the above multiple
integral representations for which, due to the determinantstructure of the integrand, the corre-
sponding multiple integrals can be separated and hence explicitly computed for this special value
of the anisotropy.

5.1.1 The emptiness formation probability

This correlation functionτ(m) (the probability to find in the ground state a ferromagnetic
string of lengthm) is defined as the following expectation value

τ(m) = hψgj m

∏
k=1

1�σ z
k

2
jψgi; (5.1)

wherejψgi denotes the normalized ground state. In the thermodynamic limit (M !∞), this quan-
tity can be expressed as a multiple integral withm integrations [54, 55, 8, 23, 24].

PROPOSITION5.1. For ∆ = cosζ , 0< ζ < π, τ(m) = lim
ξ1;:::ξm!� iζ

2

τ(m;fξ jg), where

τ(m;fξ jg) = 1
m!

∞Z�∞

Zm(fλg;fξg)
m
∏

a<b
sinh(ξa�ξb)detm

 
i

2ζ sinhπ
ζ (λ j �ξk)! dmλ ; (5.2)

Zm(fλg;fξg) = m
∏

a=1

m
∏

b=1

sinh(λa�ξb)sinh(λa�ξb�iζ )
sinh(λa�λb�iζ ) �� detm

� �i sinζ
sinh(λ j�ξk)sinh(λ j�ξk�iζ )�

m
∏

a>b
sinh(ξa�ξb) : (5.3)

The proof is given in [26]. Due to the determinant structure of the integrand, the integrals can be
separated and computed for the special case∆ = 1

2 (ζ = π=3):

PROPOSITION5.2. Let ξk = εk� iπ=6 andεab = εa� εb, we obtain,

τ(m;fε jg) = (�1)m2�m
2

2m2

m

∏
a>b

sinh3εba

sinhεba

m

∏
a;b=1
a6=b

1
sinhεab

�detm

 
3sinh

ε jk

2

sinh
3ε jk

2

! ; (5.4)

τ(m) =�1
2

�m2 m�1

∏
k=0

(3k+1)!(m+k)! : (5.5)

Observe that the quantityAm= ∏m�1
k=0 (3k+1)!=(m+k)! is the number of alternating sign matrices

of sizem. This result was conjectured in [67].
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5.1.2 The two point function ofσ z

The two point functions can be obtained, as in the finite chainsituation, from a generating
functionhQκ(m)i; in the thermodynamic limit, we use the following multiple integral representa-
tion [33]:hQκ(m)i= m

∑
n=0

κm�n

n!(m�n)! I
Γf�iζ=2g dmz(2π i)m

ZR�iζ

dnλ
ZR dm�nλ � m

∏
j=1

ϕm(zj)
ϕm(λ j)

n

∏
j=1

(
t(zj ;λ j) m

∏
k=1

sinh(zj �λk� iζ )
sinh(zj �zk� iζ )) m

∏
j=n+1

(
t(λ j ;zj) m

∏
k=1

sinh(λk�zj � iζ )
sinh(zk�zj � iζ ))

m

∏
j=1

m

∏
k=1

sinh(λk�zj � iζ )
sinh(λk�λ j � iζ ) �detm

 
i

2ζ sinhπ
ζ (λ �z)! : (5.6)

Here,

∆ = cosζ ; t(z;λ ) = �i sinζ
sinh(z�λ )sinh(z�λ � iζ ) ; ϕ(z) = sinh(z� i ζ

2)
sinh(z+ i ζ

2) ; (5.7)

and the integrals over the variableszj are taken with respect to a closed contourΓ which surrounds
the point�iζ=2 and does not contain any other singularities of the integrand. The equation (5.6)
is valid for the homogeneousXXZchain with arbitrary�1< ∆ < 1. If we consider the inhomoge-
neousXXZmodel with inhomogeneitiesξ1; : : : ;ξm, then one should replace in the representation
(5.6) the functionϕm in the following way:

ϕm(z)! m

∏
b=1

sinh(z�ξb� iζ )
sinh(z�ξb) ; ϕ�m(λ )! m

∏
b=1

sinh(λ �ξb)
sinh(λ �ξb� iζ ) : (5.8)

In order to come back to the homogeneous case, one should setξk =�iζ=2, k= 1; : : : ;m in (5.8).
In the inhomogeneous model, the integration contourΓ surrounds the pointsξ1; : : : ;ξm, and the
integrals overzj are therefore equal to the sum of the residues of the integrand in these simple
poles. It turns out that again for the special case∆ = 1

2 integrals can be separated and computed to
give :

PROPOSITION5.3.hQκ(m)i= 3m

2m2

m

∏
a>b

sinh3(ξa�ξb)
sinh3(ξa�ξb) m

∑
n=0

κm�n ∑fξg=fξγ+g[fξγ�gjγ+ j=n

det
m

Φ̂(n)
� ∏

a2γ+ ∏
b2γ� sinh(ξb�ξa� iπ

3 )sinh(ξa�ξb)
sinh2(ξb�ξa+ iπ

3 ) ;
Φ̂(n)(fξγ+g;fξγ�g) =0BBB� Φ(ξ j �ξk) Φ(ξ j �ξk� iπ

3 )
Φ(ξ j �ξk+ iπ

3 ) Φ(ξ j �ξk) 1CCCA ; Φ(x) = sinhx
2

sinh3x
2

:
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Here the sum is taken with respect to all partitions of the setfξg into two disjoint subsetsfξγ+g[fξγ�g of cardinality n and m�n respectively. The first n lines and columns of the matrixΦ̂(n) are
associated with the parametersξ 2 fξγ+g. The remaining lines and columns are associated with
ξ 2 fξγ�g.

Thus, we have obtained an explicit answer for the generatingfunction hQκ(m)i of the inho-
mogeneousXXZ model. It is also possible to check that the above sum over partitions remains
indeed finite in the homogeneous limitξk ! 0.

5.2 Asymptotic results

An important issue is the analysis of the multiple integral representations of correlation func-
tions for large distances. There it means analyzing asymptotic behavior ofm-fold integrals for
m large. An interesting example to study in this respect is provided by the emptiness formation
probability. This correlation function reduces to a singleelementary block. Moreover, we already
described its exact value for an anisotropy∆ = 1

2 in the previous section. In fact, it is possible
to obtain the asymptotic behavior ofτ(m) using the saddle-point method for arbitrary values of
the anisotropy∆ >�1 . This was performed for the first time in [27] in the case of free fermions
(∆= 0), but it can be applied to the general case as well. We present here the results in the massless
and massive regimes [29, 34].

To apply the saddle-point method to the emptiness formationprobability, it is convenient to
express its integral representation in the following form:

τ(m) = ZD dmλ Gm(fλg) em2Sm(fλg); (5.10)

with

Sm(fλg) =� 1
m2

m

∑
a>b

log[sinh(λa�λb+η) sinh(λa�λb�η)℄+ 1
m

m

∑
a=1

log[sinh(λa+η=2) sinh(λa�η=2)℄+ 1
m2 lim

ξ1:::ξm!η=2
log
h� �2iπ

sinhη

�m
�

detρ(λ j ;ξk)�2

∏
a6=b

sinh(ξa�ξb)i (5.11)

and

Gm(fλg) = lim
ξ1:::ξm!η=2

detm
�

i
2π t(λ j ;ξk)�

detmρ(λ j ;ξk) : (5.12)

In (5.10), the integration domainD is such that the variable of integrationλ1; : : : ;λm are ordered
in the intervalC = [�Λh;Λh℄ (i.e. �Λh < λ1 < � � � < λm < Λh in the massless case, and�iΛh <
iλ1 < � � �< iλm < iΛh in the massive case).

The main problem in the saddle point analysis is that, a priori, we do not know any asymptotic
equivalent of the quantityGm(λ ) whenm! ∞. Nevertheless, in the case of zero magnetic field,
it is still possible to compute the asymptotic behavior of (5.10) in the leading order, provided we
make the following hypothesis: we assume that the integrandof (5.10) admits a maximum for a
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certain valueλ 0
1; : : : ;λ 0

m of the integration variablesλ1; : : : ;λm, that, for largem, the distribution of
these parametersλ 0

1; : : : ;λ 0
m can be described by a density functionρs(λ 0) of the form

ρs(λ 0
j) = lim

m!∞

1
m(λ 0

j+1�λ 0
j) ; (5.13)

on the symmetric interval[�Λ;Λ℄ and that, at the leading order inm, we can replace the sums over
the set of parametersfλ 0g by integrals weighted with the densityρs(λ 0).

First, it is easy to determine the maximum of the functionSm(fλg). Indeed, letfλ̃g be
solution of the system

∂λ j
Sm(fλ̃g) = 0; 1� j �m: (5.14)

In the limit m!∞, if we suppose again that the parametersλ̃1; : : : ; λ̃m become distributed accord-
ing to a certain densitỹρs(λ ) and that sums over thẽλ j become integrals over this density, the
system (5.14) turns again into a single integral equation for ρ̃s, that can be solved explicitly in the
case of zero magnetic field. It gives the maximum ofSm(fλg) whenm! ∞2.

The second step is to show that the factorGm(fλg) gives always a negligible contribution
compared toSm(fλ̃g) at this order inm, at least for any distribution of the variablesλ j satisfying
the previous hypothesis of regularity. We obtain,

lim
m!∞

1
m2 logGm(fλg) = 0 (5.15)

for any distribution offλg with good properties of regularity, in particular for the saddle point.
This means that, at the main order inm, the factorGm(fλg) does not contribute to the value of the
maximum of the integrand.

Finally we obtain the following result concerning the asymptotic behaviour ofτ(m) for m!∞
(see [29, 34]):

S(0)(∆) = lim
m!∞

logτ(m)
m2 ; (5.16)=�ζ

2
� ∞

∑
n=1

e�nζ

n
sinh(nζ )

cosh(2nζ ) ; (∆ = coshζ > 1); (5.17)= log
π
ζ
+ 1

2

ZR�i0

dω
ω

sinhω
2 (π �ζ )cosh2 ωζ

2

sinhπω
2 sinhωζ

2 coshωζ
; (�1< ∆ = cosζ < 1): (5.18)

It coincides with the exact known results obtained in [68, 27] at the free fermion point and in
[67, 28] at∆ = 1=2, and is in agreement with the expected (infinite) value in the Ising limit. Simi-
lar techniques can be applied to the two point function. However, the result that has been extracted
so far is only the absence of the gaussian term. Unfortunately, we do not know up to now how to
extract the expected power law corrections to the gaussian behavior from this saddle point analy-
sis. More powerful methods will certainly be needed to go further.

2At this main order inm, there exists a unique solution of the integral equation forρ̃s, and we know it corresponds
to a maximum becauseSm(fλg)!�∞ on the boundary ofD .
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Conclusion and perspectives

In this article, we have reviewed recent results concerningthe computation of correlation
functions in theXXZ chain by the methods of the inverse scattering problem and the algebraic
Bethe ansatz. In conclusion, we would like to discuss some perspectives and problems to be
solved.

One of the most interesting open problems is to prove the conformal field theory predictions
[69, 70] concerning the asymptotic behavior of the correlation functions. This is certainly a very
important issue not only for physical applications but alsofrom a theoretical view point. Moreover,
it also would open the route towards the generalization of the methods presented here to quantum
integrable models of field theory. We have seen that in particular cases, the multiple integral
representations enable for a preliminary asymptotic analysis . Nevertheless, this problem remains
one of the main challenges in the topics that have been described in this article.

A possible way to solve this problem would be to find the thermodynamic limit of the master
equations (like the one obtained for the two point correlation functions). It is natural to expect
that, in this limit, one should obtain a representation for these correlation functions in terms of a
functional integral, which could eventually be estimated for large time and distance.

Note that the master equation shows a direct analytic relation between the multiple integral
representations and the form factor expansions for the correlation functions. It seems likely that
similar representations exist for other models solvable byalgebraic Bethe ansatz. It would be in
particular very interesting to obtain an analogue of this master equation in the case of the field
theory models, which could provide an analytic link betweenshort distance and long distance
expansions of their correlation functions. Preliminary results in this direction have been obtained
recently in [71] for the quantum non-linear Schroedinger model.

From the condensed matter view point there is also quite someinterest in the extension of
the results presented here for different other models. It includes spin chains with impurities [72]
or with open boundaries [73, 74], and also electronic modelslike the Hubbard model for which
progress in the understanding of the space of states are necessary to apply our method.
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