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Enlarged Symmetries of Spin Chains and Loop Models Hubert Saleur

1. Introduction

Despite so many years of work (and so many great papers written) on quantum spin chains,
surprises in this area keep enchanting us every now and then. Among those, the most beautiful have
to do with symmetry - recent examples include the Yangian symmetry in the Haldane Shastry spin
chain [1], or the loop symmetry of the XXZ chain at q (∆ = 1

2(q+q−1)) a root of unity [2]. What
we shall describe here seems to be yet a new kind of symmetry, whose understanding could well
shed new light on logarithmic conformal field theories [3], [4]. Maximum use of this symmetry
is most easily mastered with the language of associative algebras. Details appear in [5], while the
relation with logarithmic CFTs is discussed in [6]. All the work is being made in collaboration
with N. Read.

2. Oriented loops models and their symmetries

2.1 Open case

To explain the idea and results in the simplest setting, we consider first SU(m) antiferromag-
netic spin chains with open (free) boundary conditions. These chains consist of 2L sites labelled
i = 0, . . . , 2L−1, with an m-dimensional complex vector space Vi ∼= Cm at each site (C is the field
of complex numbers). The states can be represented using oscillator operators ba

i , b†
ia for i even,

bia, b
a†
i for i odd, with commutation relations [ba

i ,b
†
jb] = δi jδ

a
b (a, b = 1, . . . , m), and similarly for

i odd. The destruction operators ba
i , bia destroy the vacuum state, the daggers indicate the adjoint,

and the spaces Vi are defined by the constraints

b†
iaba

i = 1 (i even), (2.1)

b
a†
i bia = 1 (i odd) (2.2)

of one boson per site (we use the summation convention for repeated indices of the same type
as a). We define the generators of U(m) (or in fact of glm) acting in the spaces Vi by Jb

ia = b†
iabb

i

for i even, Jb
ia = −b

b†
i bia for i odd, and the commutation relations among the Jis (for each i) are

i-independent. Hence the global glm algebra, defined by its generators Jb
a = ∑i Jb

ia, acts in the tensor
product V = ⊗2L−1

i=0 Vi of copies of the fundamental representation of glm on even sites, alternating
with its dual on odd sites, as desired to construct an antiferromagnetic spin chain. Though the U(1)
subalgebra of glm generated by Ja

a acts trivially on the chain (and by a scalar on each site), it is
often notationally convenient not to subtract this trace from the generators Jb

a .
The SU(m)-invariant nearest-neighbor coupling in the chain is unique, up to additive and mul-

tiplicative constants. It is the usual “Heisenberg coupling” of magnetism, and can be written in
terms of operators ei, defined explicitly as

ei =

{
b

a†
i+1b†

iabb
i bi+1,b, i even,

b
a†
i b†

i+1,abb
i+1bib, i odd.

(2.3)

The ei’s are Hermitian, e†
i = ei. Acting in the constrained space V , they satisfy [7, 8] the relations

[9, 10]

e2
i = mei,

2
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ei ei±1 ei = ei,

ei e j = e j ei ( j 6= i, i±1). (2.4)

We write the parameter m as m = q + q−1. The abstract associative algebra over the complex
numbers C generated by unity and the n−1 generators e0, . . . , en−2 that satisfy the relations (2.4)
(and no other relations algebraically independent of these) with parameter q ∈ C will be called
the Temperley-Lieb (TL) algebra, TLn(q) (for n either even or odd). The representation we have
constructed in the space V is faithful for m ≥ 2. All algebras here are over C and are assumed to
include unity.

In the space V , a much-studied Hamiltonian for a nearest-neighbor antiferromagnetic spin
chain is the m, m model with open (free) boundary conditions,

H =−ε ∑
i even

ei− ε
−1

∑
i odd

ei, (2.5)

where ε > 0 is a parameter; if ε 6= 1, the model is said to have staggered couplings. In the thermo-
dynamic (L → ∞) limit a phase transition occurs at ε = 1, which is first order for m > 2, second
order for m = 2. More general Hamiltonians for the spin chain can be constructed, using arbi-
trary elements of the TL algebra, that is any sum of products of generators, perhaps with random
coefficients.

There are also vertex models whose transfer matrices are TL algebra elements. These models
may be expanded as configurations of loops that run along (and fill) the edges of the square lattice,
with avoided crossings at the vertices. This produces a class of loop model. This uses a well-known
graphical representation of the TL algebra that has been described by many authors (see e.g. Ref.
[10]). In our models, the loops are viewed as oriented, with the fundamental of glm running along
in the direction of the arrow. We emphasize again that these orientations are fixed, not summed
over (they are not dynamical variables). The two ways of conserving directions of arrows on the
loops at a vertex represent the action either of 1⊗ 1 or of ei for the two sites i, i + 1 in question.
The symmetry algebra we find here determines the multiplicities in the spectrum of any of these
models.

The TL algebra arose in studies of the Potts model [9, 10], to which Refs. [7, 8] thus found a
relation of the SU(m) antiferromagnetic spin chains. In terms of the TL generators ei, the Q-state
Potts model has the same Hamiltonian, and the ei obey the TL algebra with Q = m2, but here for
all non-negative integers Q [10]. In the Potts model partition function, the loops are the boundaries
of Potts clusters [10]. The possibility of using different representation spaces for a given algebra
was a main point of TL [9], and we will have much more to say about this below.

Because of the Hermiticity of the generators ei with respect to the positive-definite inner prod-
uct on the vector space V , it follows that for any element a of the algebra, a† is also an element. If
such an algebra is finite dimensional, then it is automatically semisimple, which implies that any of
its finite-dimensional modules (representations [11]) is also semisimple, that is fully reducible into
a finite direct sum of irreducible representations (simple modules) [12, 13]. Because the represen-
tation of the TL algebra in V is faithful for m≥ 2, this shows that TL2L(q) is semisimple for m≥ 2
(in fact, this holds for all q ≥ 1) [14, 15, 16].

Let us now recall some general algebraic results. In an irreducible representation of dimension
N < ∞ of an algebra A, A acts as the full matrix algebra MN(C) of all complex N×N matrices. Any
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semisimple algebra A is isomorphic to a finite direct product of such algebras, one for each distinct
irreducible (we refer to two irreducible representations as distinct if they are not isomorphic): A =
∏ j MN j(C), where j runs over the set of isomorphism classes of representations, of dimensions
N j. In matrix language, this means that the algebra A is isomorphic to the algebra of all block-
diagonal complex matrices, where the blocks are N j ×N j. It follows that the dimension of A is
dimA = ∑ j N2

j . The commutant B of such an algebra A in a finite-dimensional representation V ′

(the commutant is the algebra of all linear transformations of V ′ that commute with all elements of
A) must also be semisimple, by Schur’s lemma. If the jth distinct irreducible representation of A
occurs in V ′ with multiplicity M j, then the full matrix algebra MM j(C) commutes with A acting in
the subspace of V ′ spanned by the copies of the jth irreducible. Assuming that M j > 0 for all j,
which means that A is represented faithfully in V ′, then there is a one-one correspondence between
the isomorphism classes of irreducible representations of A and B, and B is the direct product
of algebras MM j(C) (so dimB = ∑ j M2

j ). In particular, (i) both algebras have the same number of
distinct irreducible representations; (ii) the commutant of B in V ′ is A (that is, the double commutant
of A, which necessarily contains A, is in fact equal to A); (iii) the space V ′ can be decomposed as

V ′ =
⊕

j

CN j ⊗CM j (2.6)

where CN j (CM j ) stands for the irreducible representation of A (resp., B) of dimension N j (resp.,
M j). Hence, dimV ′ = ∑ j N jM j. Also, (iv) the center of A (i.e. the subalgebra of elements in A
that commute with all elements of A) is also the center of B, and both are isomorphic to ∏ j M1(C)
(i.e. a direct product of one dimensional algebras, one for each j, each isomorphic to the complex
numbers). This correspondence between representations of A and B is also a simple form of the
more general Morita equivalence of algebras (which applies to algebras that are not necessarily
semisimple).

We now apply these general results to TLn(q) acting in V , and construct the commutant algebra
explicitly. First, we require information about the representations of the TL algebra TLn(q) (in this
paragraph, we allow n to be odd or even). The m = 2 (q = 1) case of V is instructive. This is
just the su(2) spin-1/2 chain. The su(2) symmetry commutes with permutations of the sites, and
the TL generators are essentially the transpositions of neighbors, which generate the symmetric
group Sn on n sites. TLn(1) is isomorphic to the group algebra of Sn, projected to the space of Sn

representations that actually occur in V . The latter correspond to Ferrers-Young diagrams with n
boxes and at most two rows. It follows that the dimension of the jth irreducible representation of
TLn(1), which is the multiplicity of the spin j representation of su(2) in the chain, is

d j =

(
n

n/2+ j

)
−

(
n

n/2+ j +1

)
, (2.7)

where n/2+ j must be an integer. For n even, j = 0, 1, . . . , n/2. The sum of the squares of these di-
mensions is ∑ j d2

j = (n+1)−1
(2n

n

)
, the dimension of the TL algebra [15]. The same Ferrers-Young

diagrams correspond to the representations of su(2) that occur in V ; 2 j equals the difference in the
number of boxes in the two rows in the diagram. This well-known decomposition is called [the
su(2) case of] Frobenius-Schur-Weyl duality, and is an example of the correspondence discussed in
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the previous paragraph. For q > 1, the irreducible representations of TLn(q) retain the same dimen-
sions, because the algebra varies continuously with q [14, 15, 16], and hence the TL algebra also
retains the same dimension dimTLn(q) = (n+1)−1

(2n
n

)
. This formula is valid for all m, including

m = 0, as can be readily seen from the diagrammatic definition of TL, in which each element of a
linear basis corresponds to a diagram [14, 15, 16].

We now describe the decomposition of our chain V into irreducibles of TLn(q), for n = 2L.
We use the following non-orthogonal, but linearly-independent basis states. Each basis state cor-
responds to a pattern of nested parentheses and dots, such as () • (())•, with one symbol for each
site of the chain (2L = 8 in the example). The parentheses must obey the usual typographical rules
for nesting, so that each “(” corresponds to exactly one “)”. Also, the dots must not be inside of
any parentheses. These rules imply that the () pairs consist of one even and one odd site, and that
dots are alternately on even and odd sites, starting with an even site at the left. The states in the
chain represented by such a diagram are constructed by contracting the sites that correspond to
each () pair into an SU(m) singlet (“valence bond”). For the dots, the state in the tensor product of
spaces Cm (each of which corresponds to a dot) must be chosen so that application of the projec-
tion operator to the SU(m) singlet for any two dots that are adjacent (when parentheses are ignored)
annihilates the state. Thus, those sites are “non-contractible”.

It is easily seen that the TL algebra applied to these basis states does not mix states with
different numbers of non-contractible sites. Application of an ei always produces a valence bond at
i, i+1, together with a rearrangement of some other contractions for sites that were contracted with
i or i+1 before (if one of i, i+1 was a non-contractible dot, it is moved to another position). Thus,
the TL generators ei change a pattern to another valid pattern. However, when i, i + 1 are both
non-contractible, ei annihilates the state. The TL algebra never changes the state on the sequence
of dots. The number of valid patterns is independent of m, and one can use the m = 2 case to count
them; in this case there is an invertible mapping of the space of states, commuting with the action
of su(2), that maps basis states corresponding to valid patterns with 2 j dots to those for “standard”
Young tableaus with at most two rows, such that the difference in length of the two rows is 2 j (a
standard tableau is a Ferrers-Young diagram with one of the numbers 1, 2, . . . , n inserted in each
box, such that the numbers are increasing both to the right along the rows and down the columns).
Hence for each number 2 j = 0, 2, . . . , 2L of dots, the number of valid patterns coincides with the
dimensions d j of S2L representations [17]. The basis states are linearly independent and span the
jth irreducible representation of TL2L(q).

The number of states for each valid pattern with 2 j dots determines the dimension D j of the
jth representation of the commutant of TL2L(q) in V . These numbers can be found inductively, by
adding another pair of non-contractible dots to the end of a sequence, and are independent of L.
This leads easily to the recurrence relation [18]

D1D j = D j+1 +D j +D j−1. (2.8)

Also, it is clear that D0 = 1, D1 = m2 − 1 [D1 is the dimension of the adjoint representation of
SU(m)]. Using m = q+q−1, the solution is

D j = [2 j +1]q, (2.9)

5
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where [n]q = qn−1 +qn−3 + . . .+q−n+1 = (qn−q−n)/(q−q−1) is the q-deformation of any integer
n. As a check, the total number of linearly-independent states we constructed is

L

∑
j=0

D jd j = (q+q−1)2L = m2L, (2.10)

which is exactly dimV . Note that these dimensions are the multiplicities of energy eigenvalues
for the generic Hamiltonians in the TL algebra, mentioned earlier. For m > 2, the dimensions D j

asymptotically increase exponentially with j. For example, for m = 3, the first few are 1, 8, 55, 377,
. . . , and are the Fibonacci numbers D j = F4 j+2. The m = 3 cases were found for Hamiltonian (2.5)
previously [19]. For j > 1, the decomposition of these multiplets into irreducible representations
of su(m) become increasingly complicated.

2.2 The explicit commutant

To construct the commutant algebra explicitly, we introduce the operators (for k ≤ 2L)

J̃a1a2...ak
b1b2...bk

= ∑
0≤i1<i2<···<ik≤2L−1

Ja1
i1b1

Ja2
i2b2

· · ·Jak
ikbk

(2.11)

(for k = 0, we define J̃ = 1, and for k = 1, J̃a
b = Ja

b as defined earlier). For each k = 0, 1, . . . , these
span a space of dimension m2k. In this space of operators we can impose linear conditions, that the
contraction of one of the indices a with a neighboring index b [i.e. of al with bl+1 (resp., bl−1), for
l = 1, 2, . . . , k−1 (resp., l = 2, . . . , k)] is zero. This gives us a basis set Ja1...ak

b1...bk
, that are “traceless”

in this sense. For example, for k = 2, we have

Ja1a2
b1b2

= J̃a1a2
b1b2

− 1
m

J̃aa2
b1a δ

a1
b2
− 1

m
J̃a1b

bb2
δ

a2
b1

+
1

m2 J̃ab
ba δ

a1
b2

δ
a2
b1

(2.12)

and these span a space of dimension (m2 − 1)2. In general, the dimension is (Dk/2)2. The exact
forms are

Ja1a2...ak
b1b2...bk

= (P•P•J̃)a1a2...ak
b1b2...bk

, (2.13)

where P• (P•) is the (Jones-Wenzl) projection operator to the “traceless” sector on the vector space
indexed by (a1,b2, . . .) [resp., (b1,a2, . . . ,)], which can be constructed recursively using the TLk(q)
algebra in these spaces [20].

One can readily show that: (i) all Ja1a2...ak
b1b2...bk

commute with all the ei, hence with all of TL2L(q)
(they leave the patterns unchanged); (ii) all Ja1a2...ak

b1b2...bk
with k > 2 j annihilate the jth irreducible rep-

resentation of the commutant algebra; (iii) the space of Ja1a2...ak
b1b2...bk

s with k = 2 j acts as the matrix
algebra MD j(C) on the jth irreducible representation; (iv) Ja1a2...ak

b1b2...bk
with k < 2 j map the jth irre-

ducible representation into itself, and hence in that subspace can be written as linear combinations
of those with k = 2 j. In particular, in our chain of 2L sites, the operators with k odd are linear
combinations of those with k even. Hence only even k are needed. These results show that the
algebra spanned by Ja1a2...ak

b1b2...bk
(k = 0, 2, . . . ) is the commutant algebra Am(2L) of TL2L(q) in V , with

dimension dimAm(2L) = ∑ j(D j)2. Because the dimensions D j are independent of L, the limit
L → ∞ exists, and we write Am = limL→∞ Am(2L).

The “obvious” global symmetry algebra is glm, or more accurately the universal enveloping
algebra (UEA) U(glm) of glm, which is the associative algebra generated by the generators Jb

a of

6
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glm, subject to the commutation relations of glm [or similarly for U(slm)] [21, 22]. For m > 2, our
algebra Am is strictly larger than U(slm); U(slm) is a proper subalgebra of Am [23], and hence the
representations of A can be decomposed into representations of slm. The dimension of Am(2L)
can be found in closed form, and grows exponentially with L:

dimAm(2L) =
q4L+4−q−4L−4

(q−q−1)2(q2−q−2)
− 2(L+1)

(q−q−1)2 (2.14)

=
[2L+2]q2 − (2L+2)

(q−q−1)2 (2.15)

∼ q4L

(1−q−2)(1−q−4)
(2.16)

as L → ∞; here we used q > 1. By contrast, the dimension of the quotient of slm that acts faith-
fully in the chain is the sum of squares of the dimensions of irreducibles that occur, and the latter
dimensions are known polynomials in the highest weight of the representation, of degree at most
m(m−1)/2 (the dimensions of irreducibles of slm are found by Frobenius-Schur-Weyl duality, and
given by the Weyl dimension formula). The highest weights that occur are bounded by something
of order the length L of the chain. We have not made a precise estimate of the dimension of the
resulting associative algebra, but it is clear that it is bounded by a polynomial in L, and thus much
smaller than Am(2L) for large L.

We do not know of a “small” or “simple” set of generators for Am (that would be analogous
to the set of Ja

b for U(glm)). Am is not the Yangian of slm. However, the properties above imply
that Am(2L) is a cellular algebra for all L, for which we have given a cellular basis Ja1a2...ak

b1b2...bk
(k = 0,

2, . . . ), in the sense defined in Ref. [24] (for an exposition, see e.g. Ref. [25]). This fact also
generalizes to supersymmetric versions we will introduce later.

2.3 Periodic case

We generalize the results to the closed (periodic) version of the SU(m) spin chain models. The
space of states is the same (with an even number 2L of sites), and the TL generators are defined
as there, but now there are 2L generators ei, which obey the relations (2.4) with i± 1 interpreted
cyclically, with i = 2L ≡ 0 (mod 2L). In addition, there is now an obvious cyclic symmetry of
the system. We can introduce an operator u2 (with inverse u−2) which translates any state to the
right by 2 sites (so as to be consistent with the distinction of two types of sites carrying dual
representations), so u2L = 1 (there are no odd powers of u, though there are in the unoriented or
O(m) cases). We have u2eiu−2 = ei+2. These operators generate an algebra.

The precise algebra can be defined abstractly as an algebra of diagrams as for TL, but this
time on an annulus (or finite cylinder), in which a general basis element corresponds to a diagram
of 2L sites on the inner, and 2L on the outer boundary; the sites are connected in pairs, but only
configurations that can be represented using lines inside the annulus that do not cross are allowed
[26]. Further, for the oriented loops models, the lines must be orientable, such that the arrows
emanate from the even sites and enter the odd sites on the inner boundary, and the reverse for the
outer boundary. Multiplication is defined in a natural way on these diagrams, by joining an inner to
an outer annulus, and removing the interior sites [26]. We emphasize that whenever a closed loop is
produced when diagrams are multiplied together, this loop must be replaced by a numerical factor

7
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m (as for the TL algebra), even for loops that wind around the annulus, as well as for those that are
homotopic to a point. The algebra is generated by the elements ei and u2, and they obey the above
relations, which however are not a complete set. (The numerical factor m for winding loops is not
a consequence of the stated relations, but a separate assumption.) We call this finite-dimensional
“annular” algebra [26] the Jones-TL, or JTL algebra, JTL2L(q) [26, 27] (the latter terminology
is not standard). It is easily seen that our definitions produce a representation of JTL2L(q) in V ,
however it turns out that it is faithful only when m > 2. For m = 2, the TL algebra already contains
all permutations of the sites, and the extra generators e−1 and u±2 acting in V can be expressed in
terms of the others. Also, for real q > 0, the JTL algebra is semisimple only for q 6= 1 [26], unlike
the TL algebra. We will see that the JTL algebra is much richer than the TL algebra. For other
periodic generalizations of the TL algebra, which are infinite dimensional, see e.g. Refs. [28, 29].

On passing from TL2L(q) to JTL2L(q), some irreducible representations of TL2L(q) will com-
bine to form irreducibles of JTL2L(q). On the other hand, since we work in the same space V , when
the algebra becomes larger, its commutant must become smaller, and some irreducible representa-
tions of the commutant will break into irreducibles of the commutant of JTL2L(q). (These remarks
assume the algebras involved are semisimple.)

The dimensions of the irreducible representations of JTL2L(q) for q > 1 are known [26]. We
construct representations of the JTL algebra using parentheses and dots again, but now parentheses
can be paired cyclically, so ) • (()) • ( is a valid pattern (valid patterns may also be defined by
drawing them on a disk with the sites on the boundary, and lines within the disk connect contracted
sites without crossing, while noncontractible sites can be reached within the disk from one another
without crossing a contraction line). Contractions that cross the end of the chain, like one in the
preceding example, become pairs of dots if one reverts to the open TL point of view, and so one
finds for the number of valid patterns with 2 j dots

d̂ j = ∑
j′= j, j+1,...

d j′ =

(
2L

L+ j

)
. (2.17)

This is valid for j > 0. For the j = 0 case, all contraction lines can be drawn without crossing
the 0, 2L− 1 link, so d̂0 = d0. [These formulas, which as we will see give the dimensions d̂ j of
the irreducible representations of JTL2L(q), also show how the representations decompose when
considered as representations of the subalgebra TL2L(q).]

For the set of valid patterns for each value j = 0, 1, . . . , L, one has a set of non-orthogonal
but linearly independent basis states, by again associating a singlet valence bond to each pair () of
corresponding parentheses, and for the non-contractible sites (now defined cyclically), states that
vanish if one such site is contracted with its neighbor on either side (cyclically). The subspace
spanned by these elements is a representation of JTL2L(q) and of its commutant Âm(2L), and its
dimension is d̂ jD̂ j, where the dimensions D̂ j for each pattern will now be found. By comparing
with the definitions for the open case, we see that the dimensions D̂ j obey D j = D̂ j +D j−1 ( j ≥ 2),
D1 = D̂1, D0 = D̂0. That is,

D̂ j =


q2 j +q−2 j ( j > 1),
q2 +1+q−2 ( j = 1),
1 ( j = 0)

(2.18)

8
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Note that again ∑ j d̂ jD̂ j = m2L = dimV .
Unlike the open chains, for the closed chains the representations of JTL2L(q)⊗ Âm(2L) of

dimension d̂ jD̂ j that we have now constructed for each j are not irreducible when j ≥ 2. There
is a non-trivial center of the restriction of JTL2L(q) and of Âm(2L) to the jth subspace. This may
be seen most easily in terms of the commutant Âm(2L). For any basis state in the jth subspace,
the states on the non-contractible sites can be cyclically permuted by moving them two steps to
the right, without affecting the pattern. This operation clearly commutes with the JTL algebra, so
when viewed as acting on all the basis states simultaneously it gives an operator which lies in the
commutant. Further, it commutes with all elements of the commutant (restricted to this subspace),
because as we will see in the explicit expressions below, these elements involve sums over position
which ensure that they are invariant under these operations on the basis states (ultimately this is
because of the isomorphism of the JTL algebra ei → ei+1 for all i). Hence this operator lies in
the center of the commutant (acting in the jth subspace), and so must also lie in the center of the
JTL algebra. By Schur’s lemma, it acts as a root of unity e2iK in any irreducible representation of
either algebra. We call K (defined modulo π) the pseudomomentum. As translation of the non-
contractible sites by 2 j steps brings the state back to itself, we have jK ≡ 0 (mod π). We may
conclude that, for each j ≥ 2, though all irreducible representations of JTL2L(q) have the same
dimension d̂ j, they are not all isomorphic, and there is a distinct irreducible representation for each
distinct allowed K, and thus j distinct isomorphism classes of irreducibles in all [26].

The representations of the commutant of dimension D̂ j can be decomposed into eigenspaces of
K, with K = πP/N where P≥ 0 and N are coprime (N is a divisor of j, written N| j). We will denote
the dimensions of these subspaces by D̂ jK , with ∑K D̂ jK = D̂ j, from which again, ∑ j,K D̂ jK d̂ j = m2L.
For j = 0, 1, K ≡ 0 and D̂ jK = D̂ j. When the state on the sequence of 2 j non-contractible sites is
periodic with period d, 1 ≤ d < j (with d| j), it contributes only to pseudomomenta such that N|d.
Using Möbius inversion [30] (similarly to Appendix A of Ref. [18]), we obtain the dimensions D̂ jK

of the representations with j ≥ 2 and given K of the commutant Âm(2L) of JTL2L(q) for m > 2,

D̂ jK = ∑
d,d′:N|d

µ(d/d′)
d

(q2d′ +q−2d′), (2.19)

where the sum is over all positive divisors d, d′ of j, and µ(x) is the Möbius function [30]. Alter-
natively, by calculating the trace of the projection operator onto pseudomomentum K for a fixed
pattern, we obtain

D̂ jK =
1
j

j−1

∑
r=0

e2iKr
[
q2( j∧r) +q−2( j∧r)

]
, (2.20)

where j ∧ r denotes the highest common divisor of j and r ( j ∧ 0 = j for all integers j ≥ 0).
These two expressions are equal, again by using Ref. [30]. These multiplicities were given in the
second form by Jones [26] (for these oriented cases, we have corrected a small error at the end of
Ref. [26]). These representations of Âm(2L) are irreducible, and the dimension of the algebra is
dimÂm(2L) = ∑ j,K(D̂ jK)2. In the L → ∞ limit, we obtain an algebra Âm = limL→∞ Âm(2L).

If we put m = 2 (even though this is a case in which the JTL algebra does not act faithfully in
V ), the multiplicities correctly vanish whenever K 6≡ 0 (mod π), but the formula for D̂ j0 for j > 1
is not correct for this case. Here, because the image of the JTL algebra that acts faithfully in V is
the same as TL, its commutant is a quotient of U(sl2), with irreducible dimensions D j = 2 j +1.
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Some elements of Âm(2L) can be constructed as in the open case. We use, for k ≥ 1,

J̃a1a2...ak
b1b2...bk

= ∑
i1<i2<···<ik<i1

Ja1
i1b1

Ja2
i2b2

· · ·Jak
ikbk

, (2.21)

where the summations extend periodically on the chain; these commute with u2. A set of elements
of the commutant Âm(2L) can now be written, for k even, as

Ĵa1a2...ak
b1b2...bk

= (P•P•J̃)a1a2...ak
b1b2...bk

, (2.22)

where, similarly to the open case, the projector P• (P•) is the projection operator to the “traceless”
sector (annihilated by all ei) on the vector space indexed by (a1,b2, . . .) [resp., (b1,a2, . . . ,)]. The
projectors certainly exist, as they project onto (non-irreducible for k > 2) representations of the
semisimple algebra JTLk(q). For k odd, there is another set,

Ĵa1a2...ak
b1b2...bk

= (P••J̃)a1a2...ak
b1b2...bk

, (2.23)

in which P•• is the projection operator to the traceless sector (annihilated by ei) on the single vector
space indexed by (a1,b2,a3, . . . ,ak,b1,a2, . . . ,bk). These projectors exist in the algebra JTL2k(q).
(For k = 1, Ĵa

b is the traceless generator of slm.) The Ĵs have the cyclic invariance property,

Ĵa1a2...ak
b1b2...bk

= Ĵaka1...ak−1
bkb1...bk−1

(2.24)

(the cyclic property is clear for the J̃s, and for the Ĵs with k even uses the fact that the matrix
elements of the projectors P•, P• are the same real numbers when written out in the respective
bases).

Unlike the open case, for the closed case the Ĵ operators with k even do not form a linear basis
for Âm(2L); however, they do generate it. Let us study how they act on the j, K irreducible repre-
sentations for k = 2 j. A natural decomposition of this space of Ĵs is obtained by using the projector
P•(K) [and P(−K)

• ] onto the subspace of the space indexed by (a1,b2, . . .) [resp., (b1,a2, . . . ,)] that has
pseudomomentum K (resp., −K) as well as being annihilated by all ei. This is possible because the
Ĵs do preserve pseudomomentum. We note that the cyclic invariance property implies that these
operators for K and −K are the same (up to some relabelling). We choose an orthonormal basis
for this subspace, indexed by α , β , γ , . . . (resp., α∗, . . . ; there is a correspondence between these
bases as indicated by the notation), and write these projected Ĵs as Ĵαβ . Among the irreducibles
with j = k/2, these operators annihilate those with pseudomomentum 6≡K or−K (mod π). Strictly
speaking, the cases in which K ≡−K (mod π) should be distinguished from the more general cases
K 6≡ −K (mod π); we will return to this after dealing with the generic case. Then in general one
finds that Ĵαβ maps β (with pseudomomentum K) onto α , but also α∗ (with pseudomomentum
−K) to β ∗. We may re-normalize such that the first of these non-zero matrix elements is equal
to one. Now define operators Jαβ = Ĵαγ Ĵγβ where α 6= β , and hence also α∗ 6= β ∗ (the sum-
mation convention is not in force for the Greek indices). This is possible because all the spaces
for j > 0 have dimension > 1. Then we see that Jαβ acts as the elementary matrix Eαβ (whose
only non-zero entry is 1 in position α , β ) in the pseudomomentum K representation, and annihi-
lates all others with j = k/2, including that for −K. Finally the diagonal entries are defined as
Jαα = Jαβ Jβα , (for any β 6= α) which acts as Eαα in the j, K irreducible. For the cases in
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which K ≡ −K (mod π), one should note that the basis states α∗ are in the same space, and are
essentially a permutation of the basis labelled α . Jαβ = Ĵαγ Ĵγβ acts as Eαβ only if α∗, β ∗ and γ

are all distinct. This works provided the space has dimension > 2, which they all do (for j > 0).
As the elementary matrices form a linear basis for the full matrix algebra MD̂ jK

(C), we have shown

that the operators Ĵ do generate the algebra Âm(2L).
Thus finally, we have defined a set of operators Jαβ for all even k and for all allowed K (mod

π), which are a linear basis for Âm(2L), and which act on the corresponding ( j = k/2) irreducible
as elementary symmetric matrices, while annihilating those with the same j but different K, as well
as those with j < k/2. Once again, these properties imply that this basis is cellular [24, 25].

3. Supersymmetric spin chains

We now briefly describe the results for the supersymmetric generalizations of the spin chains
(such as those that occur in the spin quantum Hall effect [31]). The spin chains for the oriented
loops models can be generalized so that each site carries a Z2-graded vector space of dimensions
m +n for the even (bosonic), n for the odd (fermionic), subspace (n ≥ 0 is an integer). This space
is the fundamental of the Lie superalgebra gl(m+n|n) for i even, and its dual for i odd. The chain
is the graded tensor product of these Vi (it may be constructed [18] using fermion operators f †

ia, f a†
i

for a = m+n+1, . . . , m+2n, while a = 1, . . . , m+n corresponds to boson operators as in the n = 0
special case. The (J)TL algebra is again generated by operators ei (and u2). These models exist for
all integer m, provided m+n, n≥ 0 [32], and are non-trivial when m+2n > 1. The phase transition
properties, including scaling dimensions, are the same independent of n, though some multiplicities
may vanish for small n. Even though the finite-dimensional representations of gl(m + n|n) are
not always semisimple, the representations of TL2L(q) and its commutant Am+n|n(2L) are still
semisimple for |m| ≥ 2, and similarly for JTL2L(q) and its commutant Âm+n|n(2L) for |m| > 2.
(The commutant algebras here are actually superalgebras when n > 0; details about graded tensor
products and superalgebras can be found in the [5].) The notation involving m, n for these chains
will be used consistently from here on.

For the semisimple cases, the preceding constructions can be carried through for all n ≥ 0,
with only minor variations. The dimensions of the irreducible representations of the commutants
can be generalized to the total (usual) dimension, and the superdimension (sdim) which is the
dimension of the even (bosonic) subspace minus the dimension of the odd (fermionic) subspace.
The super-dimensions will now be denoted D j or D̂ jK , as they are determined by m alone (in fact,
by m2), independent of n, and are given by the same formulas as above, which were the n = 0
special cases. The total dimensions will be denoted D′

j or D̂′
jK , and involve also q′ determined

by m + 2n = q′ + q′−1. For the open case, the total dimensions are given by the same form D′
j =

[2 j + 1]q′ [18]. For the closed case, total dimensions can be obtained by calculating the trace of
the projection operator onto pseudomomentum K for a fixed pattern. One must be careful of minus
signs that arise when an odd state of a segment of the non-contractible sites is translated around the
system. For j > 1, the total dimensions for |m|> 2 are

D̂′
jK =

1
j

j−1

∑
r=0

e2iKrw( j, j∧ r), (3.1)
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where j∧ r denotes the highest common divisor of j and r ( j∧0 = j for all integers j ≥ 0), and

w( j,d) = (q2d +q−2d)δ j/d≡0 +(q′2d +q′−2d)δ j/d≡1, (3.2)

where again d| j, and the congruences are modulo 2. For n = 0 this clearly reduces to eq. (2.20)
[26]. The general case can be simplified and (using formulas from Ref. [30]) shown to be equal to
the numbers Λmod(M = j,N) for these models obtained by a different method in Ref. [18] (up to a
continuation to the different range |m| ≤ 2 studied there). For j = 0, 1, we have K ≡ 0 only, and
D̂′

j0 = 1, q′2 +1+q′−2, respectively [the dimensions of the singlet and the adjoint of sl(m+n|n)].
Finally, we give details of our construction for the open gl(1|1) spin chain, which is a free

fermion system [18]. The free fermion form of the model is defined using fermion operators fi

and their adjoints f †
i , i = 0, 1, . . . , 2L− 1, which obey { fi, fi′} = 0, { fi, f †

i′ } = (−1)iδii′ . The TL
generators can be written as

ei = ( f †
i + f †

i+1)( fi + fi+1), (3.3)

for i = 0, . . . , 2L−2. Some symmetry operators in J(k), for k = 1, 2, which commute with all the
eis, are

F = ∑
i

fi, (3.4)

F† = ∑
i

f †
i , (3.5)

F(2) = ∑
i<i′

fi fi′ , (3.6)

F†
(2) = ∑

i<i′
f †
i′ f †

i , (3.7)

N = ∑
i
(−1)i f †

i fi−L. (3.8)

The remaining symmetry operators turn out to be sums of products of these, so this set of five
operators (together with 1) is a set of generators of the full algebra A1|1. The graded commutators
of these five close on themselves, so they form a Lie superalgebra. F , F† generate a Lie sub-
superalgebra isomorphic to psl(1|1). F(2), F†

(2), and N generate an sl2 Lie subalgebra, with N as
2Sz, and F , F† transform as a doublet under this sl2, and so form a Lie ideal. (We note that
(−1)i f †

i fi is the fermion number = 0, 1 at site i.) The Lie superalgebra is thus not semisimple,
but is a semidirect product of these two, and can be viewed as the superalgebra of translations and
sl2 rotations of the superplane with anticommuting coordinates f , f †. The associative (universal
enveloping) algebra it generates, A1|1, is isomorphic to Uq(sl2) (modulo the restriction to modules
with integer j). Representations of this algebra acting in the spin chain can be easily constructed.

For the corresponding closed chain, generators like F(2) are lost, as the summation must be
extended around the chain, and then anticommutation of fi and fi′ makes it vanish.

We emphasize that for open gl(n|n) chains with n > 1, the symmetry algebra An|n is not an
enveloping algebra of a finite-dimensional Lie superalgebra. For the closed chains, some symmetry
operators of the open version are lost on closing the chain, for reasons similar to the case of F(2)

above, but for general n > 1 many operators remain.
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4. Towards an associative-algebraic approach to (logarithmic) CFT

It follows immediately from our analysis that the commutant algebra Am is a symmetry of
the low-lying spectrum of hamiltonians based on the Temperley Lieb algebra for any finite L. We
now wish to take the limit L going to infinity. It is not entirely clear how this can be done in a
mathematically rigorous way, but roughly we want to take the eigenvectors of H that have low-
energy eigenvalues, and we expect that the inner products among these vectors can be made to tend
to some limits. Further, if we focus on long wavelength Fourier components of the set of ei, then
we expect their limits to exist, and their commutation relations to tend to those of the Virasoro
generators Ln (Ln + Ln in the closed chain case) [33], in the sense of weak convergence of matrix
elements in this basis of low-energy eigenvectors. Then the modules over the TL algebra become
modules over the UEA of the Virasoro, or possibly even a larger, algebra. (For the closed chains,
two copies of the Virasoro algebra with generators Ln, Ln should eventually emerge.)

The symmetry (commutant) algebra in the continuum limit, which commutes with the Virasoro
algebra, must be at least as large as that in the finite-L chains. For the open chains, it appears that
our commutant algebra [or Uqsl2 in the spin-1/2 chain] does not become even larger in the limit.
(In certain cases, such as the open or closed m = 2 spin-1/2 chain, the symmetry algebra combines
with the Virasoro algebra to form the sl2 level 1 current [affine Lie] algebra, but this is not the case
in general [18].) In the continuum limit, the basis for the commutant algebra takes a similar form
as on the lattice, and can now be written for the open cases using

J̃a1a2···ak
b1b2···bk

=∫
0<x1<x2<···<1

k

∏
i=1

dxi Ja1
b1

(x1)Ja2
b2

(x2) · · ·Jak
bk

(xk) (4.1)

where the integration is over 0 < x1 < x2 < · · · < xk < 1 (where xL is position on the chain, and
all operators are at the same time), Ja

b (x) stands for the density of the generators Ja
ib at x, and

the contraction of any upper with a neighboring lower index is required to vanish as before. The
integration domain in these expressions resembles that for the generators of the Yangian in an
integrable system, but we emphasize again that our algebra is not the Yangian. The definition can
be generalized using an arbitrary Jordan curve C with ends on the boundary (even with both ends
on the same boundary), with Ja

b (x) replaced by the component of the divergenceless currents Ja
µb

(µ = 1, 2) normal to the curve, and the integrations are long the curve. These definitions also apply
mutatis mutandis to the symmetry algebras of the closed chain, with an arbitrary closed Jordan
curve C in the most general form. These definitions for general curves ensure that the enlarged
symmetry really commutes with conformal mappings of spacetime (which map curves C onto one
another), and generalize those for the global symmetry generators of gl(m + n|n), etc. [We note
that while, unlike in theories with an affine Lie algebra, the Noether currents Ja

µb do not possess a
decomposition into purely holomorphic and anti-holomorphic parts [18], their flux across a curve
is the Noether charge and is conserved and conformally invariant, and thus this is expected to hold
for our operators also.]

We propose now that the use of the symmetry algebras (that commute with the full chiral alge-
bra) can be a powerful organizing principle, even when semisimplicity of the algebraic structures
is lost. These symmetries and structures can be usefully studied by starting with lattice models.
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The idea of gaining understanding of logarithmic CFT (LCFT) by studying lattice realizations in
details has been around for a while, and put forward most recently (albeit without the algebraic
connotations we consider crucial) in [34]. It does open a fruitful new route to progress. Indeed,
the lattice equivalent of the reducible but indecomposable Virasoro representations in LCFT is the
non semi-simplicity of the various algebras underlying the lattice models. [Examples include the
Temperley-Lieb (TL) algebra or Uq(sl2), neither of which is semi-simple when q is a root of unity;
such values are usually those of greatest interest.] A great deal of progress has been made in the
mathematics literature in this area over the last fifteen years or so. Our strategy will be to exploit
this progress and infer from it results about the LCFTs.

Indeed, it is a natural step to conjecture, from the lattice analysis, the corresponding struc-
ture in the continuum limit: the algebra of Hamiltonian densities goes over to the Virasoro algebra
[33, 35], while the commutant goes over to an algebra of non-local charges. The general structure
of the theory is one in which the Virasoro algebra commutes with a certain symmetry algebra, but
the latter is not any kind of current algebra, and nor is it a Yangian. The structure of indecom-
posable representations in the lattice model goes over to the continuum limit, and we thus obtain
information about the representations of the Virasoro algebra in our logarithmic theories. These
representations are typically reducible but indecomposable with a diamond (or quartet) shape and
made out of two “standard modules” connected by some “glue”. They bear a lot of resemblance
to the so-called staggered modules introduced abstractly in [36]. The full structure of the Hilbert
space involves big indecomposables representations of Virasoro and of its commutant, and can be
exhibited in the form of what we call a “staircase diagram” [6].

Although our approach does not so far yield much information on the detailed structure of
the Virasoro indecomposable representations, it is enough to give access to the fusion rules for
logarithmic theories. We work these out in detail in several cases in [6].

Acknowledgments: I thank the organizers of the Solvay Workshop for their kind invitation to this
memorable event.

References

[1] F.D. Haldane et al. , Phys. Rev. Lett. 69 (1992) 2021.

[2] T. Deguchi, K. Fabricius and B. Mc Coy, J. Stat. Phys. 102 (2001) 701.

[3] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory (Springer, New York, 1997).

[4] V. Gurarie, Nucl. Phys. B 410, 535 (1993).

[5] N. Read and H. Saleur, “Enlarged symmetry algebras of spin chains, loop models and S matrices”,
cond-mat/0701259

[6] N. Read and H. Saleur, “Associative-algebraic approach to logarithmic conformal field theories”,
hep-th/0701117

[7] M.N. Barber and M.T. Batchelor, Phys. Rev. B 40, 4621 (1989).

[8] I. Affleck, J. Phys. Cond. Matt. 2, 405 (1990).

[9] H.N.V. Temperley and E.H. Lieb, Proc. Roy. Soc. (London) A 322, 251 (1971).

14



P
o
S
(
S
o
l
v
a
y
)
0
1
3

Enlarged Symmetries of Spin Chains and Loop Models Hubert Saleur

[10] R. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, New York, 1982).

[11] For our purposes, a module (modules are left modules unless stated otherwise) is the same as a
representation in a vector space over C.

[12] R.S. Pierce, Associative Algebras, Graduate Texts in Mathematics 88 (Springer-Verlag, New York,
NY, 1982).

[13] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics 13
(2nd Ed., Springer-Verlag, New York, NY, 1992).

[14] V.F.R. Jones, Invent. Math. 72, 1 (1983).

[15] F.M. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter Graphs and Towers of Algebras, MSRI 14
(Springer-Verlag, New York, NY, 1989), Ch. 2.

[16] P.P. Martin, Potts Models and Related Problems in Statistical Mechanics (World Scientific, Singapore,
1991).

[17] B.E. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric
Functions, 2nd Ed., Graduate Texts in Mathematics 203 (Springer, New York, NY, 2001).

[18] N. Read and H. Saleur, Nucl. Phys. B 613, 409 (2001) [arXiv:hep-th/0106124].

[19] F.D.M. Haldane and D.J. Arovas, private communication (1991).

[20] These are reviewed in M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang, Ann. Phys. 310,
428 (2004) [arXiv:cond-mat/0307511].

[21] V. Chari and A. Pressley, A Guide to Quantum Groups (Cambridge University Press, Cambridge,
1994).

[22] C. Kassel, Quantum Groups, Graduate Texts in Mathematics 155 (Springer-Verlag, New York, NY,
1995).

[23] Strictly, here we mean the image of U(slm) in the finite-dimensional representations that are trivial
under the center Zm of SU(m).

[24] J.J. Graham and R.I. Lehrer, Invent. Math. 123, 1 (1996).

[25] A. Mathas, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, University Lecture
Series Vol. 10 (American Mathematical Society, Providence, RI, 1999), and references therein.

[26] V.F.R. Jones, L’Enseignement Math. 40, 313 (1994).

[27] K. Erdmann and R.M. Green, arXiv:math.RT/9811017.

[28] P. Martin and H. Saleur, Commun. Math. Phys. 158, 155 (1993).

[29] P. Martin and H. Saleur, Lett. Math. Phys. 30, 189 (1994).

[30] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edition (Clarendon,
Oxford, 1979), Ch. XVI.

[31] I.A. Gruzberg, A.W.W. Ludwig, and N. Read, Phys. Rev. Lett. 82, 4524 (1999).

[32] The TL algebras for m and −m are isomorphic. Our definition of the algebra by relations (2.4) differs
from some authors by a rescaling by m, which makes a difference only in the case m = 0 (or ∞).

[33] W.M. Koo and H. Saleur, Nucl. Phys. B 426, 459 (1994).

[34] P. A. Pearce, J. Rasmussen and J.B. Zuber, “Logarithmic minimal models”, hep-th/0607232.

15



P
o
S
(
S
o
l
v
a
y
)
0
1
3

Enlarged Symmetries of Spin Chains and Loop Models Hubert Saleur

[35] G. Feverati and P. Pearce, Nucl. Phys. B 663, 409 (2003).

[36] F. Rohsiepe, “On Reducible but Indecomposable Representations of the Virasoro Algebra”,
hep-th/9611160.

16


