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1. Introduction
This is a continuation of our previous pap@r [1] in which we studied the inf)tK& spin
chain with the Hamiltonian

q+q!
2

12 1.1 2 2 3,3
Hxxzzé Z (0K i1+ O O 1 + D0KOR, 1), A=
—o0

Before going into the details of the present paper, we review the main poiffi§ on that paper
we gave an algebraic formula for the vacuum expectation values of peasioperators of the
form

qa TR UE@’ (11)

Here, s is a local operator, and is a disorder parameter. We denote by

the total spin operator on the left half of the chain.
Let 7, be the space of quasi-local operators of this form. The main ingredient ifmonula
was a pair of operatoits({, o), c({, a) acting on the spaces of quasi-local operators,

b(Z, CY) Wa — Wa+1, C(Z, CY) Wa — Wafl.
It is convenient to introduce the space
Wja) = SkezWa+k,

and use the notatidn({),c({) : #[q) — #[a)-
The vacuum expectation valued are given by the formula

<Vaqq2as<0)ﬁ|vac> __$pa 205(0)
(vagq?@S |vac) = (eQ (q ﬁ))’

wheretr? stands for the weighted trace
trfX)=---trf g trg ---(X) (X €& #4a),

a () —1ag® 2
tr (X)_q%'+q—%tr(q 2 x) (xe EndC?)),

and on eacl?,, Q admits an expression

Q= —res, (w(zl/zz, a)b(@c(@dﬁdzz) .

G Q&
Herew({,a) is a known scalar function (whose explicit formula can be found in (1), [

The operator®({),c({) are obtained from the operatdsg;({),cy;({) which act on the
direct sum of the finite dimensional spaces

(1.2)

Hay ki) = SjezVa+ifki) Ya+ifkl] ™ End((cz)(@('*kﬂ))
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by taking an inductive limit whek — —oo,| — . Here the indexk, |] indicates the finite interval
[k,1] C Z of the spin chain.

We usect = candc™ = b in the sequel. On each finite intervil1], the operatocﬁi_” (¢) has
the form '

ll —k+1 Ck()

[|
[kl - zz

The operatorbfk)”, Ekl] depend ork, | in such a way that the reduction properties hold:

+
Ci

k) Xki-1) = C[T(J,l] (Xi-1) 5
Cle (A% Xy 1)) = q(aﬂ)akgc[iﬂﬂ (Xks117) -
HereXy; denotes an element of, ;-

In [[], the operatorcﬁil](z ) was constructed from the trace of a monodromy matrix whose
auxiliary space consists of the tensor productéfand theq oscillator representatiot&*. This
is similar to the construction o operators in[[2]. However our construction differs from that
paper in two respects. We take the trace of the off-diagonal entry of theanamy matrix which
is triangular with respect to the auxiliary spacé and we consider only the singular part in the
expansion aff = 1, since otherwise the operator is dependent on the way of triangulaniz&tso
a spin-off of our construction we obtained the Grassmann relation amongénators™®(Z):

c*({1)c?({2) = —c?({2)c™(dn).

In this paper, we further investigate the structure of the operetdi®). We consider the inho-
mogeneous lattice with the spectral paramefgi& € Z). There are two advantages in considering
the inhomogeneous case. The singularities of the trace which §ié at1 in the homogeneous
case split into simple poles &€ = Ekz in the inhomogeneous case. Therefore the opet%tg(()
is decomposed into a partial fraction

1'51

=278

This is the first point. The reduction property and the Grassmann relatigsispi& the inhomo-
geneous case. Passing to the inductive limit, we obtain a set of opemﬁta[sing on%/4 and
satisfying the Grassmann relation:

O

CJlCJ2 CJZCJl

Moreover, in the inhomogeneous case, the operalfbmjoy the equivariance with respect to the
action of the infinite symmetric group inherited from tRenatrix symmetry:

T ot . .
s-cj_cs(j)-s, S € Go.

This is the second point.
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Although the operatorsji satisfy the Grassmann relation and annihilate some elements in
#[qa), they do not constitute the annihilation part of the free fermion algebra.ea/¢hss because
they have a large kernel in common, which is spanned byetheorbits of g2*S(i) (J€Z). We
call elements in the common kernehcuum states The existence of a large kernel is a simple
consequence of the reduction property and the equivariance withatasptheS,, action. In fact,
the reduction property holds in a stronger sense:

Cﬁ[kﬂ (Va,[k,l]) C Ya k-1 ®id.

Here id is the identity operator on théh tensor component. This implies that there exist&an
equivariant filtration of the spacé(y),

FOWla) C - CFYW o) CF™ W o) C o Wy
s (F"a) CF"(q),

such thatFOW[a] is the space of the vacuum states and the operﬁtcﬂecreases the ‘particle’
numbem:

i (F™"a) CF" Wy

In the case =i, it is well-known that the Hamiltonian is diagonalized by the Jordan-Wigner
transformation. The latter turns the tensor prod@?)“" into the irreducible representation of the
free fermion algebra withr2generators

"Uji = gjiijFZf;jUE (1<j<n).
We introduce a fermion algebra witmgeneratorsps, &F (1< j <n),

[ijsi’ LPT;] =0, [CD‘E,(DT;] =0, [LIJ‘E?CDJSQ = 5817_825j17j2’
which act on Enc@((CZ)@’”) irreducibly. They are linear combinations of the left and the right
multiplications bprji, equivariant relative to thé&, action, and satisfy the reduction property
which enables us to extend their definition to the infinite lattice. It is convenigntrimduce the
fermion number operatold® = ®;-W/. The vacuum state8g?S) (j € Z) are characterized by
the fermion numbers

NE — 1 ifk<j;

“ 1o ifk>j+1.

Finally, we modify these fermions to another set of free fermbqfsxlji satisfyingN* = lei X
and obtain the simple formula

+ _ yEyFyxt
G = X X Xk~

Namely, the operatoa:ki is a fermion annihilation operator: if the fermion number of a state is
N =1, itis changed tdN,” = O; otherwise the state is annihilated.
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Let us return to generig. The properties of the operatccr§ formulated above are enough to
deduce the existence of a fermionic basis of the spégeon which they act exactly as in tie= i
case (see Theorem #.1). This is our conclusion. Such a fermionic bagisgmeans unique. We
hope to discuss a more explicit construction in a future publication.

The plan of this paper is as follows. In Section 2 we recall the definition($§ andc({)
given in [1]. Appendix A is a supplement to this section, giving a prooboifie operator identities.
Section 3 with the detailed calculations in Appendix B gives the complete details gfth case.
Section 4 is devoted to the existence proof of the fermionic basis for geperic

2. Operatorsb and c

In this section, we give the definition of the operatb(§ ), c({) and discuss their basic prop-
erties: the Grassmann relatidn {2.9), the equivariance with respect tyrtimeetric group[(2.70),
and the reduction propertigls (2.11) aphd (2.12).

Throughout the papeg denotes a non-zero complex number &na two-dimensional vector
space with fixed basig, ,v_.

2.1 Quantum spaces

We consider an inhomogeneous spin chain with spectral paranégt¢jsc Z). They are
attached to the ‘quantum’ spacés(j € Z), whereV; is a copy ofV.

In this and the next section, we fix a positive integeand consider a finite segmelit n| of
the infinite spin chain. We work with the space

Y =EndV1®---®@Vy)

consisting of operators which act non-trivially on the lattice sites 1,---,n. We denote by
R.j € End¥") the transposition of thieth and thej-th tensor components. We consider the transfer
matrix acting on the spacg. It depends on a parameteiplaying the role of a boundary condition.
Later we shall extend” to an inductive limit, where the indeikruns overZ. The parametex
enters the construction of this inductive limit as well.

To make distinction, we call an element ¥f a state and an element of Eifd’) an opera-
tor. When it is necessary, we extend the coefficient field’obr End#) to the field of rational
functions in the variableg®,&1,...,&,. We denote by ; the operation of exchanging spectral
parameterg; < &;j.

The total spin operatd® = %ZT:l oj3 belongs to¥’, and its adjoint action

SX)=[sX] (Xe7)

belongs to En@l#). The space/’ decomposes ag = @5, ¥ where?® = {X € 7 |S(X) =
sX}.
The spin reversd] is an operator acting oW’

J(X):ﬁojl-x-ﬁojl.

When we extend the coefficient field, we use the opefjagoren by
J(X) = J(X)‘q"ﬂq—“ :
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2.2 Rmatrix

The spac&/ is endowed with a structure of a two-dimensional evaluation module of the quan
tum affine algebrélqy(sl2). We will need only the formula for the associatednatrix:

1
_ ol B(Q) v(Z)
R({)=(@{—-q (") V) B(Z :
1
where
_ (1-2%)q _ (1-d)¢
B(Z)—m, Y(Z)—l_iqzzz.

The matrixR({) is a Laurent polynomial, whil&({)~* has poles af? = ¢*2.
The R matrix gives an action of the symmetric gro@p on 7, the simple reflectiors; being
represented by

s =riiaRii1(&/&).
Here

Riir1(&/&11)(X) = Rira(&/&r0)XRiia(&i/&1) L
Ri+1({) =Rit1Rit1(0).

We use the monodromy matrix
Ta(Z) = Ra,n(Z/En) coe Ra,l(Z/El)~

Here and after, the suffixindicates the two-dimensional auxiliary spaée~V.
The total spin operator which commutes Wik ({) is given by%aa3 +S

303 +SRaj({)]=0.

The transfer matrix({, o) acting on¥ is defined by using the inverse adjoint action of the mon-
odromy matrix.

U, a)(X) = ta(q *FTa({) XTa(Q)) (X €P).
Here tp = try, stands for the trace ov&k, which gives a functional
tra(q 9% ) : EndV,) — Cq® & Cq°.
We have

S t(Z7a) :t(67a)57 J t<Zva> :t(Z,U)J
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2.3 Oscillator algebra

Following [B], we define another kind of monodromy matrices. They havegtbscillator
algebraOscas auxiliary spaces. The oscillator algebra is generatedayg™ with the relations

qDaq—D — q—la’ qDa*q—D — qa*’ aa® = 1_q2D+2’ a*ta= 1_q2D.

We use the suffid indicating the infinite dimensional auxiliary spa®sc, and its generatoraa,
ap, Da € Osa.
We shall use two representations” of Osg

W = @y>0C|K), W™ = Dy<_1C|K).
The action is
PIK) =dK), alk) = (1— ) k—1), a'K) = (1— & 1)|K+1).
Thel operatoiL*({) belongs tadOsc® EndV). We have
L) = iZ’l/zq’l/“(l— latot —Cao — qu2D+2T7)q03D’
L= () =o'L™(Q)oh.
Heret* = g*o7. The inverse of. *({) is given by

L*(g) 1= Z_lzlﬁm,

L'(Q) =i g4 . q o P(1+ a0 + a0~ — PqPP17).

Apart from the power ~/2, the L operator is a quadratic polynomial §j and its inverse has a
pole at{? =1.
The total spin operator which commutes with theperator is

S =FDa+S [S5, Ly ()] =0.

This suggests a construction of an operator similar(foa) using the trace olv*, in which
q*"“’3 is replaced by*2?P. This construction leads to i@ operators acting otf’:

Qi<Z; a)(X) _ :‘:(1_ q:I:Z(c{fS))ZzI:(o{fS)TrX (inO{DATA:t(Z)flx-l-A:t(Z)) 7 (2_1)
Ta (§) = Lan(§ /&) - Las(d /).

Here the trace functional
Trx (qF29PA ) : Osq — C(g?”)

is defined to be zero on each spin se@sc® = {x € Osc| [D,x] = sx} with s 0, and on the spin
zero sectoDsd? it is defined by

Tri(inOIDAquA) — :|:(1— qi2a+m)fl.
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SinceT, ({) X T ({)],_o= a72PA(X), we havel 7@ ~91Q* (¢, a)|,_y=idy. This explains the
prefactor+(1— g2(@-9)) in the definition ofQ™*.
The trace functional satisfies

Trt (g?“Px) = —Tr~ (¢?“Px).
From this follows
Q7 (¢, a)=Q (,a)j.
The Yang-Baxter relation for thie operator
Rii+1(Gi/Gis1)Lai(G)Lais1(Giv1) = Lair1(Giv1)Lai(G)Ri+1(Gi/ Giv1)
implies the equivariance.
$-Q°(¢.a)=Q*(¢,a) 5
2.4 Baxter’'sTQrelation

The following proposition is due td][2]. We give here a proof, for thegmse of introducing
further notation and formulas.

Proposition 2.1.

t(¢,0)Q*(¢,a) =Q*(q7*¢,a) +Q*(al, ). (2.2)

Proof. Define the triangular transfer matrix
Tiaa (§) = (Gaa) Ta (D)Ta({)GRa, (2.3)
Gra=0 %M (L+ar0). (2.4)

The triangularity is local:
L?Aa} Q)= (GX,a)ilLX,j(Z)Ra,j(Z)GX,a (2.5)

T B E T L ¥ )
(QZ q ¢ ) <Y(Z)LXJ(qZ)G+ —2Da+1/2 B() (qZ)qUJ/Z

The inverse is given by

) 1
Liaay (07" =

¢ —qg it
y q%/2LL (a72) 30
V(@) oy q P12 (q71) 7 B(Q) a9 AL (ad) )
Using the commutativity
[(:]Ztle,rorag7 GX,a] —0,

we obtain theT Qrelation. The effect of the shii® S — (q¥1¢)?~S is cancelled by™%/2 in the
diagonal elements d.f{A }J(Z)il andg 9% in t({,a). O
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In the T Qrelation, the order of the produtfi{, a)Q*({,a) can be reversed. We can show
Q*(¢,at(¢,a) =Q*(ad,a) +Q*(a *¢, ).

The argument is quite parallel. $et

T (€)= (Fa) " Ta(Q)Ta (O)Faa

_ _ 3
I:/;Ta =1—an0y, [g 2P aaa}/:fa] =0.

We have
L (0) & () Raj(OLa (OF,
1, B(Q)Ly (q)q o/ 0
= (9¢ — 1Z ! ( Al 3 3 )
T W0y Latanra 2 Ly (a0a?)
and

Laay (O
1 B(8) a7y (a0) 0
P e C03/20 AN ot m03/28 — 11 ]

6¢—a e \-va A L @) tep @ L@t

Using these quantities we arrive at

Q (. at(¢.a)=Q (a,a)+Q (g '¢,a).

Later on we will also use

Linay (0= oalale{*A’a},j ({)og0},
L?;’a}J (Z) - O-(-Ell-o-jll‘*{(Ka}_’j (Z)O}S{O-Jl

2.5 Conjugatetransfer matrices
We define conjugate transfer matrices by reversing the operations insitladbe

t(Z,@)(X) = tra(Ta(O)A" *XTa(2) ),
Q*i(Z,a)(x) — :i:(l— in(afS))Z:t(afg)Tri: (Ti(z)inGDAXTAx(Z)fl) )

They satisfy the samgQrelations

t'({,a)Q*({,a) = Q™ (q '¢,a) +Q"*(ad, a) (2.6)

and the equivariance with respectst@nd;.

INotice the signs- in T{*;A} andT, ; they arenot misprints.
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2.6 Reduction property

Now, we consider the extension of the interval frim| to [1,n+ 1] or [0, n]. We exhibit the
dependence on the interval of various quantities by a suffix, and it t;1 ,({, ) and so on.
The operatot({, a) has the reduction property to the right:

t[1’n+1] (Z, O{)(X[Ln] & 1) = t[l,n] (Z, a)(X[17n]) ® 1.

This is tautological because of the inverse adjoint action: in the left haed tid adjoint action
R;ﬁ+1(57 a)XRant1({, a) onthe quantum spacer 1 appears at the innermost place. On the other
hand, the operatdf ({, a) has the reduction property to the left:

tFO,n] (Z’ a)(qao3 ® X[l,n}) = qao3 ®tfl.,n] (Z7 a)(x[l,n])'

This is also tautological because the operation appearing at the innetesigR, o({, a )X Rao({, ) 1,
which commutes with the multiplication by (% %)

In [fll] were constructed operators which satisfy reduction to both énasder to realize such
operators, we have to modify the form of the reduction. We do not chdrgeeduction to the
right. We change the reduction to the left in the form

3
Clom (A" ® X1 ) = q@™ g Clp g (Xi1.)-
For this purpose we consider the off-diagonal blocks in the monodromycasitr

2.7 Operatorsin off-diagonal blocks
We define a difference operator with respect to the spectral variable
Dq(F({)) =F(al) —F(q Q).

A function of this form is said to bg-exact
Proposition 2.2. Set

k*(Z,a)(X) (2.7)

_ i(l - q:k:Z(afS))Z:t(afS)Trﬁtra <q:t2(a¢1)DAo.;tTa(Z)flTA:t (Z)ilXTAi(Z)Ta(Z))

= £(1- G20 )OI T (q2PAaE T ) ()X T (D))

This operator satisfies the reduction property modulo a g-exact form:
I (£,@)(@7 7 X ) = 4O FUKE (2, @) (X)) (2.8)

q—q*t N )
+orla (Z/El —7/&) 16 aFHX2n) |-

Proof. We subdivide the quantum space ds= 71 ® ¥, Where¥1 = EndVi) and ¥, =
EndV>®---®V,). Let us calculate

C = (1—- ™)1kt (,a) (@7 X )
= Tritra (@ VP03 Ta(Q) TR ()10 X TR ()Tal )

10
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whereXp ) € ¥2n. Using the commutativity of the operator and the total spin operator, we have

C = g Tty (07 Raa (4 /81) ™LA, (¢ /&1) HqPiq(eI20n=0d
><Ta7[27n] (Z) T+[2 n| (Z)_lx[z,n]T::[zjn] (Z)Ta7[27n] (Z)LKl(Z/El)Ra,l(Z/El))

-1
Note that(GX_’a> 05 G, = 04 PP, Using (Zp) we rewrite as

C— q(”_l)(als_l)Tthra(Ga qZDALz—Aa} 1(5/51)— olq a—1)(2Da—03)
-1
XT{Ra}7[27n](Z) X[Z-,”]T{+A,a},[2,n](z) {Aya}71(Z/El))-

Collecting the terms containing operators acting/@nwe obtain
C=qo b Trita({L g 1(0/8)" 03 A (L gy 1(8/8) M0 gt}
x gl 1)@ oa)T{; apzn (47 X[Zan]T{Aa},[Z,n}(Z)) :

The part{---}" reads as

q—q* e q—q*
ol /& — (f /&) 11"

{ )t =0 + o/ 1.

& qil/&—q/&) T
Using (2.1) we obtair{ (2 8). The tergd®2 o creates the main term and the rest creates;#eact

term. The presence of the factdr— q°°) in k™ andQ™* does not effect the form of the equality
becaus&1 (01 Xz ) = 07 (S +1)(X2,n)). Onthe other hand, the factdf S matters because

it does not commute with theedifference operator. It adjusts the effectrgfo? = 413" in the factor
q(a 1)(2Da-03) ]

The operator&®(Z, a) enjoy the non-trivial reduction property to the left witlyaxact form
as remainder term. In the next subsection we define the opetgtafsa) by taking the singular
part at{ = &. The operatonin] ({,aF1) has no pole af = g*1&,. Therefore, therexact term
has no pole af = é. It implies that the operator%((, o) satisfy the reduction property without
remainder terms.

Next we define operators with non-trivial reduction to the right. We dentihadautological
reduction to the left in the form

* 3 «
kit (%X ) = 0Tk (Xan).

This is achieved by defining

k*i(z a)(X) _ :t(l N in(ail—S))Zi(ail—S)
xTrtra (03 Ta( ) TR (g E2P DFEXTH(E) M Tal0) ) |

In this definition, we make the shitﬁzsx because we want to have the reduction to the left as
above. As for the reduction to the right we have

11
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Proposition 2.3.
k*i (¢, a)Xan-1) = kflin (¢ @) (Xzn-1))

1
+onla (Z/Enq 2rg % 1]<z,a><qﬂsﬂ-”ﬂ><u,n10) |

Proof. Let us calculate
Tritra (03 Ta(§)Tx (Q)q™ o2 g T4 (0) M Ta(()7Y)
= TrXtra (O-;T{Zi_A} (Z)qa(ZDA+Ua3)_ZS[1‘n] X[Lnfl} T{*;A} (Z)_l>
tn
= Trjtra({ (0L 0y (8780 05 Ll n(C/ 80}
xTiaar a1 ({0 (2Da+02)2Sun-3 Xy Tiaayin1({ )_1) :
The statement of the proposition follows from
(@ Ly (08 Ly (O}

qa-a' .. a-q* oz
()t ™" ?* ql¢-q ™" 0

tn

2.8 Operatorsb and c

The operatot(, a) does not have a pole &t = E, but has a pole af? = ﬂEJ The opera-
torsQ*(Z, a) do not have a pole & = qizéz but have a pole at* = EJ These are consequences
of the pole structures dRy j({)** andLa (Z)ﬂ. Consider the matrlﬂ'{iAa}(Z) 1XT{§a}(Z)
which is triangular in the auxiliary spas4g. The diagonal part does not have a pole€ at= f,
because poles cancel in the adjoint action. This cancellation breaks fdowime off-diagonal
elements. The operatots ({, a) do have a simple pole §f = EJ-Z.

Set

¢ (¢,a)=b({,a) = (1— ") singk~ (¢, ),
c"(¢,a)=c({,a)=q"" Ssmgk*(z a).

The symbol sing means taking the singular pagt até; (i=1,...,n). Therefore, we have a partial
fraction

() Z {— fkck (@).

Theqgdependent normalization factors in the definition do not alter the reductigepres. Taking
the singular part in[(2.8) we obtain

Proposition 2.4. We have

i]_,n](zaa)(x[l,nfl])zc[iln (4 @) X n-1));
Cin](Z’U)(qaofX[z, n) =97y Ulc (8 0) Xz )

0

12
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The normalization factors are so chosen that we have the Grassmanmrelatio
Proposition 2.5.
({1, a — &)c?({p,a) = —C%({2,a — &1)c* ({1, q).

The proof is given in Appendik]B.
It follows from Propositiorf 2]4 that the resideg (a) of c (Z o) taken at the right end of
the intervald = ¢, annihilate states of the fordgy .ThIS operator is given explicitly as follows.

Proposition 2.6. Let X € ¥} 5. Then we have

(17q2(a—S))(q€n)a—S - ( ( 1) )
IR G SV

o (@8 a
cn (a)(X) = HT:::]I:B(EH/EJ)Q (&n, Q) <(1,a)nx ( 1 >n>

where forX € Osc® #{1 1 We set

cn (@)(X) =

Q& a)(X) = a4y (qﬂaDATiln (@)X Ty 4@ 715)) qrSteu,
In particular, we havee; (a)(X) € ¥ n_q.

Proof. Considek*({,a) given by (2.J). Because of the triangular structurd-;gf.a}‘j(Z)

tra( aiT{ﬁa}(Z) (X)T{ﬂ;\a}(Z)) consists of & terms. The singular part &*({,a) at { =
&, comes only from the factoy(q~1Z/&,) andB(Z /&)t in LiAa (/&) 1. Note also that
B({/é&n) is zero at = &,. From these properties, it follows that onIy two terms have singularities

at{ = &,. Summing them up, we obtain the above expressions. Ol

To simplify the notation, let us use the following convention. For edeha + Z take a copy
g ~ ¥, and define an operataracting on¥{q) = ®gca+z¥p DY

al,e =pid .
o = Bidys

Let| C Z be a finite interval. We consider the quantum spége, by changing[1,n] to I. If
J=[j1,]J2] (i1 < j1 < j2 <ip) is a subinterval of = [i1,i2], then’(,) ; is naturally embedded in
7/[a],l:

i1-1

3
302 V3= Vo> Njpjo) > A1 PIX

{j1,]2]*

We often dropr;; when the meaning is clear without writing it explicitly.

20ne can choose the normalization so that the equivariehee ¢~ with respect to the spin reversal is valid. We
do not exploit this possibility because we will not use this property, andssause it would require introduction of a
square root.
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In this notation, the basic properties of the operatr&) = c¢({) andc™ ({) = b({) are
summarized as follows.

e ({1)c?(2) = —c(L2)c™ ({u), 2.9)
sct({) =c({)s, (2.10)
Ciry (O Xan-1) = S (0 Kan-1), 2.11)
(DA X)) = 4L () (Xza). (2.12)

3. Free Fermion Point

In this section, we discuss the free fermion cgsei. The main point is that the operatdg
andcy are cubic in appropriate free fermions (see Thedren 3.6 below).
3.1 Jordan-Wigner transfor mation in adjoint action

We continue to work with¥” = EndV; ® - - - ® V). Define the Jordan Wigner transformation
g = ot it ey
We define fermionsacting onX € ¥(9.
Wi (X) = @i X — (—1)°X g,

@} (a)(X) = W(‘l’fxﬂ”ﬁax% )-

Define further the operat(wi (resp. d)i) on¥[q) whose restriction W (resp il) is given by
A NG (D:t(ﬁ) (8 (kD)
I 7B BFl > B=+1 B '
They satisfy the canonical anti-commutation relations

[WEWET, =0, [0, 0], =0, W, ®F], = &0 00

Whenq =i, there is certain redundancy in considerifig for all B € Z + a, since we have the
periodicity @ (a +2) = & (a), t({,a +4) = t({,a). Nevertheless, we choose to retain this
convention in order to keep contact with the generic case. @IS, a) is not quite periodic due
to the overall poweg =(@—5).

Proposition 3.1. The fermionﬁvji[ fl and ®F .  satisfy the reduction property to the both ends

J[Ln]
except for j=1,n.
,[1n(x[1n 1) = (1= 8n) %1 g Xan-1); 3.1
, T ('M X)) =17 Wion Xan) (1 # 1), 3.2)
g Xn-1) = 50 g Xan-y) (§ #1), (3.3)
0=, (17X ) = (1 801702, L (Xo ). (3.4)

3ForX € 719, the operatom;-(a) in this paper corresponds @}, ; ; in i

14
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Proof. The reduction to the righ{ (3.1)[_(B.3) except for= n is tautological. The casg= n for
(B.3) goes

WU X1 — (=1)Xan-y¥n = =25y O Xipn-1) — (= 1) X p_qi “BSnugl
Since(—1)%0-UXy g = (—1)3 X[ln 1(—1)St-1, this is zero. The reduction to the Ieft (3.2).13.4)

except forj = 1 follows fromt,u “ﬂ)"l = l,UL[Z n]l""l. The casg = 1 goes

O.lii(ail)afx ]+i$2ai(ail)afx[27n]0f _ afi—lxax[m —|—i¢2°’i1i"X[2,n]0f 0.

(2,n
Ul

The free fermion$IJT, d)f do not satisfy the equivariance with respect to the symmetric group
action. In the next subsection, we transform them to those which enjoyjtlieaeiance.

3.2 Equivariant fermions

Set

Gr(7) — 4 Wt i_jV(Z/EJ') (¢ - ‘ (¢ /¢)
<) ;1 "niB/&) Z B(L/&)

Proposition 3.2. The operatorsb*(Z),®*(Z) commute with the action of the symmetric group
Gn,

sPH(Q) = B (Q)s, sP(7) = D*(Q)s.

Proof. The statement follows from the identity

(o Y/ | g YE/&) >:
0 (o BTy o g e re) =°
O
Set
OE )=+ dZ g L
W =-reg_g¥ (5)7’ D = —iP(ié). (3.5)
Propositior] 3]2 implies the equivariance
Sil'/pi = q);t(k)S; Sa)i = a\);t(k)s ) (36)

wheres = (i,i+1) is the transposition. They are upper or lower triangular linear combinatfons o
Wi or o

+ + it y(ék/&;)
Pic = JquJ |'|1<|<JB(E|</E|)

o = glq)jirHlV(Ek/fj) DB(&/&»

15
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Proposition 3.3. The fermion@i, @ki satisfy the canonical anti-commutation relations.
[W?aw‘}:’]Jr = Ov [CDT,CDT/] = O [LPE CD ]+ - 5£+6’ 06] i’
Proof. Define am x n matrix P = (Py) by

28 /& K 1+E2/&

if j<k;
o _ 1-&7/82 1L 1-&7/& 37
11 if j =k 3.7)
0 if j >k
The inverse is of a similar form,
2 . k—1 1 2/22
Ekész +E|;/E|2 ifj<k;
1 1-§5/¢; |:j+11—fk/5|
(P )ik = o
1 if j=k;
0 if j >k
The statement follows from the equalities
K114 82/&2 & —&2/&F
wia( , q)i k |
= Nizgre 2, ¥R I'! 1+&2/8f Zl
O

LetNS = afkt@f be the number operators corresponding to the fermion creation op@iﬁors
and the fermion annihilation operatd# . They satisfy the following reduction properties.

Ni:[Ln](X[l,nfl}) (1 51 n)N J[1,n— 1](X[1n 1])

_ 997X if j =1,
Njiy[lyn]oaafx[z,n}) =9 .q03 2 o
9N [2n]( o) ifj>2.

3.3 Cubicform in fermions

We introduce another set of free fermions in which the operdigrs are written as cubic
monomials. Set

(1- Ek/él N'
|_L 1+&2/E)N

Xk — LPE_U EC{ —S— 1 G
—  O-11-z-a+S-1 L
X = WU é D™ sy

X;Jr S 1(1+| (a—S) )( )Nk’EafSJrl(ka)fla\);’
Xlﬂ(s—: —af G+S+1(U|2_) lcbk

16
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Proposition 3.4. The operatorsxlf, X;i satisfy the equivariance with respect to the symmetric
group action
SXk = X308 SXeT = X3S (3.8)
the canonical anti-commutation relations
[le?le/,]-‘r = 07 [Xl;k“:vXI:’gl]-i- - 07 [XIf7XI?£,]+ = 5€+€/,Od(,k/7 (39)
and the reduction relations
X1+ X)) = Xz Xzg) (1< k<n), (3.10)
Xic 0 (A% X1 1) = Q7% Xy 1.y (Kag) (1<K <), (3.11)
wherex = x*, x**.

Proof. The equivariance[(3.8) follows fronj (B.6). The anti-commutation relafio§) (®llows
from Propositior] 3]3. The reductiof (311) follows from Proposifioh 3ri particular, we use
Wﬁ: (X[l,n—l]) =0 anddbf(i““lsx[z’n]) =0. OJ

SetNF(a) = N "Va' The following formulas are proved in Appendik B.

Theorem 3.5. The transfer matrix and the Q operators are diagonalized by the fermioratgye

(X:))

_ a-S | i—atSy 1—52/Ek2>’“k+ (a+1)+N (a+1)
t(Z,O!) - (' +1 )l(l_ll(1+52/€|(2 , (3.12)
A 2 /82\Ng (a+1)
9% (Z,a) = (1+37/&)" " 15

k1 (1—¢2/gN ()’

n 1—Z2/EZ 2-NS (a+1)—N, (a+1)

t*(Z,a)(X) = izs(i“‘S+i‘“+S)|!:|l (HP/EE) (i"X), (3.14)
(a—S) =+ s (L4 33/gH Nt
HIHQE(L a)(X) =i l!:ll(l—ZZ/Elf)l*Nﬂ“l)

Theorem 3.6. The operatorc; is a cubic monomial in the free fermions.

(i7%5X). (3.15)

G = X XX
Theorem[3]6 shows that, thougfi themselves are not fermions, they act in a very simple
manner on a basis created by fermions. For later reference, let usl heoformula for this
basis. Sep(lfo =1, leo =X X¢ . Define a basis{x,()m} of the space/p indexed by sequences

p: (p17' R pn) Wlth pJ € {+7_7076} by
X =™+ X P (dpsn op):
where i € 7} is the identity operatog(+) = +1,s(0) = s(0) =0,
g(p) = (—1)HEDNI<], pi==pi=+} (3.16)

and(Z) the cardinality of a seZ.
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Corallary 3.7. The action oby, ¢ is given by

ok(Xi) = Bp, £ (P )X
c(x6”) = G e (pROX i
where
et(p,k) = (—1)rilp=—h+z(ili>k p=+}) (3.17)
g (p,k) = (—)fli=k p=d), (3.18)
0 ifj=k
plkl; :{ o (3.19)
pj ifj#Kk.

Example. Itis simple to calculate

o i—a
I~ +1 aod

xi%(ida) = X1j1yX1 .y (ida) = @ _j-a

Using this and the reduction relations, we see that a successive applichja'(p?lto the identity
operator produces the vacuum states,

ok
(a) I AR i N
Xo. 000 (i“_ia j92)=10]

4. Basisfor genericq

In this section we introduce an inductive lim#t,, of the space/{s; when the interval =
[k,I] becomes infinitek — —oo,| — . The operators:f(a) : Wa — Wa+1 act on this space.
Generalizing the result in thg= i case, we prove the existence of a basis for gemgrn which
the actions otji(a) are simple.

4.1 Inductive limit

We work with an infinite lattice fully equipped with the spectral parametersKueg the field
of rational functions in infinite variable§ (j € Z) with coefficients inC(y) (y=q“). Actually, the
field K is an inductive limit of the field of rational function§ (I = [k,1]) in the variables, ..., ¢
whenk — —o andl — . Let S, be the infinite symmetric group generated by the elemgnts
which is the transposition afandi +1. OnK there is an action 0., such that =r;;1. There
is also an automorphismi(&;) = &j+1, which corresponds to the shift of the lattice. Finally, there
is an automorphisik (y) = qy, which corresponds to the shift of the disorder parameter

We define the vector spa@é, overK as the inductive limit of the vector spacég, | where
the inclusion maps are given by, for intervalsJ C I. We denote the subspakex (4| C #q
by (W[a]),- The total spin operatds is well-defined or#/,). We have the decomposition

yﬁ[a} = @SEZW(S)

[a] ?

o ={X e HqIS(X) =sX}.

18
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Note also thaW[és]) = @BGMZ“//B(S).
Schematically, an infinite tensor product of the form

@Y Y R0t Rl 9y ®101®-

represents a vector iffy. To be more precise, denote B the set of allmapg: Z — {+, —,0,0},
j — pj, such that

8({j <O|pj #0}) < oo, #({j>0|pj#0}) < co.

An element ofZ? will be calledlabel. We use labels to represent state#iin, :

(a+k)

vy (a+k)

= ®jEZij )
wherev? ™ = g+ V(" =1, vg”k) — (qfy)°". The set of states,’’ is a basis o/, but this is
not the one we are looking for.

4.2 Actionson #q

The automorphisnk induces an isomorphism of %[, such thatk : #p — #p,1. The
automorphisnt induces an isomorphismof %/, such thatr : #j |} — #p jk+11+1- The action
of the symmetric grouiG, on ¥ induces an action of the infinite symmetric grogp, on #/q.
We denote the action of € &, by 5. We have

K- T=T'K,K-§S=S-K, T-§S=5,1-T.

Let o7 be the Grassmann algebra oGegenerated b;zii (i € Z). Because of the reduction property
@11, (ZIp), the action of the operateis(a) : ¥4 — Y41 induces an action; : #a — #a=1.
We extend this action t#/4) by requiring

Then, because of (2.9), it gives an actionfon #{,. Because of[(2.10) and by an obvious
reason, we have the equivariance

ot oot s
S-C =% S 4.1

+
T-Cf=cfy T (4.2)

We observed that there is an action of the aIgefJ?aver(C generated by ™1, *1, 5 andcji. This
action isC-linear and satisfies the equivariance

K(f-X) =k(f) k(X),
T(f-X) =1(f) 1(X),
s(f-X) =riji+a(f)-s(X),
ci (f-X)=f ¢ (X)

for f € KandX € #/q.
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4.3 Space of labels

Let C[Z x £] be the vector space with the ba&is< &2. Our strategy is first to define a
representation of the algebrd on C[Z x &7], and then to show the existence of an intertwiner

%C[ZX@]H%G]

The vectors)(é“*'q = 2'(k,p) € #a1x (K€ Z, p € &) constitute the wantel basis of#4).

There is an action 0. on the vector spacg€[.#] such that
s(p={ P if(pi,pf+1)=(+,+) or (=, —);
(...,Pi+1,Pi--.) otherwise.

This representation is isomorphic to a direct sum of the representationgahffon the represen-
tation

(oo k1] ® S9Nk | 1] © SYN m—1] ® Id[m,co)
of the parabolic subgroup
S(ok-1 X OSki—1 X S m-1 X Smew)

for all possible choices df <1 < m. Here&,_1 denotes the symmetric group of degteek
acting on the intervak, | — 1], and sg 4 is its sign representation. Set

0 ifj<k-1;
(p(k,l,m)> _ )t ifksj<i=g
j - fl<j<m-1;
0 ifm<j.
We identify the elemenp®!'™ ¢ 2 with the cyclic vector of the induced representation. The
above action orC[.7] is lifted to K[2?] by requiring the equivariancg(f - p) =rii+1(f) - s(p).

Similarly, we have a natural actiar{p); = p;_1 of the shift operator. Next we define an action of
the Grassmann algebrd on C[Z?]. Forp € & set

G (P) = Fp+&7 (P K)PK. (4.3)

Here we used (3.18)E(3]17) fpre 22. One can check the equivariance of this action:

. ~T _ ~T .

SC =C5(j)S:
+ _ ~*

Tc) = ¢y T

Finally, we define the action o¥ on C[Z x &7]. The action ok is such thak (k, p) = (k+ 1, p).
The actions of the other operators are trivial onZheomponent.
For p € & definen*(p) = #({j|p; = +}), and set

Pina={peZnt(p)=l,n (p)=n—I}, Zn=U"1P ni.
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Note thatc; P nt CClA poi—1] ande, Ay ny C C[P_1n1]. We also define
={pe Z|pj=0(j<k-1), pj=0(j =1 +1)}.
Our goal is to show
Theorem 4.1. We assume that q is generic. There exists an intertwiner ofmeodules
2 ClZx D] — Wa-

A proof is given in the subsequent subsections. The uniqueness iotdnviner is not true.
We need more structures, e.g., creation operators, in order to singleioigiLee basis.
SetXr(f”k) = 2 (k,p) € #4.«- The intertwining property means

><B+l = k(%) (4.4)

= 1067, (45)
XS(I(BI?)) = S(XF()B )7 (46)
xéjf()p) o (X)), 4.7)

If we definexéa) all otherxép) are defined by[(44). Our description below exploits this without
mentioning it any further.
Before giving a proof we prepare several statements on the opemﬁtors

Proposition 4.2.

¢ (a) ((%’)[KIO =0 unlessk< j <1, (4.8)
¢ (a) <(7/a)[k,|]) C (Wax1)i-y- (4.9)
The property[(4]8) follows immediately from the definition. The prop€rty (foByws from
Propositior] 2]6.
4.4 Vacuum vectors

Let us consider the common kernel lmf(a),ck(a) (k € Z). We call vectors in the kernel
vacuum vectorsSetpyac = pttY € Zy. The annihilation property (4.8) implies

¢t (o)) =0, (4.10)
We define
X = Vi

Let #4 vac be the subspace of; spanned by the states in the orbit)(;f,f;)C bys andt" (i,ne€ Z).

Proposition 4.3. For generic g, the common kernel of the operatoy&n ), ck(a) (k€ Z) is equal
t0 W vac

Wavac= [ ] (Kerby(a)NKerce(a)).
keZ
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Proof. Itis enough to show the equality

Wayac (Vo)) = (ﬂ (Kerby(a)n Kerck(a))> N (P - (4.11)
kezZ

The inclusionC is a consequence of (4]10) and the equivariaficé (4.1), (4.2). We #vai for
q=i
dimWa7vacm (Wa)[k” — 2I7k+1, (412)

and [4.1]1) holds. Moreover, for genergthe space/a vacN (#a) ) is spanned by the! 2k+1

elements in the orbit oi(,()f'a)c. By specialization of the parametgy the dimension of the kernel
does not decrease, while the dimension of the linear span does notsiecBlaerefore] (4.12) is
valid for generiag. The equality [4.31) follows from this. O

4.5 Filtration of #/q

Propositior{ 2]6 suggests a kind of particle structure in the spégewherein the operators
bx(a) andc(a) act as annihilation operators. Starting from the subspége.c we define a
filtration of #4:

0: F_:LWQ C FOWQ - WayacC - C FnWa c---C Wa,

FnWa = z 600 (WC’)[k,k+nfl} .
keZ

We have
ci(a): F"a — F"™ YWz
Set GE#4 = F"#4 /F"1#4. We denote the induced mappings by the same symiopiq) :
G W — G2 #4+1. We will constructX (@) : C[#2,] — F"#4 so that the intertwining properties
(B-4)—(47) are satisfied and the induced mapping
X K[ 2] — G A
is an isomorphism. Our proof will show that
X K [Py — Wa) k)
is an isomorphism.

Proof of Theorem[4]1 We proceed by induction on. Suppose that we have constructed
X(@) on UJZ3; and the intertwining properties are satisfied. We consti€t on ;. Set
pl:n=h) = pI+n+d) ¢ . The subspac€[Z ] is generated fronp(-"~!) by the action of
C[6«] and the shift operators’ (n € Z). We construck'?) ) € (Wa)(1,n Which satisfies

pln-1
(a) o i _
.X(OI) _ Xp<'~"*') ifi<Oori>n+1; s
S p(in-1) (@) _ . | 413
7xp(|-”*|) ifl1<i<l-lorl+1<i<n-1.
+ (a) _ (aF])
% (a)xp(““") - Xcitp(l,n—w- (4.14)
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Then, we can induck(@ from p('"~ to C[2 , ] by using the action o5, and the shift opera-
tors. By construction the intertwining properti¢s [4.5) (4.6) are satistiecause of (4.1) and
(B.2), the last ond (4.7) follows frorh (4]14).

SetZ n-1 = PN Pin-t, Pn=U_ P n1, and?W = {p e 2|p = 0}. The intertwin-
ing property [4.17) with[(4]3) implies that if, p’ € &, ,_i, we have

G (@ + Part o+ pn) G P ()XY = By ()X o

wheree(p) is given in (3.1p). Our immediate goal is to construct a family of stafgs (p e
P a1 U(=P n1)) satisfying

Y =Y, (4.15)
v =s(%7), (4.16)
S P (@ + Pat o+ Pn) - Gy (@)Y = Gp e (p) X 2 . (4.17)

For each < | < ntake andy ) invariant subspacé{ | C F"#4 07/0,(2'_”) of dimension

H(P1n) = <T>

such that®] % n-1 — G #4 is an isomorphism. The non-uniqueness of such spaces is the
reason for the non-uniqueness of the basis. We have no a priavnremshoose one.

Fix an arbitrary basis o# i1, {Vp|p € Z n1}. Consider the matritv = (Mpvg)pﬁeymfl
given by

CIPl(or +p2+--+pn)- -‘Cﬁp”(a)vp/ _ Mp,uxéf’ajz””).

From Propositior] 2|6 we see that the left hand side is proportion&})ftf)z””). The matrixM
is invertible for generiaq because it is so for the fermion cage-i. Therefore, there exists a
unique set of element&\”) € % (p € PjniN(—P1n)) Wherer‘f)) = Y% satisfying
®.17) forp, p’ € 2 n_i. The equivariancd (4.116) follows frorh (#.1), the Grassmann relatidn an
the uniqueness of the solution to the linear equafion](4.17).

We will modify Y to X\* by adding lower order terms in the filtration. Tages 27, _,.
For eaclk, consider the state

Ge(@)Ys” € 8¢ s ((WG)[Ln—l]) '
By the induction hypothesis, it can be written as

1
Glayy =y e xETY,
p’€(@(k)ﬂfy[lnn]

If p € &1 appears in the sum, we hape= F, p’ = p[k] and flfp:p, = &7 (p,K). For, if px = =+,

or px = F but p’ is an element 0f#,,_; other thanp[k], Yéa) can be brought to non-zero multiple
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of X\%-2*" by a sequence of operators other tgah (a + pa+---+ pn) ---co ™(a). Thisis a
contradiction to[(4.17). The equalil&tp o = €7 (p,K) follows from

C; (A + Pat- -+ Pr) - Gy P ()Y

—K
=(=1" fli,ﬁnp

_ k _ 1
[k]clpl(a+ p2_|__|_pn) v - Cp pn(a))([()ﬁ{(]"t )

Note thate T (p, k) p[k] = ¢ (p).
If p’ & #2,_1 appears in the sum, the total spin conservation requires

. {%_i,n—l—l—i NPWN Py forGi(a); (4.18)

p e
P 1ina-in2W0nPy g fore(a).
Herei > 1. Therefore, we have

G ()Y = x0T S fep X (@)

+
P

where the sum ovep is restricted aq (4.18).
Set

K-S g
ﬁe?}[m ﬂ((@n,zu(@n,4U"- )

We do not sum ovep & Z,. We requirecf(xé")) = Xc(g:fl). This is equivalent to

Op = f[,gfkﬁ[k] Sﬁk(f’a K)

for all 1 < k < n such thatpy = +. The Grassmann relation implies that the right hand side is
independent ok: suppose thapy; f # 0,0. From

¢ P (a+ Poe (@)Y =~ X(a+ pg P (a)vy”

we obtainf, P, eP (FK,1) = —f, Py, eP(f1],k). From

a)

6P (@ + B H (@)X = ¢ (a+ pre P (a)X{

p

we obtaineP(f5,k)eP (B[K],1) = —& (B,1)eP(Bll] k).
SinceY,ga) is equivariant by[(4.16), and the constructiomé’l’) is equivariant, we have

s(%™) =X (1<i<n-1)
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A. Anti-commutativity of c({,a)

In this section we sketch the derivation for the anti-commutativity property eobtberators
c(¢, a). Anti-commutativity ofc({, a) with b({, a) requires a different reasoning which is given
in []. We do not repeat it here.

We need information about tHe matrix. First assume thafis not a root of unity. Define
Rag({) € EndW, @Wg') by

Rag({) = Pagh({,uap)lPA™Ps,
Uag = axg “Phag,
wherePa g denotes the permutation, ah({,u) is the unique formal power seriesirsatisfying
h(Z,q?u)(1+tu) = h(Z,u)(1+u), (A1)
h(¢,0) = 1.

When there exists a positive integesuch thatg? = 1 andg? # 1 (1< j <r — 1), the repre-
sentationV,” has arr-dimensional quotierV;, generated by0). In this casauy g = 0. Define
Rag({) € ENdW, , ® Wy ) by the same formula, whet€{,u) is the unique element in the trun-
cated polynomial/ring:[U]/(u') with the above properties.

LemmaA.l. The operator Rg({) satisfies the intertwining property

Rag({1/42)La ({1)lg ({2) = Lg ({2)La ;({1)RaB((1/E2) -

Proof. If uv=vu+ (1—g?)wanduw= q—?wu, then

f(uv=vf(u)+ f(u)—uf(qzu)w

holds for anyf (u). Takingu = ua g andv = ag?°A, w = aj or v= an, w = —agq 2P4, we deduce
from (A.1) the identities

h(Z,u)({an+asaq™*) = (¢ tap+aga’™)h({, u),
h(Z,u)(aa+ ¢ tagq ?™*) = (an+Zagq **)h(Z,u).
The intertwining relations follow from these. O

The R matrix which intertwines the fused L operators
R{A,a},{B,b} (Zl/ZZ)LErA7a}7j (Zl)l—frs,b},j (&2) (A.2)
=L{gp i ({2)L{naj({)RMa} B} ({1/02)
has the triangular form

Riz O 0 O

RaiR2 O O
Riaal (e} ({) = Rs1 0 Rsz O

Ra1 Ra2 Raz Ry
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Its non-zero entries read as follows.

Ri1 = q°®Rap({)q P,
Ro1=—q %P PeRap(q ) a8
Ry2=0q(1-q %)™ Ras(q 20)q"®,

Z B—UA
R31: _1 qZZZqD D RAB(Zq)aB
R = 12 PR () D e
1= 1_ qzzz ,B )
Ry = —q -Rap({q *)g P Peag,
Rss = a¢” q "*Rag(0?{)q °®
T
2
Riz= ¢ qP~ PeRAB({0)q *PPas,

1-02¢2
= —*qP*Rap({)q e
The anti-commutativity o(:(Z, cr) is an immediate consequence of the following Lemma.
LemmaA.2. We have
K™({1,0 = 1)k™ ({2, 0) +k™(&2,a = Dk ({1, a)
=0q0,F({1,02) + D4 ,F ({2, 01),

where
F(41,4) = q“-llzllz/zzzd“(zl,a ~ 1k (&)
et le/lszzq (¢n.a-DkO(%a—1)
e QG0 - 10 (a1,
and

QM(Z,a)(X) = (1= 29U STri (qPPrak Ty (O) "X Ta (Q))
(k)(z7 a)(X) = (1— qZ(G—S))ZafSTrXtra (qZGDA(aA)l kGJT{ZA}(Z) 1y T{;A}(Z)>
Proof. Set

¢(0)(X) 2({)(X)
For brevity we write{ = {1/{2, Rj =Rj({), @1 = </({1), and so forth. The intertwining relation
(A.2) contains the following relations.
Ro1.9.9 + Roo 6o = o4 CoR11 + 1 DoRo1,
Ra2Z2.91 + Raa D261 = 6122Ro2 + P1Z2Ra2,
Ra1.9%.941 + Rap62.941 + Raz /261 + Ras6261
= 6162R11+ 61Z2Ro1 + 21C2Rs1 + D1 P2Ras -
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Eliminating ¢>.«1 and%1 %, we obtain

G162 — Rastr 1R ] = X oty — DX (A.3)
+R13HEIR T — RaaZ061R 5 RoaR 1 + RaoRoy 462 — D16 2RaR 7

whereX = (Rq1 — Ri2R»; Ro1)Ry{. From the explicit form of the matrix elements we calculate

ad q 2 2D

B <1—qu2 ) 1—q—2z2>aAq )

_1_-2D q*Z! 1,1 )
Ri1d “*Raz= 1_7(1252(1‘1‘(1 {""uag)asq ",

1 —1.-2D q2g* -1 -2D
RosRoiRy 10 " Rua = W(H a¢ “uap)asq “°,

2
q PRezRyy = _1—3—2(2(1—’_ q '{uag)aag >,
. 1

R31le — —m(l+qZuAB)aA

Multiply both sides of [[A.B) by

(1— @5y (1— q2(a—S+1))Zfr—S—lZZa—S+1q2(a—l)DA+20DB

and take the trace. Direct calculation leads to the assertion. O

B. Proof of Theorem 3.38.6
In this section, we give a derivation of Theorefmg[3.5,3.6.

B.1 Preliminaries

Throughout this section, we fixand work with the interva]l, n]. To perform the calculation
we find it technically easier to pass from = EndV®") to the 2 fold tensor product o¥/. Let
1.7 5 V&2 denote the isomorphism of vector spaces given by

n
I (E£17££®...®Esmsr,‘> — I_IISJ{‘V€1®.“®V€n®V7‘€r{|®..‘®v_gi’
|=

whereE; ¢ = (5£u 55/\,)“ , stands for the matrix unit. In what follows, we set
k=2n+1-k &=q'& (k=1,,n).

Under the isomorphism, the left and the right multiplication by an elemeit(Z € EndV)) are
translated respectively into

H(ZX)=Zc1(X),  1(XZ) = (0%'Z %) 1(X).

In particular we have (S(X)) = S-1(X) andi (X §) = —S-1(X), where

\S]

n —
Uk? S:
1

S—= o

NI
NI

=

i =}

M
~Tw

J
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We shall also make use of the relations
! (X LX,,-(Z)) = (A —q ¢ Ly (@)t 1(X),
(XU @) = @Y M) %),

which hold provided the entries &f commute withOsc
We begin by rewriting Q operators. Introduce operators

g = o'jiq:tZI221+10I3 (j=1,---,2n),
B =00 =SS, (=1 0)
and set
Lai(Q) =1+ 2a P +la @y — Pa®P @y,
Dni(0) =1-Ca P} — {a @y — P20 g
LemmaB.1. For X € ¥, the following hold.

(TR (L, a) (X)) (B-1)
1 — g2a—s) gs
- |_||n—1(1q_ 22/€2) Tra <q2( P La1(l/&) - 'gA,Zn(Z/EZn)) 1(X),
1(075Q (L o) (X)) (B.2)
1_q72(afs)

- M. (1—22/é2) T (Ga’n(Z/En) I8

X0 2P Zp 1(C /8L) -+ Zaa( /GEn) ) - 1(X).
Proof. This can be shown by direct calculation noting that
iV 2n () = Qa7 — YL (O g 57107
iZ71/2q71/4DQ;7j(Z)

- {QZF—MUF'DA L (Q) o 2P0 (1

<j<n),
qEia 3 0)Pa Ly (0)- q o+ 5ao®ba

j <2n).

AN

J
1
O

This rewriting is useful at| =i, Whentllji, lllji become the Jordan-Wigner fermions\6i?".
In the rest of this section we shall consider only this case.

B.2 Diagonalization of Q operators

Let us calculate the tracg (B.1). First note the following simple fact.

LemmaB.2. If g is a primitive r-th root ofl, the representation W of Osc has an’rdimensional
quotient W generated by0), where

g {r (r odd),

r/2 (reven)
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We have the relation

Trt (y?PAx) =

1
jtrw(;r (yZDAX) (X E OSC)

1
Wheng =i, W, is two-dimensional with basif),|1). Theg-oscillators are represented in
this basis as
02 . 00 2DA 10
while

1-2Q; 0 22Q,
(B 14+2Q00 )

LemmaB.3. Letn;,n; (j =1,---,N) be generators of a Grassmann algebra, and set
L - 1+ninj/2 n; o (10
] — * ’ - :
ni 1-nin;/2 0t

tr(Ly---LiH) = (1+t)exp(—l—th _;lnkm +5 an nj+ Eknkm). (B.3)
jk= 1= 1<

Lpk(Q) — (

Then

Proof. First consider the cage= 0. Extracting the factog? 2= i, we are to show that

tr (LN N <(1) 8)) — @Xj<kiN] (B.4)

. |- Denote the left hand side df (B.4) bxy. Using
nj 1—njn;

10 L, = 10\ (1ng 1ng L 1-ng _ i
00 00/\0 1)’ 01/ 7'\0 1 I’

we find a recurrence relatioq = e 2’Jtll’“x,\l,l. Eqg. (B.4) follows from this.
In general, [BJ3) is linear ihand the coefficient dfis obtained front = 0 by exchanging the
roles ofn;” andn;j. Combining them we obtain

1 N 1N
expl 5 ) ninj+ ) ngnj | +texpl 5> ninf + > nkn;
(Z;H 2 ’) (sz 2 J)
N 1N
= 1+t(1= % ngnj) |exp( 5 > ninj+ > mnj
,-,Zzl J 2;1] J JZk J
t N 1N
=(1+t)exp( —— > nnj|exp| 5> nini+ > mknj -

Lemma is proved. O

whereL| = (1 i
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Now set
G =-il + 0,
(@) = g (PO
They are related to the fermiokg:, (o) via
@ 1(X) = (-1)° (W (X)),
@ ()1 (X) = (—1)% (P (a+s—1)(X)) ,
whereX € 7,

LemmaB.4. We have
1— iZG

M (1—42/&7)

n

exp| Z_l(log(w M)t (o + 1) g —log(1— M)~ (a +1)@f)],

Trk (%P7 La1( /&) -+ Laan({/Ean)) =

J,K=
where M is an upper triangular matrix with entries

261'715[:1 (J < k)7
Mijx=14¢;2 (i=Kk),
0 (j > k).

Proof. We compute the trace first in the normal-ordered form, where normalingdereans that
we bring all to the left and]j, to the right. Taking\ = 2n,t = i%% and

h= e me= g
we apply formula [(B]3) under the normal ordering symbol : :. The result is
(1—i%)Tr) (1I2PA201(L /&) - Lan(l/E2n))
=: expjélzZMjk ((pj**(a +1)g @ g (a+ 1)) -

Due to the formula
2n

; exp(jglAjkLle*Lllk): = exp(%l(log(l +A))J.klllj+lllk> ,

i,
the right hand side is rewritten as

exp< ; (Iog(1+ZZM)1k<p;*+(a+1)<g<+|og(1—52|v|),-k<gjcp;*(a+1))>
jilel
= detf1—¢°M)
><exp( ; (log(1+ ZZM)jk(Pf+(a+l)(g<—Iog(l—ZZI\/I)jk(pj*(a+1)(ﬂ(+)> ,
j,k=1

Lemma follows from this. O
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LemmaB.5. Set7 = Zan({/&) - Za1({/&) and T = Ly 1(/i&1) - Zan({ /i&). Thenwe
have oni (7))

1— ifz(afs)
Mt (1-4%/&7)

= exp| Z (log(1+ M) k@ @ F (a —s+1) —log(1— I°M) k@ @ (a —s+1))].
j

if=1

iZS_ Tr; (yi—ZO’DA?iZSDA) . i—2§

Proof. Let Zeven(resp. Zoqd) be the sum of terms i containing an even (resp. odd) number of
fermions, and similarly for7. Since the total spin is preserved, we have

TI’; (9i720DA?iZSDA) — Tr; (%Veri 2a Ay ZSDA) —l—TI’A (%ddl ZGDAg ddlZSDA)
= Try ((?even— yodd) 25D 77 ZaDA)

_ i2§-Tr; (?iZSDA yi72aDA) _i72§.
By using.,Z\’j(Z/iEj) = i_a%,i/ﬂzyp(i(/fj)ioii, the right hand side can be rewritten further as

25T, (i20 9072, (10 /&1) - Lan(il ) &n) Lan({ /&) - Lar((/E0))i 25,

The action ofOsconW;; factors through that of the quotient algel@ag by the relationi*P = 1.
Let 6 be the anti-automorphism of the latter given 8fa) = —a, 6(a*) = —a*, 8(iP) =i P.
Denote also by the anti-algebra map of Clifford algebras sendaﬁj@to ij (j=21,---,2n). Itis
easy to check that

0(Lai(0)) = Zai(Q).
0((1—i2")Tri (i%7PAx)) = —(1— i 2N)Tr, (i 2P*6(x)) ,
wherex € Osg. Using these we obtain
1—j2a-s
Miq(1—{2/&2 )

_ _ 1— i2(a—s)
- |2(S+l)59(nlnl(1|_ ZZ/E TI’A < 2(a— S)DAgAl(Z/El) - DLn 2n(Z/EZn)>> (s+1)S

The assertion follows from Lemnja B.4 and the relation

299 (g ()@ )i H T o= A @ (@), 0

23 TI’A (g —ZCXDAgIZSDA) | -2S

O]

Proof of Theorerh 3|5 We apply Lemm4 B}4 to Lemnfa B.1, replaciady a — sand noting that
@ (@)@l 1(X) = 1(P] (a+9)Wi (X)) for X € #9). We find

{PQN (¢, a)

=exp<§ (log(1+ M) k@] (o +1)W, —log(1—{*M) ®; (a+1)WI)>-
k=1
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This expression can be further simplified by diagonalizing the mbtras
PMP ! =diag&; 2+, &),
whereP is the matrix given in[(3]7). We thus obtain the result
ZfC{JrSQwL(Z’a)

= exp(i (log(1+¢%/&2) Py (a + 1), —log(1- %/ &) Py (a + 1)%)) :
k=1

which is equivalent tq (3.13).
Similarly, (8.1%) can be shown by LemrhaB.1 and Lenjma B.5.
Finally, formulas [[3.112)[(3.14) follow fronf (3.1.3], (3]15) and the TQ relaif2.?), [2)6). O

B.3 A factorization

Let us proceed to the calculation bf),c({). A simplifying feature about the free fermion
point is a factorization property.

Proposition B.6. The following factorization takes place:
k*(Z,a) = PH()Q*(—ig, aF )i, (B.5)
K, a) = —i®F{) (i S +i79%)Q*(Z, a). (B.6)

Proof. First consider the action &* ({,a) onX € ¥, Inserting [2) in the definitiod (2.3) and
taking the trace ovev,, we obtain 2 terms:

tra( 05 Tiha (O X Th 4 (0)
n j—1 5
=) Wig) ﬂﬁ(zm>*1i*“1/2LX,1<iZ/51>*1--‘ori*ZDA*l/ZLX,,-<Z/if,->*1
= =
x AL ()18) ™ XL (L /1&)i~O2 g 4 ({ i&0)i O/

+ iv«/a)lﬁ!mmawi"f/ztx,l<i5/fl>1~-i V2L L/ E)

]
XX L1 /&a)i /20701 LL (2 /i&) o] 1720W 220 L (2 /i),
where in the second sum we have used
Lk, (Z/&) o) =i7FTLL (L /i&))o}t .
Rewriting this expression in terms of fermions, we obtain
((tra(04 Ty (O X Tihgy ()
_ L2i0/¢; . 1 (@418
G102/ (- 22/ M (1+ 0%/ &2)
X (La1(i/&1) - Lnj-1(0/& 1) B Lnj(L/i&)) - Lan({/i&n) Lan({ /&n) - ZLa1({/E1)
HLA1( /&) Lan(il/&n) Lan(—{ /&) - B LA /&) - LaT(L /&) - 1(X).

1
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Since

Ll BE = T Lar(-0) (i £K),

we can bringllj+ to the leftmost place. The result factorizes into a linear form in the fermion

L 20/§ L1+ l/E
S i e (0 -9) ®.7)
followed by the product
[]_1%_52/52 ORI L1 (< /€0) - Lnan( 1L/ Ean) 1 (X). (B.8)

Multiply both sides by —5(1—i2(@~9))j29Pa and take the trace 1t In view of the relations
B 1) = (DS (g X)L =@ =1 (Xy)

the piece[([B]7) yield§—1)ST 1P+ (7). On the other hand, due fo (B.1), trace[of [B.8) (taken together
with the prefactor) gives rise t6-1)5"1i9Q " (—i{,a — 1)(X). Combining these we obtaifi (B.5).
Similarly, using

( S— C{LpJ 7S+a+1¢’ ) (X) — (ifafSJrl_ i(XJrSfl)l (‘-D;(CY)(X)) ,
we compute

1+¢2 /E|

Lt Q™).

K (Z,a)(X) = =i® (i{,a) (1+i%99) ﬂ

On the other hand[ (3.13) ar{d (3.15) imply

1+2/&? 250+~ i25 i—atS
rll e Q (i, a)(i%X) = Q (¢, a)(X).

The assertion follows from these. O

Proof of Theorenj 3]6 From Propositiorf B]6 and Theorgm]3.5, it is simple to calculate the
residues ok*(Z,a). We have

dZ 1~
2

After simplification using £ N& = x,7 x;=, we obtain the desired expression 6. O

reg_g k> ({,0) = ‘Pi U (a )(1—Nki(0)).iiS+1Eki(a—S)—1
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