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1. Introduction

This is a continuation of our previous paper [1] in which we studied the infiniteXXZ spin
chain with the Hamiltonian

HXXZ =
1
2

∞

∑
k=−∞

(
σ1

k σ1
k+1 +σ2

k σ2
k+1 +∆σ3

k σ3
k+1

)
, ∆ =

q+q−1

2
.

Before going into the details of the present paper, we review the main points of[1]. In that paper
we gave an algebraic formula for the vacuum expectation values of quasi-local operators of the
form

qα ∑0
k=−∞ σ3

k O. (1.1)

Here,O is a local operator, andα is a disorder parameter. We denote by

S( j) =
1
2

j

∑
k=−∞

σ3
k

the total spin operator on the left half of the chain.
Let Wα be the space of quasi-local operators of this form. The main ingredient in our formula

was a pair of operatorsb(ζ ,α),c(ζ ,α) acting on the spaces of quasi-local operators,

b(ζ ,α) : Wα → Wα+1, c(ζ ,α) : Wα → Wα−1.

It is convenient to introduce the space

W[α] = ⊕k∈ZWα+k,

and use the notationb(ζ ),c(ζ ) : W[α] → W[α].
The vacuum expectation valued are given by the formula

〈vac|q2αS(0)O|vac〉

〈vac|q2αS(0)|vac〉
= trα

(
eΩ
(

q2αS(0)
O

))
,

wheretrα stands for the weighted trace

trα(X) = · · · trα
1 trα

2 trα
3 · · ·(X) (X ∈ Wα),

trα(x) =
1

q
α
2 +q−

α
2

tr
(

q−
1
2ασ3

x
)

(x∈ End(C2)) ,

and on eachWα , Ω admits an expression

Ω = −resζ1,ζ2=1

(
ω(ζ1/ζ2,α)b(ζ1)c(ζ2)

dζ1

ζ1

dζ2

ζ2

)
. (1.2)

Hereω(ζ ,α) is a known scalar function (whose explicit formula can be found in (1.5), [1]).
The operatorsb(ζ ),c(ζ ) are obtained from the operatorsb[k,l ](ζ ),c[k,l ](ζ ) which act on the

direct sum of the finite dimensional spaces

V[α],[k,l ] = ⊕ j∈ZVα+ j,[k,l ], Vα+ j,[k,l ] ≃ End
(
(C2)⊗(l−k+1)

)

2
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by taking an inductive limit whenk→−∞, l → ∞. Here the index[k, l ] indicates the finite interval
[k, l ] ⊂ Z of the spin chain.

We usec+ = c andc− = b in the sequel. On each finite interval[k, l ], the operatorc±[k,l ](ζ ) has
the form

c±[k,l ](ζ ) = −
1
2

l−k+1

∑
j=1

c±( j)
[k,l ]

(ζ −1) j .

The operatorsb( j)
[k,l ],c

( j)
[k,l ] depend onk, l in such a way that the reduction properties hold:

c±[k,l ](X[k,l−1]) = c±[k,l−1](X[k,l−1]) ,

c±[k,l ](q
ασ3

k X[k+1,l ]) = q(α∓1)σ3
k c±[k+1,l ](X[k+1,l ]) .

HereX[k,l ] denotes an element ofVα,[k,l ].
In [1], the operatorc±[k,l ](ζ ) was constructed from the trace of a monodromy matrix whose

auxiliary space consists of the tensor product ofC2 and theq oscillator representationsW±. This
is similar to the construction ofQ operators in [2]. However our construction differs from that
paper in two respects. We take the trace of the off-diagonal entry of the monodromy matrix which
is triangular with respect to the auxiliary spaceC2; and we consider only the singular part in the
expansion atζ = 1, since otherwise the operator is dependent on the way of triangularization. As
a spin-off of our construction we obtained the Grassmann relation among theoperatorsc±(ζ ):

cε1(ζ1)cε2(ζ2) = −cε2(ζ2)cε1(ζ1) .

In this paper, we further investigate the structure of the operatorsc±(ζ ). We consider the inho-
mogeneous lattice with the spectral parametersξk (k∈Z). There are two advantages in considering
the inhomogeneous case. The singularities of the trace which lie atζ 2 = 1 in the homogeneous
case split into simple poles atζ 2 = ξ 2

k in the inhomogeneous case. Therefore the operatorc±[k,l ](ζ )

is decomposed into a partial fraction

c±[k,l ](ζ ) = −
1
2

l

∑
j=k

ξ jc±j,[k,l ]
ζ −ξ j

.

This is the first point. The reduction property and the Grassmann relation persist in the inhomo-
geneous case. Passing to the inductive limit, we obtain a set of operatorsc±j acting onW[α] and
satisfying the Grassmann relation:

cε1
j1

cε2
j2

= −cε2
j2

cε1
j1
.

Moreover, in the inhomogeneous case, the operatorsc±j enjoy the equivariance with respect to the
action of the infinite symmetric group inherited from theR matrix symmetry:

si · c±j = c±si( j) · si , si ∈ S∞.

This is the second point.
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Although the operatorsc±j satisfy the Grassmann relation and annihilate some elements in
W[α], they do not constitute the annihilation part of the free fermion algebra. We see this because
they have a large kernel in common, which is spanned by theS∞ orbits of q2αS( j) ( j ∈ Z). We
call elements in the common kernelvacuum states. The existence of a large kernel is a simple
consequence of the reduction property and the equivariance with respect to theS∞ action. In fact,
the reduction property holds in a stronger sense:

c±l ,[k,l ]
(
Vα,[k,l ]

)
⊂ Vα,[k,l−1]⊗ id .

Here id is the identity operator on thel -th tensor component. This implies that there exists anS∞-
equivariant filtration of the spaceW[α],

F0
W[α] ⊂ ·· · ⊂ Fn

W[α] ⊂ Fn+1
W[α] ⊂ ·· ·W[α] ,

si
(
Fn

W[α]

)
⊂ Fn

W[α] ,

such thatF0W[α] is the space of the vacuum states and the operatorc±j decreases the ‘particle’
numbern:

c±j (Fn
W[α]) ⊂ Fn−1

W[α] .

In the caseq = i, it is well-known that the Hamiltonian is diagonalized by the Jordan-Wigner
transformation. The latter turns the tensor product(C2)⊗n into the irreducible representation of the
free fermion algebra with 2n generators

ψ±
j = σ±

j i∓∑ j−1
k=1 σ3

k (1≤ j ≤ n).

We introduce a fermion algebra with 4n generatorŝΨ±
j ,Φ̂±

j (1≤ j ≤ n),

[Ψ̂ε1
j1
,Ψ̂ε2

j2
] = 0, [Φ̂ε1

j1
,Φ̂ε2

j2
] = 0, [Ψ̂ε1

j1
,Φ̂ε2

j2
] = δε1,−ε2δ j1, j2 ,

which act on End
(
(C2)⊗n

)
irreducibly. They are linear combinations of the left and the right

multiplications byψ±
j , equivariant relative to theSn action, and satisfy the reduction property

which enables us to extend their definition to the infinite lattice. It is convenient tointroduce the
fermion number operatorsN±

k = Φ̂±
k Ψ̂∓

k . The vacuum statesCq2αS( j) ( j ∈ Z) are characterized by
the fermion numbers

N±
k =

{
1 if k≤ j;

0 if k≥ j +1.

Finally, we modify these fermions to another set of free fermionsχ±
k ,χ∗±

k satisfyingN± = χ∗±
k χ∓

k ,
and obtain the simple formula

c±k = χ±
k χ∓

k χ∗±
k .

Namely, the operatorc±k is a fermion annihilation operator: if the fermion number of a state is
N∓

k = 1, it is changed toN∓
k = 0; otherwise the state is annihilated.

4
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Let us return to genericq. The properties of the operatorsc±k formulated above are enough to
deduce the existence of a fermionic basis of the spaceW[α] on which they act exactly as in theq= i
case (see Theorem 4.1). This is our conclusion. Such a fermionic basis isby no means unique. We
hope to discuss a more explicit construction in a future publication.

The plan of this paper is as follows. In Section 2 we recall the definition ofb(ζ ) andc(ζ )

given in [1]. Appendix A is a supplement to this section, giving a proof of some operator identities.
Section 3 with the detailed calculations in Appendix B gives the complete details of theq = i case.
Section 4 is devoted to the existence proof of the fermionic basis for genericq.

2. Operators b and c

In this section, we give the definition of the operatorsb(ζ ), c(ζ ) and discuss their basic prop-
erties: the Grassmann relation (2.9), the equivariance with respect to the symmetric group (2.10),
and the reduction properties (2.11) and (2.12).

Throughout the paper,q denotes a non-zero complex number andV a two-dimensional vector
space with fixed basisv+,v−.

2.1 Quantum spaces

We consider an inhomogeneous spin chain with spectral parametersξ j ( j ∈ Z). They are
attached to the ‘quantum’ spacesVj ( j ∈ Z), whereVj is a copy ofV.

In this and the next section, we fix a positive integern and consider a finite segment[1,n] of
the infinite spin chain. We work with the space

V = End(V1⊗·· ·⊗Vn)

consisting of operators which act non-trivially on the lattice sitesj = 1, · · · ,n. We denote by
Pi, j ∈End(V ) the transposition of thei-th and thej-th tensor components. We consider the transfer
matrix acting on the spaceV . It depends on a parameterα playing the role of a boundary condition.
Later we shall extendV to an inductive limit, where the indexj runs overZ. The parameterα
enters the construction of this inductive limit as well.

To make distinction, we call an element ofV a state, and an element of End(V ) an opera-
tor. When it is necessary, we extend the coefficient field ofV or End(V ) to the field of rational
functions in the variablesqα ,ξ1, . . . ,ξn. We denote byr i, j the operation of exchanging spectral
parametersξi ↔ ξ j .

The total spin operatorS= 1
2 ∑n

j=1 σ3
j belongs toV , and its adjoint action

S(X) = [S,X] (X ∈ V )

belongs to End(V ). The spaceV decomposes asV =
⊕

s∈Z V (s) whereV (s) = {X ∈ V |S(X) =

sX}.
The spin reversalJ is an operator acting onV

J(X) =
n

∏
j=1

σ1
j ·X ·

n

∏
j=1

σ1
j .

When we extend the coefficient field, we use the operatorj given by

j(X) = J(X)|qα→q−α .

5
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2.2 R matrix

The spaceV is endowed with a structure of a two-dimensional evaluation module of the quan-
tum affine algebraUq(ŝl2). We will need only the formula for the associatedR matrix:

R(ζ ) = (qζ −q−1ζ−1) ·




1
β (ζ ) γ(ζ )

γ(ζ ) β (ζ )

1


 ,

where

β (ζ ) =
(1−ζ 2)q
1−q2ζ 2 , γ(ζ ) =

(1−q2)ζ
1−q2ζ 2 .

The matrixR(ζ ) is a Laurent polynomial, whileR(ζ )−1 has poles atζ 2 = q±2.

TheR matrix gives an action of the symmetric groupSn on V , the simple reflectionsi being
represented by

si = r i,i+1Ři,i+1(ξi/ξi+1).

Here

Ri,i+1(ξi/ξi+1)(X) = Ři,i+1(ξi/ξi+1)XŘi,i+1(ξi/ξi+1)
−1,

Ři,i+1(ζ ) = Pi,i+1Ri,i+1(ζ ).

We use the monodromy matrix

Ta(ζ ) = Ra,n(ζ/ξn) · · ·Ra,1(ζ/ξ1).

Here and after, the suffixa indicates the two-dimensional auxiliary spaceVa ≃V.

The total spin operator which commutes withRa, j(ζ ) is given by1
2σ3

a +S,

[1
2σ3

a +S,Ra, j(ζ )] = 0.

The transfer matrixt(ζ ,α) acting onV is defined by using the inverse adjoint action of the mon-
odromy matrix.

t(ζ ,α)(X) = tra(q
−ασ3

a Ta(ζ )−1XTa(ζ )) (X ∈ V ).

Here tra = trVa stands for the trace overVa, which gives a functional

tra(q
−ασ3

a ·) : End(Va) → Cqα ⊕Cq−α .

We have

si · t(ζ ,α) = t(ζ ,α) · si, j · t(ζ ,α) = t(ζ ,α) · j.

6
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2.3 Oscillator algebra

Following [2], we define another kind of monodromy matrices. They have theq oscillator
algebraOscas auxiliary spaces. The oscillator algebra is generated bya,a∗,q±D with the relations

qDaq−D = q−1a, qDa∗q−D = qa∗, aa∗ = 1−q2D+2, a∗a = 1−q2D.

We use the suffixA indicating the infinite dimensional auxiliary spaceOscA and its generatorsaA,
a∗A, DA ∈ OscA.

We shall use two representationsW± of Osc,

W+ = ⊕k≥0C|k〉, W− = ⊕k≤−1C|k〉.

The action is

qD|k〉 = qk|k〉, a|k〉 = (1−q2k)|k−1〉, a∗|k〉 = (1−δk,−1)|k+1〉.

TheL operatorL±(ζ ) belongs toOsc⊗End(V). We have

L+(ζ ) = iζ−1/2q−1/4(1−ζ a∗σ+−ζ aσ−−ζ 2q2D+2τ−)qσ3D,

L−(ζ ) = σ1L+(ζ )σ1.

Hereτ± = σ±σ∓. The inverse ofL+(ζ ) is given by

L+(ζ )−1 =
1

ζ −ζ−1L
+
(ζ ),

L
+
(ζ ) = iζ−1/2q1/4 ·q−σ3D(1+ζ a∗σ+ +ζ aσ−−ζ 2q2Dτ+).

Apart from the powerζ−1/2, theL operator is a quadratic polynomial inζ , and its inverse has a
pole atζ 2 = 1.

The total spin operator which commutes with theL operator is

S± = ∓DA +S, [S±,L±
A, j(ζ )] = 0.

This suggests a construction of an operator similar tot(ζ ,α) using the trace onW±, in which
q−ασ3

is replaced byq±2αD. This construction leads to theQ operators acting onV :

Q±(ζ ,α)(X) = ±(1−q±2(α−S))ζ±(α−S)Tr±A
(
q±2αDAT±

A (ζ )−1XT±
A (ζ )

)
, (2.1)

T±
A (ζ ) = L±

A,n(ζ/ξn) · · ·L
±
A,1(ζ/ξ1).

Here the trace functional

Tr±A (q±2αDA ·) : OscA → C(q2α)

is defined to be zero on each spin sectorOsc(s) = {x∈ Osc| [D,x] = sx} with s 6= 0, and on the spin
zero sectorOsc(0) it is defined by

Tr±A (q±2αDAqmDA) = ±(1−q±2α+m)−1.

7
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SinceT±
A (ζ )−1XT±

A (ζ )
∣∣
ζ=0= q∓2SDA(X), we haveζ∓(α−S)Q±(ζ ,α)

∣∣
ζ=0= idV . This explains the

prefactor±(1−q±2(α−S)) in the definition ofQ±.
The trace functional satisfies

Tr+(q2αDx) = −Tr−(q2αDx).

From this follows

j ·Q+(ζ ,α) = Q−(ζ ,α) · j.

The Yang-Baxter relation for theL operator

Ri,i+1(ζi/ζi+1)LA,i(ζi)LA,i+1(ζi+1) = LA,i+1(ζi+1)LA,i(ζi)Ri,i+1(ζi/ζi+1)

implies the equivariance.

si ·Q±(ζ ,α) = Q±(ζ ,α) · si.

2.4 Baxter’s TQ relation

The following proposition is due to [2]. We give here a proof, for the purpose of introducing
further notation and formulas.

Proposition 2.1.

t(ζ ,α)Q±(ζ ,α) = Q±(q−1ζ ,α)+Q±(qζ ,α). (2.2)

Proof. Define the triangular transfer matrix

T+
{A,a}(ζ ) = (G+

A,a)
−1T+

A (ζ )Ta(ζ )G+
A,a, (2.3)

G+
A,a = q−σ3

a DA(1+a∗Aσ+
a ). (2.4)

The triangularity is local:

L+
{A,a}, j(ζ ) = (G+

A,a)
−1L+

A, j(ζ )Ra, j(ζ )G+
A,a (2.5)

= (qζ −q−1ζ−1) ·

(
L+

A, j(q
−1ζ )q−σ3

j /2 0

γ(ζ )L+
A, j(qζ )σ+

j q−2DA+1/2 β (ζ )L+
A, j(qζ )qσ3

j /2

)

a

.

The inverse is given by

L+
{A,a}, j(ζ )−1 =

1
qζ −q−1ζ−1

×

(
qσ3

j /2L+
A, j(q

−1ζ )−1 0

−γ(q−1ζ )σ+
j q−2DA−1/2L+

A, j(q
−1ζ )−1 β (ζ )−1q−σ3

j /2L+
A, j(qζ )−1

)

a

.

Using the commutativity

[q2αDA−ασ3
a ,G+

A,a] = 0,

we obtain theTQ relation. The effect of the shiftζ α−S → (q∓1ζ )α−S is cancelled byq∓σ3
j /2 in the

diagonal elements ofL+
{A,a}, j(ζ )±1 andq−ασ3

a in t(ζ ,α).

8
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In theTQ relation, the order of the productt(ζ ,α)Q±(ζ ,α) can be reversed. We can show

Q±(ζ ,α)t(ζ ,α) = Q±(qζ ,α)+Q±(q−1ζ ,α).

The argument is quite parallel. Set1

T∗+
{a,A}(ζ ) = (F+

A,a)
−1Ta(ζ )T−

A (ζ )F+
A,a,

F+
A,a = 1−aAσ+

a , [q−2αDA−ασ3
a ,F+

A,a] = 0.

We have

L∗+
{a,A}, j(ζ )

def
= (F+

A,a)
−1Ra, j(ζ )L−

A, j(ζ )F+
A,a

= (qζ −q−1ζ−1) ·

(
β (ζ )L−

A, j(qζ )q−σ3
j /2 0

γ(ζ )σ+
j L−

A, j(qζ )q−σ3
j /2 L−

A, j(q
−1ζ )qσ3

j /2

)

a

and

L∗+
{a,A}, j(ζ )−1

=
1

qζ −q−1ζ−1 ·

(
β (ζ )−1qσ3

j /2L−
A, j(qζ )−1 0

−γ(q−1ζ )q−σ3
j /2L−

A, j(q
−1ζ )−1σ+

j q−σ3
j /2L−

A, j(q
−1ζ )−1

)

a

.

Using these quantities we arrive at

Q−(ζ ,α)t(ζ ,α) = Q−(qζ ,α)+Q−(q−1ζ ,α).

Later on we will also use

L−
{A,a}, j(ζ ) = σ1

aσ1
j L+

{A,a}, j(ζ )σ1
aσ1

j ,

L∗−
{A,a}, j(ζ ) = σ1

aσ1
j L∗+

{A,a}, j(ζ )σ1
aσ1

j .

2.5 Conjugate transfer matrices

We define conjugate transfer matrices by reversing the operations inside thetrace.

t∗(ζ ,α)(X) = tra(Ta(ζ )qασ3
a XTa(ζ )−1) ,

Q∗±(ζ ,α)(X) = ±(1−q±2(α−S))ζ±(α−S)Tr±A
(
T∓

A (ζ )q±2αDAXT∓
A (ζ )−1) .

They satisfy the sameTQ relations

t∗(ζ ,α)Q∗±(ζ ,α) = Q∗±(q−1ζ ,α)+Q∗±(qζ ,α) (2.6)

and the equivariance with respect tosi andj.

1Notice the signs± in T∗+
{a,A} andT−

A ; they arenotmisprints.

9
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2.6 Reduction property

Now, we consider the extension of the interval from[1,n] to [1,n+1] or [0,n]. We exhibit the
dependence on the interval of various quantities by a suffix, and writeV[1,n], t[1,n](ζ ,α) and so on.
The operatort(ζ ,α) has the reduction property to the right:

t[1,n+1](ζ ,α)(X[1,n]⊗1) = t[1,n](ζ ,α)(X[1,n])⊗1.

This is tautological because of the inverse adjoint action: in the left hand side, the adjoint action
R−1

a,n+1(ζ ,α)XRa,n+1(ζ ,α) on the quantum spacen+1 appears at the innermost place. On the other
hand, the operatort∗(ζ ,α) has the reduction property to the left:

t∗[0,n](ζ ,α)(qασ3
⊗X[1,n]) = qασ3

⊗ t∗[1,n](ζ ,α)(X[1,n]).

This is also tautological because the operation appearing at the innermost place isRa,0(ζ ,α)XRa,0(ζ ,α)−1,
which commutes with the multiplication byqα(σ3

a+σ3
0 ).

In [1] were constructed operators which satisfy reduction to both ends.In order to realize such
operators, we have to modify the form of the reduction. We do not changethe reduction to the
right. We change the reduction to the left in the form

c±[0,n](q
ασ3

⊗X[1,n]) = q(α∓1)σ3
⊗ c±[1,n](X[1,n]).

For this purpose we consider the off-diagonal blocks in the monodromy matrices.

2.7 Operators in off-diagonal blocks

We define aq difference operator with respect to the spectral variable

∆q(F(ζ )) = F(qζ )−F(q−1ζ ).

A function of this form is said to beq-exact.

Proposition 2.2. Set

k±(ζ ,α)(X) (2.7)

= ±(1−q±2(α−S))ζ±(α−S)Tr±A tra

(
q±2(α∓1)DAσ±

a Ta(ζ )−1T±
A (ζ )−1XT±

A (ζ )Ta(ζ )
)

= ±(1−q±2(α−S))ζ±(α−S)Tr±A tra

(
q±2αDAσ±

a T±
{A,a}(ζ )−1XT±

{A,a}(ζ )
)

.

This operator satisfies the reduction property modulo a q-exact form:

k±
[1,n](ζ ,α)(qασ3

1 X[2,n]) = q(α∓1)σ3
1 k±

[2,n](ζ ,α)(X[2,n]) (2.8)

+σ±
1 ∆q

(
q−q−1

ζ/ξ1− (ζ/ξ1)−1 Q±
[2,n](ζ ,α ∓1)(X[2,n])

)
.

Proof. We subdivide the quantum space asV = V1 ⊗ V[2,n], whereV1 = End(V1) and V[2,n] =

End(V2⊗·· ·⊗Vn). Let us calculate

C = (1−q2(α−S))−1ζ−(α−S)k+(ζ ,α)(qασ3
1 X[2,n])

= Tr+A tra

(
q2(α−1)DAσ+

a Ta(ζ )−1T+
A (ζ )−1qασ3

1 X[2,n]T
+
A (ζ )Ta(ζ )

)

10
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whereX[2,n] ∈ V[2,n]. Using the commutativity of theL operator and the total spin operator, we have

C = q(α−1)(σ3
1−1)Tr+A tra

(
σ+

a Ra,1(ζ/ξ1)
−1L+

A,1(ζ/ξ1)
−1qσ3

1 q(α−1)(2DA−σ3
a )

×Ta,[2,n](ζ )−1T+
A,[2,n](ζ )−1X[2,n]T

+
A,[2,n](ζ )Ta,[2,n](ζ )L+

A,1(ζ/ξ1)Ra,1(ζ/ξ1)
)

Note that
(

G+
A,a

)−1
σ+

a G+
A,a = σ+

a q2DA. Using (2.5) we rewrite as

C = q(α−1)(σ3
1−1)Tr+A tra

(
σ+

a q2DAL+
{A,a},1(ζ/ξ1)

−1qσ3
1 q(α−1)(2DA−σ3

a )

×T+
{A,a},[2,n](ζ )−1X[2,n]T

+
{A,a},[2,n](ζ )L+

{A,a},1(ζ/ξ1)
)
.

Collecting the terms containing operators acting onV1, we obtain

C = q(α−1)(σ3
1−1)Tr+A tra

({
L+
{A,a},1(ζ/ξ1)

t1σ+
a q2DA(L+

{A,a},1(ζ/ξ1)
−1qσ3

1 )t1
}t1

×q(α−1)(2DA−σ3
a )T+

{A,a},[2,n](ζ )−1X[2,n]T
+
{A,a},[2,n](ζ )

)
.

The part{· · ·}t1 reads as

{· · ·}t1 = q2DAσ+
a +

q−q−1

qζ/ξ1− (qζ/ξ1)−1σ+
1 τ−

a −
q−q−1

q−1ζ/ξ1−q(ζ/ξ1)−1 σ+
1 τ+

a .

Using (2.1) we obtain (2.8). The termq2DAσ+
a creates the main term and the rest creates theq-exact

term. The presence of the factor(1−qα−S) in k+ andQ+ does not effect the form of the equality
becauseS[1,n](σ+

1 X[2,n])= σ+
1 (S[2,n]+1)(X[2,n]). On the other hand, the factorζ α−S matters because

it does not commute with theq difference operator. It adjusts the effect ofτ±
a σ3

a =±τ±
a in the factor

q(α−1)(2DA−σ3
a ).

The operatorsk±(ζ ,α) enjoy the non-trivial reduction property to the left with aq-exact form
as remainder term. In the next subsection we define the operatorsc±k (ζ ,α) by taking the singular
part atζ = ξk. The operatorQ±

[2,n](ζ ,α ∓1) has no pole atζ = q±1ξk. Therefore, theq-exact term

has no pole atζ = ξk. It implies that the operatorsc±k (ζ ,α) satisfy the reduction property without
remainder terms.

Next we define operators with non-trivial reduction to the right. We demandthe tautological
reduction to the left in the form

k∗±
[1,n](q

(α±1)σ3
1 X[2,n]) = qασ3

1 k∗±
[2,n](X[2,n]).

This is achieved by defining

k∗±(ζ ,α)(X) = ±(1−q±2(α±1−S))ζ±(α±1−S)

×Tr±A tra

(
σ±

a Ta(ζ )T∓
A (ζ )qα(±2DA+σ3

a )∓2SX T∓
A (ζ )−1Ta(ζ )−1

)
.

In this definition, we make the shiftq∓2SX because we want to have the reduction to the left as
above. As for the reduction to the right we have

11
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Proposition 2.3.

k∗±
[1,n](ζ ,α)(X[1,n−1]) = k∗±

[1,n−1](ζ ,α)(X[1,n−1])

+σ±
n ∆q

(
q−q−1

ζ/ξn− (ζ/ξn)−1Q∗±
[1,n−1](ζ ,α)(q∓2S[1,n−1]X[1,n−1])

)
.

Proof. Let us calculate

Tr+A tra

(
σ+

a Ta(ζ )T−
A (ζ )qα(2DA+σ3

a )−2S[1,n]X[1,n−1]T
−
A (ζ )−1Ta(ζ )−1

)

= Tr+A tra

(
σ+

a T∗+
{a,A}(ζ )qα(2DA+σ3

a )−2S[1,n]X[1,n−1]T
∗+
{a,A}(ζ )−1

)

= Tr+A tra

({
(q−σ3

n L∗+
{a,A},n(ζ/ξn)

−1)tnσ+
a L∗+

{a,A},n(ζ/ξn)
tn
}tn

×T∗+
{a,A},[1,n−1](ζ )qα(2DA+σ3

a )−2S[1,n−1]X[1,n−1]T
∗+
{a,A},[1,n−1](ζ )−1

)
.

The statement of the proposition follows from
{
(q−σ3

n L∗+
{a,A},n(ζ )−1)tnσ+

a L∗+
{a,A},n(ζ )tn

}tn

= σ+
a +

q−q−1

qζ − (qζ )−1σ+
n τ+

a −
q−q−1

q−1ζ −qζ−1σ+
n τ−

a .

2.8 Operators b and c

The operatort(ζ ,α) does not have a pole atζ 2 = ξ 2
j , but has a pole atζ 2 = q±2ξ 2

j . The opera-
torsQ±(ζ ,α) do not have a pole atζ 2 = q±2ξ 2

j , but have a pole atζ 2 = ξ 2
j . These are consequences

of the pole structures ofRa, j(ζ )±1 and LA, j(ζ )±1. Consider the matrixT±
{A,a}(ζ )−1XT±

{A,a}(ζ ),

which is triangular in the auxiliary spaceVa. The diagonal part does not have a pole atζ 2 = ξ 2
j

because poles cancel in the adjoint action. This cancellation breaks downfor the off-diagonal
elements. The operatorsc±(ζ ,α) do have a simple pole atζ 2 = ξ 2

j .
Set

c−(ζ ,α) = b(ζ ,α) = (1−q2(α−S))−1singk−(ζ ,α),

c+(ζ ,α) = c(ζ ,α) = qα−Ssingk+(ζ ,α).

The symbol sing means taking the singular part atζ = ξi (i = 1, . . . ,n). Therefore, we have a partial
fraction

c±(ζ ,α) = −
1
2

n

∑
k=1

ξk

ζ −ξk
c±k (α).

Theq dependent normalization factors in the definition do not alter the reduction properties. Taking
the singular part in (2.8) we obtain

Proposition 2.4. We have

c±[1,n](ζ ,α)(X[1,n−1]) = c±[1,n−1](ζ ,α)(X[1,n−1]),

c±[1,n](ζ ,α)(qασ3
1 X[2,n]) = q(α∓1)σ3

1 c±[2,n](ζ ,α)(X[2,n]).

12
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The normalization factors are so chosen that we have the Grassmann relation 2.

Proposition 2.5.

cε1(ζ1,α − ε2)cε2(ζ2,α) = −cε2(ζ2,α − ε1)cε1(ζ1,α).

The proof is given in Appendix B.

It follows from Proposition 2.4 that the residuec±n (α) of c±[1,n](ζ ,α) taken at the right end of
the intervalζ = ξn annihilate states of the formX[1,n−1].This operator is given explicitly as follows.

Proposition 2.6. Let X∈ V[1,n]. Then we have

c+
n (α)(X) =

(1−q2(α−S))(qξn)
α−S

∏n−1
j=1 β (ξn/ξ j)

Q̃+(ξn,α)

(
(a,1)nX

(
1
−a

)

n

)
,

c−n (α)(X) =
(q2ξn)

−(α−S)

∏n−1
j=1 β (ξn/ξ j)

Q̃−(ξn,α)

(
(1,a)nX

(
−a
1

)

n

)

where forX̃ ∈ Osc⊗V[1,n−1] we set

Q̃±(ζ ,α)(X̃) = q∓S[1,n−1]Tr±A

(
q±2αDAT±

A,[1,n−1](qζ )−1X̃ T±
A,[1,n−1](q

−1ζ )
)

q∓S[1,n−1] .

In particular, we havec±n (α)(X) ∈ V[1,n−1].

Proof. Considerk±(ζ ,α) given by (2.7). Because of the triangular structure ofL±
{A,a}, j(ζ ),

tra

(
σ±

a T±
{A,a}(ζ )−1(X)T±

{A,a}(ζ )
)

consists of 2n terms. The singular part ofk±(ζ ,α) at ζ =

ξn comes only from the factorγ(q−1ζ/ξn) and β (ζ/ξn)
−1 in L±

{A,a},n(ζ/ξn)
−1. Note also that

β (ζ/ξn) is zero atζ = ξn. From these properties, it follows that only two terms have singularities
at ζ = ξn. Summing them up, we obtain the above expressions.

To simplify the notation, let us use the following convention. For eachβ ∈ α +Z take a copy
Vβ ≃ V , and define an operatorα acting onV[α] = ⊕β∈α+ZVβ by

α |
V

(s)
β

= β id
V

(s)
β

.

Let I ⊂ Z be a finite interval. We consider the quantum spaceV[α],I by changing[1,n] to I . If
J = [ j1, j2] (i1 ≤ j1 ≤ j2 ≤ i2) is a subinterval ofI = [i1, i2], thenV[α],J is naturally embedded in
V[α],I :

ιJ,I : Vβ ,J → Vβ ,I , X[ j1, j2] 7→ q∑
j1−1
j=i1

βσ3
j X[ j1, j2].

We often dropιJ,I when the meaning is clear without writing it explicitly.

2One can choose the normalization so that the equivariancec+ ↔ c− with respect to the spin reversal is valid. We
do not exploit this possibility because we will not use this property, and alsobecause it would require introduction of a
square root.

13
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In this notation, the basic properties of the operatorsc+(ζ ) = c(ζ ) and c−(ζ ) = b(ζ ) are
summarized as follows.

cε1(ζ1)cε2(ζ2) = −cε2(ζ2)cε1(ζ1), (2.9)

si c±(ζ ) = c±(ζ )si , (2.10)

c±[1,n](ζ )(X[1,n−1]) = c±[1,n−1](ζ )(X[1,n−1]), (2.11)

c±[1,n](ζ )(qασ3
1 X[2,n]) = qασ3

1 c±[2,n](ζ )(X[2,n]). (2.12)

3. Free Fermion Point

In this section, we discuss the free fermion caseq = i. The main point is that the operatorsbk

andck are cubic in appropriate free fermions (see Theorem 3.6 below).

3.1 Jordan-Wigner transformation in adjoint action

We continue to work withV = End(V1⊗·· ·⊗Vn). Define the Jordan Wigner transformation

ψ±
j = σ±

j i∓∑ j−1
l=1 σ3

l ∈ V .

We define fermions3 acting onX ∈ V (s).

Ψ±
j (X) = ψ±

j X− (−1)sXψ±
j ,

Φ±
j (α)(X) =

1

1+ i∓2(α−s)
(ψ±

j X + i∓2αXψ±
j ).

Define further the operatorΨ±
j (resp.Φ±

j ) onV[α] whose restriction toV(s)
β (resp.V(s)

β±1) is given by

Ψ±
j : V

(s)
β → V

(s±1)
β∓1 , Φ±

j (β ) : V
(s)

β±1 → V
(s±1)

β .

They satisfy the canonical anti-commutation relations

[Ψε
j ,Ψ

ε ′
j ′ ]+ = 0, [Φε

j ,Φ
ε ′
j ′ ]+ = 0, [Ψε

j ,Φ
ε ′
j ′ ]+ = δε+ε ′,0δ j, j ′ .

Whenq = i, there is certain redundancy in consideringVβ for all β ∈ Z + α , since we have the
periodicity Φ±

k (α + 2) = Φ±
k (α), t(ζ ,α + 4) = t(ζ ,α). Nevertheless, we choose to retain this

convention in order to keep contact with the generic case. AlsoQ±(ζ ,α) is not quite periodic due
to the overall powerζ±(α−S).

Proposition 3.1. The fermionsΨ±
j,[1,n] andΦ±

j,[1,n] satisfy the reduction property to the both ends
except for j= 1,n.

Ψ±
j,[1,n](X[1,n−1]) = (1−δ j,n)Ψ±

j,[1,n−1](X[1,n−1]), (3.1)

Ψ±
j,[1,n](i

ασ3
1 X[2,n]) = iασ3

1 Ψ±
j,[2,n](X[2,n]) ( j 6= 1), (3.2)

Φ±
j,[1,n](X[1,n−1]) = Φ±

j,[1,n−1](X[1,n−1]) ( j 6= n), (3.3)

Φ±
j,[1,n](i

ασ3
1 X[2,n]) = (1−δ j,1)i

ασ3
1 Φ±

j,[2,n](X[2,n]). (3.4)

3For X ∈ V (s), the operatorΦ±
j (α) in this paper corresponds toΦ±

α−s+1, j in [1].

14
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Proof. The reduction to the right (3.1), (3.3) except forj = n is tautological. The casej = n for
(3.1) goes

ψ+
n X[1,n−1]− (−1)sX[1,n−1]ψ+

n = i−2S[1,n−1]σ+
n X[1,n−1]− (−1)sX[1,n−1]i

−2S[1,n−1]σ+
n .

Since(−1)S[1,n−1]X[1,n−1] = (−1)sX[1,n−1](−1)S[1,n−1] , this is zero. The reduction to the left (3.2),(3.4)

except forj = 1 follows fromψ±
j,[1,n]i

(α±1)σ3
1 = ψ±

j,[2,n]i
ασ3

1 . The casej = 1 goes

σ±
1 i(α±1)σ3

1 X[2,n] + i∓2α i(α±1)σ3
1 X[2,n]σ±

1 = σ+
1 i−1∓αX[2,n] + i∓2α i1±αX[2,n]σ±

1 = 0.

The free fermionsΨ±
j ,Φ±

j do not satisfy the equivariance with respect to the symmetric group
action. In the next subsection, we transform them to those which enjoy the equivariance.

3.2 Equivariant fermions

Set

Ψ̂±(ζ ) =
n

∑
j=1

Ψ±
j

i jγ(ζ/ξ j)

∏ j
l=1 β (ζ/ξl )

, Φ̂±(ζ ) =
n

∑
j=1

Φ±
j

i jγ(ζ/ξ j)

∏ j
l=1 β (ζ/ξl )

.

Proposition 3.2. The operatorŝΨ±(ζ ),Φ̂±(ζ ) commute with the action of the symmetric group
Sn,

siΨ̂±(ζ ) = Ψ̂±(ζ )si , siΦ̂±(ζ ) = Φ̂±(ζ )si .

Proof. The statement follows from the identity

(s1−1)

(
σ+

1
γ(ζ/ξ1)

β (ζ/ξ1)
+σ+

2 σ3
1

γ(ζ/ξ2)

β (ζ/ξ1)β (ζ/ξ2)

)
= 0.

Set

Ψ̂±
k = −resζ=ξk

Ψ̂±(ζ )
dζ
ζ

, Φ̂±
k = −iΦ̂±(iξk). (3.5)

Proposition 3.2 implies the equivariance

siΨ̂±
k = Ψ̂±

si(k)
si , siΦ̂±

k = Φ̂±
si(k)

si , (3.6)

wheresi = (i, i +1) is the transposition. They are upper or lower triangular linear combinations of
Ψ±

j or Φ±
j .

Ψ̂±
k =

n

∑
j=k

Ψ±
j

i j−1γ(ξk/ξ j)

∏ 1≤l≤ j
l(6=k)

β (ξk/ξl )
,

Φ̂±
k =

k

∑
j=1

Φ±
j i− j+1γ(ξk/ξ j)

j−1

∏
l=1

β (ξk/ξl ).

15
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Proposition 3.3. The fermionŝΨ±
k ,Φ̂±

k satisfy the canonical anti-commutation relations.

[Ψ̂ε
j ,Ψ̂

ε ′
j ′ ]+ = 0, [Φ̂ε

j ,Φ̂
ε ′
j ′ ]+ = 0, [Ψ̂ε

j ,Φ̂
ε ′
j ′ ]+ = δε+ε ′,0δ j, j ′ .

Proof. Define ann×n matrixP = (Pjk) by

Pjk =





2ξ j/ξk

1−ξ 2
j /ξ 2

k

k−1

∏
l= j+1

1+ξ 2
j /ξ 2

l

1−ξ 2
j /ξ 2

l

if j < k;

1 if j = k;

0 if j > k.

(3.7)

The inverse is of a similar form,

(P−1) jk =





2ξk/ξ j

1−ξ 2
k /ξ 2

j

k−1

∏
l= j+1

1+ξ 2
k /ξ 2

l

1−ξ 2
k /ξ 2

l

if j < k;

1 if j = k;

0 if j > k.

The statement follows from the equalities

Ψ̂±
k =

k−1

∏
l=1

1+ξ 2
k /ξ 2

l

1−ξ 2
k /ξ 2

l

n

∑
j=1

Ψ±
j Pk j, Φ̂±

k =
k−1

∏
l=1

1−ξ 2
k /ξ 2

l

1+ξ 2
k /ξ 2

l

n

∑
j=1

Φ±
j (P−1) jk.

Let N±
k = Φ̂±

k Ψ̂∓
k be the number operators corresponding to the fermion creation operatorsΦ̂±

k

and the fermion annihilation operatorŝΨ∓
k . They satisfy the following reduction properties.

N±
j,[1,n](X[1,n−1]) = (1−δ j,n)N

±
j,[1,n−1](X[1,n−1]),

N±
j,[1,n](i

ασ3
1 X[2,n]) =





iασ3
1 X[2,n] if j = 1;

iασ3
1 N±

j,[2,n](X[2,n]) if j ≥ 2.

3.3 Cubic form in fermions

We introduce another set of free fermions in which the operatorsbk,ck are written as cubic
monomials. Set

U±
k = ∏

l 6=k

(1−ξ 2
k /ξ 2

l )N±
l

(1+ξ 2
k /ξ 2

l )N∓
l

,

χ+
k = Ψ̂+

k U+
k ξ α−S−1

k iα ,

χ−
k = Ψ̂−

k U−
k ξ−α+S−1

k (−1)N−
k

i−S+1

1+ i2(α−S)
,

χ∗+
k = iS−1(1+ i2(α−S))(−1)N−

k ξ α−S+1
k (U−

k )−1Φ̂+
k ,

χ∗−
k = i−αξ−α+S+1

k (U+
k )−1Φ̂−

k .

16
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Proposition 3.4. The operatorsχ±
k ,χ∗±

k satisfy the equivariance with respect to the symmetric
group action

siχ±
k = χ±

si(k)
si , siχ∗±

k = χ∗±
si(k)

si , (3.8)

the canonical anti-commutation relations

[χε
k ,χε ′

k′ ]+ = 0, [χ∗ε
k ,χ∗ε ′

k′ ]+ = 0, [χε
k ,χ∗ε ′

k′ ]+ = δε+ε ′,0δk,k′ , (3.9)

and the reduction relations

χk,[1,n+1](X[1,n]) = χk,[1,n](X[1,n]) (1≤ k≤ n) , (3.10)

χk,[0,n](q
ασ3

0 X[1,n]) = qασ3
0 χk,[1,n](X[1,n]) (1≤ k≤ n) , (3.11)

whereχ = χ±,χ∗±.

Proof. The equivariance (3.8) follows from (3.6). The anti-commutation relation (3.9) follows
from Proposition 3.3. The reduction (3.11) follows from Proposition 3.1. In particular, we use
Ψ±

n (X[1,n−1]) = 0 andΦ±
1 (iασ3

1 X[2,n]) = 0.

SetN±
k (α) = N±

k

∣∣
Vα

. The following formulas are proved in Appendix B.

Theorem 3.5. The transfer matrix and the Q operators are diagonalized by the fermion operators
(3.5).

t(ζ ,α) = (iα−S + i−α+S)
n

∏
k=1

(
1−ζ 2/ξ 2

k

1+ζ 2/ξ 2
k

)N+
k (α+1)+N−

k (α+1)

, (3.12)

ζ∓(α−S)Q±(ζ ,α) =
n

∏
k=1

(1+ζ 2/ξ 2
k )N±

k (α+1)

(1−ζ 2/ξ 2
k )N∓

k (α+1)
, (3.13)

t∗(ζ ,α)(X) = i2S(iα−S + i−α+S)
n

∏
k=1

(
1−ζ 2/ξ 2

k

1+ζ 2/ξ 2
k

)2−N+
k (α+1)−N−

k (α+1)

(i−2SX) , (3.14)

ζ∓(α−S)Q∗±(ζ ,α)(X) = i2S
n

∏
k=1

(1+ζ 2/ξ 2
k )1−N∓

k (α+1)

(1−ζ 2/ξ 2
k )1−N±

k (α+1)
(i−2SX) . (3.15)

Theorem 3.6. The operatorc±k is a cubic monomial in the free fermions.

c±k = χ±
k χ∓

k χ∗±
k .

Theorem 3.6 shows that, thoughc±k themselves are not fermions, they act in a very simple
manner on a basis created by fermions. For later reference, let us record the formula for this
basis. Setχ∗0

k = 1, χ∗0
k = χ∗+

k χ∗−
k . Define a basis{χ(β )

p } of the spaceVβ indexed by sequences
p = (p1, . . . , pn) with p j ∈ {+,−,0,0} by

χ(β )
p = ε(p)χ∗pn

n · · ·χ∗p1
1 (idβ+∑n

j=1 s(p j )),

where idβ ∈ Vβ is the identity operator,s(±) = ±1, s(0) = s(0̄) = 0,

ε(p) = (−1)♯{(i, j)|i< j, pi=−,p j=+}, (3.16)

and♯(Z) the cardinality of a setZ.
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Corollary 3.7. The action ofbk,ck is given by

bk(χ(β )
p ) = δpk,+ε+(p,k)χ(β+1)

p[k] ,

ck(χ(β )
p ) = δpk,−ε−(p,k)χ(β−1)

p[k] ,

where

ε+(p,k) = (−1)♯({i|pi=−})+♯({i|i>k, pi=+}), (3.17)

ε−(p,k) = (−1)♯({i|i>k, pi=−}), (3.18)

p[k] j =

{
0 if j = k;

p j if j 6= k.
(3.19)

Example. It is simple to calculate

χ∗0
1 (idα) = χ∗+

1,[1,1]χ
∗−
1,[1,1](idα) =

iα + i−α

iα − i−α · iασ3
1 .

Using this and the reduction relations, we see that a successive application of χ∗0
k to the identity

operator produces the vacuum states,

χ(α)
(0, . . . ,0
︸ ︷︷ ︸

k

,0, . . . ,0
︸ ︷︷ ︸

n−k

) =

(
iα + i−α

iα − i−α

)k

iα ∑k
j=1 σ3

j .

4. Basis for generic q

In this section we introduce an inductive limitW[α] of the spaceV[α],I when the intervalI =

[k, l ] becomes infinite,k → −∞, l → ∞. The operatorsc±j (α) : Wα → Wα∓1 act on this space.
Generalizing the result in theq = i case, we prove the existence of a basis for genericq, on which
the actions ofc±j (α) are simple.

4.1 Inductive limit

We work with an infinite lattice fully equipped with the spectral parameters. LetK be the field
of rational functions in infinite variablesξ j ( j ∈Z) with coefficients inC(y) (y= qα). Actually, the
field K is an inductive limit of the field of rational functionsKI (I = [k, l ]) in the variablesξk, . . . ,ξl

whenk →−∞ and l → ∞. Let S∞ be the infinite symmetric group generated by the elementssi ,
which is the transposition ofi andi +1. OnK there is an action ofS∞ such thatsi = r i,i+1. There
is also an automorphism,τ(ξ j) = ξ j+1, which corresponds to the shift of the lattice. Finally, there
is an automorphism,κ(y) = qy, which corresponds to the shift of the disorder parameterα .

We define the vector spaceW[α] overK as the inductive limit of the vector spacesV[α],I where
the inclusion maps are given byιJ,I for intervalsJ ⊂ I . We denote the subspaceK ⊗V[α],I ⊂ W[α]

by
(
W[α]

)
I
. The total spin operatorS is well-defined onW[α]. We have the decomposition

W[α] = ⊕s∈ZW
(s)

[α] , W
(s)

[α] = {X ∈ W[α]|S(X) = sX}.

18
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Note also thatW (s)
[α] = ⊕β∈α+ZW

(s)
β .

Schematically, an infinite tensor product of the form

· · ·⊗yσ3
⊗yσ3

⊗σ+⊗1⊗σ−⊗yσ3
⊗1⊗1⊗·· ·

represents a vector inWα . To be more precise, denote byP the set of all mapsp : Z→{+,−,0,0},
j 7→ p j , such that

♯({ j < 0|p j 6= 0}) < ∞, ♯({ j > 0|p j 6= 0}) < ∞.

An element ofP will be calledlabel. We use labels to represent states inWα+k:

v(α+k)
p = ⊗ j∈Zv(α+k)

p j ,

wherev(α+k)
± = σ±, v(α+k)

0 = 1, v(α+k)
0

= (qky)σ3
. The set of statesv(β )

p is a basis ofWβ , but this is
not the one we are looking for.

4.2 Actions on W[α]

The automorphismκ induces an isomorphismκ of W[α] such thatκ : Wβ → Wβ+1. The
automorphismτ induces an isomorphismτ of W[α] such thatτ : Wβ ,[k,l ] → Wβ ,[k+1,l+1]. The action
of the symmetric groupSn on V induces an action of the infinite symmetric groupS∞ on W[α].
We denote the action ofsi ∈ S∞ by si . We have

κ · τ = τ ·κ, κ · si = si ·κ, τ · si = si+1 · τ.

LetA be the Grassmann algebra overC generated byc±i (i ∈Z). Because of the reduction property
(2.11), (2.12), the action of the operatorsc±j (α) : Vα → Vα∓1 induces an actionc±j : Wα → Wα∓1.
We extend this action toW[α] by requiring

κ · c±i = c±i ·κ.

Then, because of (2.9), it gives an action ofA on W[α]. Because of (2.10) and by an obvious
reason, we have the equivariance

si · c±j = c±si( j) · si , (4.1)

τ · c±j = c±j+1 · τ. (4.2)

We observed that there is an action of the algebrãA overC generated byκ±1, τ±1, si andc±j . This
action isC-linear and satisfies the equivariance

κ( f ·X) = κ( f ) ·κ(X),

τ( f ·X) = τ( f ) · τ(X),

si( f ·X) = r i,i+1( f ) · si(X),

c±j ( f ·X) = f · c±j (X)

for f ∈ K andX ∈ W[α].
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4.3 Space of labels

Let C[Z×P] be the vector space with the basisZ×P. Our strategy is first to define a
representation of the algebrãA onC[Z×P], and then to show the existence of an intertwiner

X : C[Z×P] → W[α].

The vectorsX(α+k)
p = X (k, p) ∈ Wα+k (k∈ Z, p∈ P) constitute the wantedK basis ofW[α].

There is an action ofS∞ on the vector spaceC[P] such that

si(p) =

{
−p if (pi , pi+1) = (+,+) or (−,−);

(. . . , pi+1, pi . . .) otherwise.

This representation is isomorphic to a direct sum of the representations induced from the represen-
tation

id(−∞,k−1]⊗sgn[k,l−1]⊗sgn[l ,m−1]⊗ id[m,∞)

of the parabolic subgroup

S(−∞,k−1]×S[k,l−1]×S[l ,m−1]×S[m,∞)

for all possible choices ofk ≤ l ≤ m. HereS[k,l−1] denotes the symmetric group of degreel − k
acting on the interval[k, l −1], and sgn[k,l−1] is its sign representation. Set

(
p(k,l ,m)

)
j
=





0 if j ≤ k−1;

+ if k≤ j ≤ l −1;

− if l ≤ j ≤ m−1;

0 if m≤ j.

We identify the elementp(k,l ,m) ∈ P with the cyclic vector of the induced representation. The
above action onC[P] is lifted to K[P] by requiring the equivariancesi( f · p) = r i,i+1( f ) · si(p).
Similarly, we have a natural actionτ(p) j = p j−1 of the shift operator. Next we define an action of
the Grassmann algebraA onC[P]. For p∈ P set

c±k (p) = δpk,∓ε∓(p,k)p[k]. (4.3)

Here we used (3.18)–(3.17) forp∈ P. One can check the equivariance of this action:

sic
±
j = c±si( j)si ,

τc±j = c±j+1τ.

Finally, we define the action of̃A on C[Z×P]. The action ofκ is such thatκ(k, p) = (k+1, p).
The actions of the other operators are trivial on theZ component.

For p∈ P definen±(p) = ♯({ j|p j = ±}), and set

Pl ,n−l = {p∈ P|n+(p) = l , n−(p) = n− l}, Pn = ∪n
l=0Pl ,n−l .
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Note thatc+
k Pl ,n−l ⊂ C[Pl ,n−l−1] andc−k Pl ,n−l ⊂ C[Pl−1,n−l ]. We also define

P[k,l ] = {p∈ P|p j = 0 ( j ≤ k−1), p j = 0 ( j ≥ l +1)}.

Our goal is to show

Theorem 4.1. We assume that q is generic. There exists an intertwiner of theÃ modules

X : C[Z×P] → W[α].

A proof is given in the subsequent subsections. The uniqueness of theintertwiner is not true.
We need more structures, e.g., creation operators, in order to single out aunique basis.

SetX(α+k)
p = X (k, p) ∈ Wα+k. The intertwining property means

X(β+1)
p = κ(X(β )

p ), (4.4)

X(β )
τ(p) = τ(X(β )

p ), (4.5)

X(β )
si(p) = si(X

(β )
p ), (4.6)

X(β )

c±j (p)
= c±j (X(β )

p ). (4.7)

If we defineX(α)
p all otherX(β )

p are defined by (4.4). Our description below exploits this without
mentioning it any further.

Before giving a proof we prepare several statements on the operatorsc±j .

Proposition 4.2.

c±j (α)
(
(Wα)[k,l ]

)
= 0 unless k≤ j ≤ l, (4.8)

c±l (α)
(
(Wα)[k,l ]

)
⊂ (Wα∓1)[k,l−1] . (4.9)

The property (4.8) follows immediately from the definition. The property (4.9)follows from
Proposition 2.6.

4.4 Vacuum vectors

Let us consider the common kernel ofbk(α),ck(α) (k ∈ Z). We call vectors in the kernel
vacuum vectors. Setpvac = p(1,1,1) ∈ P0. The annihilation property (4.8) implies

c±k (α)v(α)
pvac = 0. (4.10)

We define

X(α)
pvac = v(α)

pvac.

Let Wα,vac be the subspace ofWα spanned by the states in the orbit ofX(α)
pvac by si andτn (i,n∈ Z).

Proposition 4.3. For generic q, the common kernel of the operatorsbk(α),ck(α) (k∈ Z) is equal
to Wα,vac :

Wα,vac =
⋂

k∈Z

(Kerbk(α)∩Kerck(α)) .

21



P
o
S
(
S
o
l
v
a
y
)
0
1
5

Fermionic basis F. Smirnov

Proof. It is enough to show the equality

Wα,vac∩ (Wα)[k,l ] =

(
⋂

k∈Z

(Kerbk(α)∩Kerck(α))

)
∩ (Wα)[k,l ] . (4.11)

The inclusion⊂ is a consequence of (4.10) and the equivariance (4.1), (4.2). We know that for
q = i

dimWα,vac∩ (Wα)[k,l ] = 2l−k+1 , (4.12)

and (4.11) holds. Moreover, for genericq, the spaceWα,vac∩ (Wα)[k,l ] is spanned by the 2l−k+1

elements in the orbit ofX(α)
pvac. By specialization of the parameterq, the dimension of the kernel

does not decrease, while the dimension of the linear span does not increase. Therefore (4.12) is
valid for genericq. The equality (4.11) follows from this.

4.5 Filtration of W[α]

Proposition 2.6 suggests a kind of particle structure in the spaceW[α] wherein the operators
bk(α) and ck(α) act as annihilation operators. Starting from the subspaceWα,vac we define a
filtration of Wα :

0 = F−1
Wα ⊂ F0

Wα = Wα,vac⊂ ·· · ⊂ Fn
Wα ⊂ ·· · ⊂ Wα ,

Fn
Wα = ∑

k∈Z

S∞ (Wα)[k,k+n−1] .

We have

c±k (α) : Fn
Wα → Fn−1

Wα∓1.

Set GrnFWα = FnWα/Fn−1Wα . We denote the induced mappings by the same symbols:c±k (α) :
GrnFWα →Grn−1

F Wα∓1. We will constructX(α) : C[Pn]→FnWα so that the intertwining properties
(4.4)–(4.7) are satisfied and the induced mapping

X(α) : K[Pn] → GrnFWα

is an isomorphism. Our proof will show that

X(α) : K[P[k,l ]] → (Wα)[k,l ]

is an isomorphism.

Proof of Theorem 4.1. We proceed by induction onn. Suppose that we have constructed
X(α) on ∪n−1

j=0P j and the intertwining properties are satisfied. We constructX(α) on Pn. Set

p(l ,n−l) = p(1,l+1,n+1) ∈ Pn. The subspaceC[Pl ,n−l ] is generated fromp(l ,n−l) by the action of

C[S∞] and the shift operatorsτn (n∈ Z). We constructX(α)

p(l ,n−l) ∈ (Wα)[1,n] which satisfies

siX
(α)

p(l ,n−l) =





X(α)

p(l ,n−l) if i < 0 or i ≥ n+1;

−X(α)

p(l ,n−l) if 1 ≤ i ≤ l −1 or l +1≤ i ≤ n−1.
(4.13)

c±k (α)X(α)

p(l ,n−l) = X(α∓1)

c±k p(l ,n−l) . (4.14)
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Then, we can induceX(α) from p(l ,n−l) to C[Pl ,n−l ] by using the action ofS∞ and the shift opera-
tors. By construction the intertwining properties (4.5) and (4.6) are satisfied. Because of (4.1) and
(4.2), the last one (4.7) follows from (4.14).

SetP l ,n−l = P[1,n]∩Pl ,n−l , Pn =∪n
l=0P l ,n−l , andP(k) = {p∈P|pk = 0}. The intertwin-

ing property (4.7) with (4.3) implies that ifp, p′ ∈ P l ,n−l , we have

c−p1
1 (α + p2 + · · ·+ pn) · · ·c−pn

n (α)X(α)
p′ = δp,p′ε(p)X(α−2l+n)

pvac ,

whereε(p) is given in (3.16). Our immediate goal is to construct a family of statesY(α)
p (p ∈

P l ,n−l ∪ (−P l ,n−l )) satisfying

Y(α)
p = −Y(α)

−p , (4.15)

Y(α)
si(p) = si(Y

(α)
p ), (4.16)

c−p1
1 (α + p2 + · · ·+ pn) · · ·c−pn

n (α)Y(α)
p′ = δp,p′ε(p)X(α−2l+n)

pvac . (4.17)

For each 0≤ l ≤ n take anS[1,n] invariant subspaceUl ,n−l ⊂ FnWα ∩W
(2l−n)

α of dimension

♯(P l ,n−l ) =

(
n
l

)

such that⊕n
l=0Ul ,n−l → GrnFWα is an isomorphism. The non-uniqueness of such spaces is the

reason for the non-uniqueness of the basis. We have no a priori reason to choose one.
Fix an arbitrary basis ofUl ,n−l , {vp|p∈ P l ,n−l}. Consider the matrixM = (Mp,p′)p,p′∈P l ,n−l

given by

c−p1
1 (α + p2 + · · ·+ pn) · · ·c−pn

n (α)vp′ = Mp,p′X
(α−2l+n)
pvac .

From Proposition 2.6 we see that the left hand side is proportional toX(α−2l+n)
pvac . The matrixM

is invertible for genericq because it is so for the fermion caseq = i. Therefore, there exists a
unique set of elementsY(α)

p ∈ Ul ,n−l (p ∈ P l ,n−l ∩ (−P l ,n−l )) whereY(α)
−p = −Y(α)

p satisfying
(4.17) for p, p′ ∈ P l ,n−l . The equivariance (4.16) follows from (4.1), the Grassmann relation and
the uniqueness of the solution to the linear equation (4.17).

We will modify Y(α)
p to X(α)

p by adding lower order terms in the filtration. Takep∈ P l ,n−l .
For eachk, consider the state

c±k (α)Y(α)
p ∈ sk · · ·sn−1

(
(Wα)[1,n−1]

)
.

By the induction hypothesis, it can be written as

c±k (α)Y(α)
p = ∑

p′∈P(k)∩P[1,n]

f±k,p,p′X
(α∓1)
p′ .

If p′ ∈ Pn−1 appears in the sum, we havepk = ∓, p′ = p[k] and f±k,p,p′ = ε∓(p,k). For, if pk = ±,

or pk = ∓ but p′ is an element ofPn−1 other thanp[k], Y(α)
p can be brought to non-zero multiple
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of X(α−2l+n)
pvac by a sequence of operators other thanc−p1

1 (α + p2 + · · ·+ pn) · · ·c
−pn
n (α). This is a

contradiction to (4.17). The equalityf±k,p,p[k] = ε∓(p,k) follows from

c−p1
1 (α + p2 + · · ·+ pn) · · ·c−pn

n (α)Y(α)
p

= (−1)n−k f±k,p,p[k]c
−p1
1 (α + p2 + · · ·+ pn) · · ·

k
∨ ·· ·c−pn

n (α)X(α∓1)
p[k] .

Note thatε∓(p,k)p[k] = c±k (p).

If p′ 6∈ Pn−1 appears in the sum, the total spin conservation requires

p′ ∈

{
Pl−i,n−l−1−i ∩P(k)∩P[1,n] for c+

k (α);

Pl−1−i,n−l−i ∩P(k)∩P[1,n] for c−k (α).
(4.18)

Herei ≥ 1. Therefore, we have

c±k (α)Y(α)
p = X(α∓1)

c±k p
+∑

p′
f±k,p,p′X

(α∓1)
p′

where the sum overp′ is restricted as (4.18).

Set

X(α)
p = Y(α)

p − ∑
p̃∈P[1,n]∩(Pn−2∪Pn−4∪···)

gp̃X(α)
p̃ .

We do not sum over ˜p∈ P0. We requirec±k (X(α)
p ) = X(α∓1)

c±k p
. This is equivalent to

gp̃ = f−p̃k
k,p,p̃[k] ε

p̃k(p̃,k)

for all 1 ≤ k ≤ n such that ˜pk = ±. The Grassmann relation implies that the right hand side is
independent ofk: suppose that ˜pk, p̃l 6= 0,0. From

c−p̃l
l (α + p̃k)c

−p̃k
k (α)Y(α)

p = −c−p̃k
k (α + p̃l )c

−p̃l
l (α)Y(α)

p

we obtainf−p̃k
k,p,p̃[k]ε

p̃l (p̃[k], l) = − f−p̃l
l ,p,p̃[l ]ε

p̃k(p̃[l ],k). From

c−p̃l
l (α + p̃k)c

−p̃k
k (α)X(α)

p̃ = −c−p̃k
k (α + p̃l )c

−p̃l
l (α)X(α)

p̃

we obtainε p̃k(p̃,k)ε p̃l (p̃[k], l) = −ε p̃l (p̃, l)ε p̃k(p̃[l ],k).

SinceY(α)
p is equivariant by (4.16), and the construction ofX(α)

p is equivariant, we have

si(X
(α)
p ) = X(α)

si(p) (1≤ i ≤ n−1).
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A. Anti-commutativity of c(ζ ,α)

In this section we sketch the derivation for the anti-commutativity property of the operators
c(ζ ,α). Anti-commutativity ofc(ζ ,α) with b(ζ ,α) requires a different reasoning which is given
in [1]. We do not repeat it here.

We need information about theR matrix. First assume thatq is not a root of unity. Define
RA,B(ζ ) ∈ End(W+

A ⊗W+
B ) by

RA,B(ζ ) = PA,Bh(ζ ,uA,B)ζ DA+DB,

uA,B = a∗Aq−2DAaB ,

wherePA,B denotes the permutation, andh(ζ ,u) is the unique formal power series inu satisfying

h(ζ ,q2u)(1+ζ−1u) = h(ζ ,u)(1+ζu) , (A.1)

h(ζ ,0) = 1.

When there exists a positive integerr such thatq2r = 1 andq2 j 6= 1 (1≤ j ≤ r − 1), the repre-
sentationW+

A has anr-dimensional quotientW+
A,0 generated by|0〉. In this caseur

A,B = 0. Define
RA,B(ζ ) ∈ End(W+

A,0⊗W+
B,0) by the same formula, whereh(ζ ,u) is the unique element in the trun-

cated polynomial ringC[u]/(ur) with the above properties.

Lemma A.1. The operator RA,B(ζ ) satisfies the intertwining property

RA,B(ζ1/ζ2)L
+
A, j(ζ1)L

+
B, j(ζ2) = L+

B, j(ζ2)L
+
A, j(ζ1)RA,B(ζ1/ζ2) .

Proof. If uv= vu+(1−q2)w anduw= q−2wu, then

f (u)v = v f(u)+
f (u)− f (q2u)

u
w

holds for anyf (u). Takingu = uA,B andv = a∗Bq2DA, w = a∗A or v = aA, w = −aBq−2DA, we deduce
from (A.1) the identities

h(ζ ,u)(ζ a∗A +a∗Bq2DA) = (ζ−1a∗A +a∗Bq2DA)h(ζ ,u),

h(ζ ,u)(aA +ζ−1aBq−2DA) = (aA +ζ aBq−2DA)h(ζ ,u) .

The intertwining relations follow from these.

TheRmatrix which intertwines the fused L operators

R{A,a},{B,b}(ζ1/ζ2)L
+
{A,a}, j(ζ1)L

+
{B,b}, j(ζ2) (A.2)

= L+
{B,b}, j(ζ2)L

+
{A,a}, j(ζ1)R{A,a},{B,b}(ζ1/ζ2)

has the triangular form

R{A,a},{B,b}(ζ ) =




R11 0 0 0
R21 R22 0 0
R31 0 R33 0
R41 R42 R43 R44


 .
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Its non-zero entries read as follows.

R11 = qDBRA,B(ζ )q−DA,

R21 = −q−1ζ 2qDA−DBRA,B(q−1ζ )aB

R22 = q(1−q−2ζ 2)qDARA,B(q−2ζ )qDB,

R31 = −
ζ

1−q2ζ 2qDB−DARA,B(ζq)aB,

R41 =
qζ 3

1−q2ζ 2q−DBRA,B(ζ )q−DAa2
B,

R42 = −qζ ·RA,B(ζq−1)q−DA+DBaB,

R33 = −
qζ 2

1−q2ζ 2q−DARA,B(q2ζ )q−DB,

R43 =
q2ζ 4

1−q2ζ 2qDA−DBRA,B(ζq)q−2DBaB,

R44 = −ζ 2qDARA,B(ζ )q−DB.

The anti-commutativity ofc(ζ ,α) is an immediate consequence of the following Lemma.

Lemma A.2. We have

k+(ζ1,α −1)k+(ζ2,α)+k+(ζ2,α −1)k+(ζ1,α)

= ∆q,ζ1
F(ζ1,ζ2)+∆q,ζ2

F(ζ2,ζ1) ,

where

F(ζ1,ζ2) = qα−1 1

1−ζ 2
1/ζ 2

2

Q(1)(ζ1,α −1)k(1)(ζ2,α)

+qα−1 ζ1/ζ2

1−ζ 2
1/ζ 2

2

Q(2)(ζ1,α −1)k(0)(ζ2,α −1)

−q2(α−1) ζ1/ζ2

1−ζ 2
1/ζ 2

2

Q(2)(ζ1,α −1)∆q,ζ2
Q(0)(ζ2,α −1) ,

and

Q(k)(ζ ,α)(X) = (1−q2(α−S))ζ α−STr+A
(
q2αDAak

AT+
A (ζ )−1X T+

A (ζ )
)
,

k(k)(ζ ,α)(X) = (1−q2(α−S))ζ α−STr+A tra

(
q2αDA(a∗A)1−kσ+

a T+
{a,A}(ζ )−1X T+

{a,A}(ζ )
)

.

Proof. Set

(T+
{A,a}(ζ ))−1XT+

{A,a}(ζ ) =

(
A (ζ )(X) 0
C (ζ )(X) D(ζ )(X)

)
.

For brevity we writeζ = ζ1/ζ2, Ri j = Ri j (ζ ), A1 = A (ζ1), and so forth. The intertwining relation
(A.2) contains the following relations.

R21A2A1 +R22C2A1 = A1C2R11+A1D2R21,

R42D2A1 +R44D2C1 = C1D2R22+D1D2R42,

R41A2A1 +R42C2A1 +R43A2C1 +R44C2C1

= C1C2R11+C1D2R21+D1C2R31+D1D2R41.
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EliminatingC2A1 andC1D2, we obtain

C1C2−R44C2C1R−1
11 = XA1A2−D1D2X (A.3)

+R43A2C1R−1
11 −R44D2C1R−1

22 R21R
−1
11 +R42R

−1
22 A1C2−D1C2R31R

−1
11 ,

whereX = (R41−R42R
−1
22 R21)R

−1
11 . From the explicit form of the matrix elements we calculate

X =

(
qζ

1−q2ζ 2 −
q−1ζ

1−q−2ζ 2

)
a2

Aq−2DB,

R−1
11 q−2DAR43 =

q4ζ 4

1−q2ζ 2(1+q−1ζ−1uA,B)aBq−2DB,

R−1
22 R21R

−1
11 q−2DAR44 =

q−2ζ 4

1−q−2ζ 2(1+qζ−1uA,B)aBq−2DB,

q−2DAR42R
−1
22 = −

q2

1−q−2ζ 2(1+q−1ζuA,B)aAq−2DA,

R31R
−1
11 = −

1
1−q2ζ 2(1+qζuA,B)aA.

Multiply both sides of (A.3) by

(1−q2(α−S−1))(1−q2(α−S+1))ζ α−S−1
1 ζ α−S+1

2 q2(α−1)DA+2αDB

and take the trace. Direct calculation leads to the assertion.

B. Proof of Theorem 3.5,3.6

In this section, we give a derivation of Theorems 3.5,3.6.

B.1 Preliminaries

Throughout this section, we fixn and work with the interval[1,n]. To perform the calculation
we find it technically easier to pass fromV = End(V⊗n) to the 2n fold tensor product ofV. Let
ι : V

∼
→V⊗2n denote the isomorphism of vector spaces given by

ι
(

Eε1,ε ′1 ⊗·· ·⊗Eεn,ε ′n

)
=

n

∏
j=1

ε ′
j ·vε1 ⊗·· ·⊗vεn ⊗v−ε ′n ⊗·· ·⊗v−ε ′1,

whereEε,ε ′ =
(
δεµδε ′ν

)
µ,ν stands for the matrix unit. In what follows, we set

k̄ = 2n+1−k, ξk̄ = q−1ξk (k = 1, · · · ,n).

Under the isomorphismι , the left and the right multiplication by an elementZk (Z ∈ End(V)) are
translated respectively into

ι(ZkX) = Zk · ι(X), ι(XZk) =
(
σ2 tZ σ2)

k̄ · ι(X).

In particular we haveι
(
S(X)

)
= S̃· ι(X) andι(X S) = −S· ι(X), where

S̃=
1
2

2n

∑
j=1

σ3
k , S=

1
2

n

∑
k=1

σ3
k̄ .
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We shall also make use of the relations

ι
(

X L±A, j(ζ )
)

= (qζ −q−1ζ−1)L±
A, j̄(qζ )−1 · ι(X),

ι
(

XL±A, j(ζ )
−1
)

= (ζ −ζ−1)−1L±
A, j̄(q

−1ζ ) · ι(X) ,

which hold provided the entries ofX commute withOsc.
We begin by rewriting Q operators. Introduce operators

ψ̃±
j = σ±

j q±∑2n
l= j+1 σ3

l ( j = 1, · · · ,2n),

ψ̂±
j = ψ̃±

j q∓2S, ψ̂±
j̄ = ψ̃±

j̄ q±2(S̃−S), ( j = 1, · · · ,n),

and set

LA, j(ζ ) = 1+ζ a∗ψ̃+
j +ζ a ψ̃−

j −ζ 2q2Dψ̃+
j ψ̃−

j ,

L̂A, j(ζ ) = 1−ζ a∗ψ̂+
j −ζ a ψ̂−

j −ζ 2q2D+2ψ̂−
j ψ̂+

j .

Lemma B.1. For X ∈ V (s), the following hold.

ι
(
ζ−α+SQ+(ζ ,α)(X)

)
(B.1)

=
1−q2(α−s)

∏n
l=1(1−ζ 2/ξ 2

l )
Tr+A

(
q2(α−s)D

LA,1(ζ/ξ1) · · ·LA,2n(ζ/ξ2n)
)
· ι(X) ,

ι
(
ζ α−SQ∗−(ζ ,α)(X)

)
(B.2)

= −
1−q−2(α−s)

∏n
l=1(1−ζ 2/ξ 2

l )
Tr−A
(
L̂A,n(ζ/ξn) · · ·L̂A,1(ζ/ξ1)

×q−2αDAL̂A,1̄(ζ/qξ1) · · ·L̂A,n̄(ζ/qξn)q
2sDA

)
· ι(X) .

Proof. This can be shown by direct calculation noting that

iζ−1/2q1/4
LA, j(ζ ) = q∑2n

l= j σ3
l D · (ζ −ζ−1)L+

A, j(ζ )−1 ·q−∑2n
l= j+1 σ3

l D ,

iζ−1/2q−1/4
L̂A, j(ζ )

=

{
q∑n

l= j+1 σ3
l ·DA ·L+

A, j(ζ ) ·q−∑n
l= j σ3

l ·DA (1≤ j ≤ n),

q(∑2n
l= j+1 σ3

l +∑n
l=1 σ3

l )DA ·L+
A, j(ζ ) ·q−(∑2n

l= j σ3
l +∑n

l=1 σ3
l )DA (n+1≤ j ≤ 2n).

This rewriting is useful atq = i, whenψ̃±
j , ψ̂±

j become the Jordan-Wigner fermions onV⊗2n.
In the rest of this section we shall consider only this case.

B.2 Diagonalization of Q operators

Let us calculate the trace (B.1). First note the following simple fact.

Lemma B.2. If q is a primitive r-th root of1, the representation W+ of Osc has an r′-dimensional
quotient W+

0 generated by|0〉, where

r ′ =

{
r (r odd),

r/2 (r even).
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We have the relation

Tr+
(
y2DAx

)
=

1
1−y2r ′ trW+

0

(
y2DAx

)
(x∈ Osc).

Whenq = i, W+
0 is two-dimensional with basis|0〉, |1〉. Theq-oscillators are represented in

this basis as

a 7→

(
0 2
0 0

)
, a∗ 7→

(
0 0
1 0

)
, i2DA 7→

(
1 0
0 −1

)
,

while

LA,k(ζ ) 7→

(
1−ζ 2ψ̃+

k ψ̃−
k 2ζ ψ̃−

k

ζ ψ̃+
k 1+ζ 2ψ̃+

k ψ̃−
k

)
.

Lemma B.3. Let η j ,η∗
j ( j = 1, · · · ,N) be generators of a Grassmann algebra, and set

L j =

(
1+η∗

j η j/2 η∗
j

η j 1−η∗
j η j/2

)
, H =

(
1 0
0 t

)
.

Then

tr(LN · · ·L1H) = (1+ t)exp
(
−

t
1+ t

N

∑
j,k=1

η∗
k η j +

1
2

N

∑
j=1

η∗
j η j + ∑

j<k

η∗
k η j
)
. (B.3)

Proof. First consider the caset = 0. Extracting the factore
1
2 ∑N

j=1 η∗
j η j , we are to show that

tr

(
L′

N · · ·L′
1

(
1 0
0 0

))
= e∑ j<k η∗

k η j (B.4)

whereL′
j =

(
1 η∗

j

η j 1−η∗
j η j

)
. Denote the left hand side of (B.4) byxN. Using

(
1 0
0 0

)
L′

N =

(
1 0
0 0

)(
1 η∗

N

0 1

)
,

(
1 η∗

N

0 1

)
L′

j

(
1 −η∗

N

0 1

)
= eη∗

Nη j L′
j ,

we find a recurrence relationxN = eη∗
N ∑N−1

j=1 η j xN−1. Eq. (B.4) follows from this.
In general, (B.3) is linear int and the coefficient oft is obtained fromt = 0 by exchanging the

roles ofη∗
j andη j . Combining them we obtain

exp

(
1
2

N

∑
j=1

η∗
j η j + ∑

j<k

η∗
k η j

)
+ t exp

(
1
2

N

∑
j=1

η jη∗
j + ∑

j<k

ηkη∗
j

)

=

(
1+ t(1−

N

∑
j,k=1

η∗
k η j)

)
exp

(
1
2

N

∑
j=1

η∗
j η j + ∑

j<k

η∗
k η j

)

= (1+ t)exp

(
−

t
1+ t

N

∑
j,k=1

η∗
k η j

)
exp

(
1
2

N

∑
j=1

η∗
j η j + ∑

j<k

η∗
k η j

)
.

Lemma is proved.
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Now set

φ±
k = −iψ̃±

k + ψ̃±
k̄

,

φ ∗±
k (α) =

1
i±α − i∓α

(
i±α+1ψ̃±

k − i∓α ψ̃±
k̄

)
.

They are related to the fermionsΨ±
k ,Φ±

k (α) via

φ±
k ι(X) = (−1)sι

(
Ψ±

k (X)
)
,

φ ∗±
k (α)ι(X) = (−1)s+1ι

(
Φ±

k (α +s−1)(X)
)

,

whereX ∈ V (s).

Lemma B.4. We have

1− i2α

∏n
l=1(1−ζ 2/ξ 2

l )
Tr+A

(
i2αDALA,1(ζ/ξ1) · · ·LA,2n(ζ/ξ2n)

)
=

exp
[ n

∑
j,k=1

(
log(1+ζ 2M) jkφ ∗+

j (α +1)φ−
k − log(1−ζ 2M) jkφ ∗−

j (α +1)φ+
k

)]
,

where M is an upper triangular matrix with entries

M jk =





2ξ−1
j ξ−1

k ( j < k),

ξ−2
j ( j = k),

0 ( j > k).

Proof. We compute the trace first in the normal-ordered form, where normal ordering means that
we bring allψ̃+

k to the left andψ̃−
k to the right. TakingN = 2n, t = i2α and

η∗
k =

2ζ
ξk

ψ̃−
k , ηk =

ζ
ξk

ψ̃+
k ,

we apply formula (B.3) under the normal ordering symbol : :. The result is

(1− i2α)Tr+A
(
i2αDALA,1(ζ/ξ1) · · ·LA,2n(ζ/ξ2n)

)

=: exp
n

∑
j,k=1

ζ 2M jk

(
φ ∗+

j (α +1)φ−
k −φ+

k φ ∗−
j (α +1)

)
: .

Due to the formula

: exp
( 2n

∑
j,k=1

A jkψ̃+
j ψ̃−

k

)
: = exp

(
2n

∑
j,k=1

(
log(I +A)

)
jkψ̃+

j ψ̃−
k

)
,

the right hand side is rewritten as

exp

(
n

∑
j,k=1

(
log(1+ζ 2M) jkφ ∗+

j (α +1)φ−
k + log(1−ζ 2M) jkφ+

k φ ∗−
j (α +1)

)
)

= det(1−ζ 2M)

×exp

(
n

∑
j,k=1

(
log(1+ζ 2M) jkφ ∗+

j (α +1)φ−
k − log(1−ζ 2M) jkφ ∗−

j (α +1)φ+
k

)
)

.

Lemma follows from this.
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Lemma B.5. SetT = L̂A,n(ζ/ξn) · · ·L̂A,1(ζ/ξ1) andT = L̂A,1̄(ζ/iξ1) · · ·L̂A,n̄(ζ/iξn). Then we
have onι(V (s))

−
1− i−2(α−s)

∏n
l=1(1−ζ 2/ξ 2

l )
i2S·Tr−A

(
T i−2αDA T i2sDA

)
· i−2S

= exp
[ n

∑
j,k=1

(
log(1+ζ 2M) jkφ−

k φ ∗+
j (α −s+1)− log(1−ζ 2M) jkφ+

k φ ∗−
j (α −s+1)

)]
.

Proof. Let Teven(resp.Todd) be the sum of terms inT containing an even (resp. odd) number of
fermions, and similarly forT . Since the total spin is preserved, we have

Tr−A
(
T i−2αDA T i2sDA

)
= Tr−A

(
Teveni

−2αDAT eveni
2sDA

)
+Tr−A

(
Toddi

−2αDAT oddi
2sDA

)

= Tr−A
((

T even−T odd
)
i2sDAT i−2αDA

)

= i2S·Tr−A
(
T i2sDA T i−2αDA

)
· i−2S.

By usingL̂A, j̄(ζ/iξ j) = i−σ3
j̄ L̂A, j̄(iζ/ξ j)i

σ3
j̄ , the right hand side can be rewritten further as

i2sSTr−A
(
i−2(α−s)DAL̂A,1̄(iζ/ξ1) · · ·L̂A,n̄(iζ/ξn)L̂A,n(ζ/ξn) · · ·L̂A,1(ζ/ξ1)

)
i−2sS.

The action ofOsconW+
0 factors through that of the quotient algebraOsc0 by the relationi4D = 1.

Let θ be the anti-automorphism of the latter given byθ(a) = −a, θ(a∗) = −a∗, θ(iD) = i1−D.
Denote also byθ the anti-algebra map of Clifford algebras sendingψ̃±

j to ψ̂±
j ( j = 1, · · · ,2n). It is

easy to check that

θ(LA, j(ζ )) = L̂A, j(ζ ),

θ
(
(1− i2α)Tr+A (i2αDAx)

)
= −(1− i−2α)Tr−A (i−2αDAθ(x)) ,

wherex∈ Osc0. Using these we obtain

−
1− i−2(α−s)

∏n
l=1(1−ζ 2/ξ 2

l )
i2S·Tr−A

(
T i−2αDA T i2sDA

)
· i−2S

= i2(s+1)Sθ
( 1− i2(α−s)

∏n
l=1(1−ζ 2/ξ 2

l )
Tr+A

(
i2(α−s)DALA,1(ζ/ξ1) · · ·LA,2n(ζ/ξ2n)

))
i−2(s+1)S.

The assertion follows from Lemma B.4 and the relation

i2(s+1)Sθ(φ ∗±
j (α)φ∓

k )i−2(s+1)S
∣∣
ι(V (s))

= φ∓
k φ ∗±

j (α)
∣∣
ι(V (s))

Proof of Theorem 3.5. We apply Lemma B.4 to Lemma B.1, replacingα by α −sand noting that
φ ∗±

j (α)φ∓
k ι(X) = ι

(
Φ±

j (α +s)Ψ∓
k (X)

)
for X ∈ V (s). We find

ζ−α+SQ+(ζ ,α)

= exp

(
n

∑
j,k=1

(
log(1+ζ 2M) jkΦ+

j (α +1)Ψ−
k − log(1−ζ 2M) jkΦ−

j (α +1)Ψ+
k

)
)

.
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This expression can be further simplified by diagonalizing the matrixM as

PMP−1 = diag(ξ−2
1 , · · · ,ξ−2

n ),

whereP is the matrix given in (3.7). We thus obtain the result

ζ−α+SQ+(ζ ,α)

= exp

(
n

∑
k=1

(
log(1+ζ 2/ξ 2

k )Φ̂+
k (α +1)Ψ̂−

k − log(1−ζ 2/ξ 2
k )Φ̂−

k (α +1)Ψ̂+
k

)
)

,

which is equivalent to (3.13).
Similarly, (3.15) can be shown by Lemma B.1 and Lemma B.5.
Finally, formulas (3.12),(3.14) follow from (3.13), (3.15) and the TQ relations (2.2), (2.6).

B.3 A factorization

Let us proceed to the calculation ofb(ζ ),c(ζ ). A simplifying feature about the free fermion
point is a factorization property.

Proposition B.6. The following factorization takes place:

k±(ζ ,α) = Ψ̂±(ζ )Q±(−iζ ,α ∓1)i±α , (B.5)

k∗±(ζ ,α) = −iΦ̂±(iζ )(iα−S + i−α+S)Q±(ζ ,α) . (B.6)

Proof. First consider the action ofk+(ζ ,α) onX ∈ V (s). Inserting (2.5) in the definition (2.3) and
taking the trace overVa, we obtain 2n terms:

tra
(
σ+

a T+
{A,a}(ζ )

−1
X T+

{A,a}(ζ )
)

= −
n

∑
j=1

γ(ζ/iξ j)
j−1

∏
l=1

β (ζ/ξl )
−1i−σ3

1/2L+
A,1(iζ/ξ1)

−1 · · ·σ+
j i−2DA−1/2L+

A, j(ζ/iξ j)
−1

×·· · iσ
3
n/2L+

A,n(ζ/iξn)
−1 ·XL+

A,n(ζ/iξn)i
−σ3

n/2 · · ·L+
A,1(ζ/iξ1)i

−σ3
1/2

+
n

∑
j=1

γ(ζ/ξ j)
j

∏
l=1

β (ζ/ξl )
−1i−σ3

1/2L+
A,1(iζ/ξ1)

−1 · · · i−σ3
n/2L+

A,n(iζ/ξn)
−1

×X L+
A,n(iζ/ξn)i

−σ3
n/2 · · · i−σ3

j L+
A, j(ζ/iξ j)σ+

j i−2DA+1/2 · · ·L+
A,1(ζ/iξ1)i

−σ3
1/2,

where in the second sum we have used

L+
A, j(iζ/ξ j)σ+

j = i−σ3
j L+

A, j(ζ/iξ j)σ+
j .

Rewriting this expression in terms of fermions, we obtain

ι
(

tra
(
σ+

a T+
{A,a}(ζ )

−1
X T+

{A,a}(ζ )
))

=
n

∑
j=1

2iζ/ξ j

1−ζ 2/ξ 2
j

1

∏ j−1
l=1(1−ζ 2/ξ 2

l )∏n
l= j(1+ζ 2/ξ 2

l )
· i−(2D+1)S̃

×
(
LA,1(iζ/ξ1) · · ·LA, j−1(iζ/ξ j−1)ψ̃+

j LA, j(ζ/iξ j) · · ·LA,n(ζ/iξn)LA,n̄(ζ/ξn) · · ·LA,1̄(ζ/ξ1)

+iLA,1(iζ/ξ1) · · ·LA,n(iζ/ξn)LA,n̄(−ζ/ξn) · · · ψ̃+
j̄ LA, j̄(ζ/ξ j) · · ·LA,1̄(ζ/ξ1)

)
· ι(X) .
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Since

LA,k(ζ )ψ̃±
j = ψ̃±

j LA,k(−ζ ) ( j 6= k) ,

we can bringψ̃+
j to the leftmost place. The result factorizes into a linear form in the fermion

n

∑
j=1

2ζ/ξ j

1−ζ 2/ξ 2
j

j−1

∏
l=1

1+ζ 2/ξ 2
l

1−ζ 2/ξ 2
l

(
iψ̃+

j − ψ̃+
j̄

)
(B.7)

followed by the product

n

∏
l=1

1

1+ζ 2/ξ 2
j

· i−(2DA+1)(S̃+1)
LA,1(−iζ/ξ1) · · ·LA,2n(−iζ/ξ2n) · ι(X) . (B.8)

Multiply both sides byζ α−S(1− i2(α−S))i2αDA and take the trace Tr+
A . In view of the relations

iψ̃±
j · ι(X) = (−1)s+1 · ι

(
ψ±

j X
)

, −ψ̃±
j̄ · ι(X) = ι

(
Xψ±

j

)
,

the piece (B.7) yields(−1)s+1Ψ̂+(ζ ). On the other hand, due to (B.1), trace of (B.8) (taken together
with the prefactor) gives rise to(−1)s+1iαQ+(−iζ ,α −1)(X). Combining these we obtain (B.5).

Similarly, using

(
is−α ψ̃−

j − i−s+α+1ψ̃−
j̄

)
ι(X) = (i−α−s+1− iα+s−1)ι

(
Φ−

j (α)(X)
)
,

we compute

k∗−(ζ ,α)(X) = −iΦ̂−(iζ ,α)(1+ i2(α−S))
n

∏
l=1

1+ζ 2/ξ 2
l

1−ζ 2/ξ 2
l

· i−2SQ∗−(iζ ,α)(i2SX) .

On the other hand, (3.13) and (3.15) imply

n

∏
l=1

1+ζ 2/ξ 2
l

1−ζ 2/ξ 2
l

· i−2SQ∗−(iζ ,α)(i2SX) = i−α+SQ−(ζ ,α)(X).

The assertion follows from these.

Proof of Theorem 3.6. From Proposition B.6 and Theorem 3.5, it is simple to calculate the
residues ofk±(ζ ,α). We have

resζ=ξk
k±(ζ ,α)

dζ
ζ

= −
1
2

Ψ̂±
k ·U±

k (α)(1−N±
k (α)) · i±S+1ξ±(α−S)−1

k .

After simplification using 1−N±
k = χ∓

k χ∗±
k , we obtain the desired expression forc±k .
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