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Integrable Boundary A.B. Zamolodchikov

Integrable quantum field theories with boundary interactions are among many developments
made possible thanks to Bethe’s original discovery. Lately, the boundary interactions attract much
attention, for variety of reasons. For one, such models have many applications in many-body the-
ory, including the Kondo problem and dissipative quantum mechanics. Another area is the string
theory, where understanding of boundary interactions is expected to give insight into the configu-
ration space of the open string field theory. In this talk I discuss some recent developments about
integrable boundary interactions. I will concentrate attention on the models with free massless
bulk, with the interaction emerging only from the nonlinear boundary conditions 1. There is a
remarkable relation between the boundary states of such models and the Baxter’s T- and Q- oper-
ators, which allows one to study integrable structures in quantum field theory, in relatively simple
settings. Besides, some models of this kind have direct applications in condensed matter physics.
The talk is based mostly on the papers [1, 2, 3, 4], where more details as well as references to
earlier works, can be found.

Generally, when constructing an integrable boundary interaction one starts with a bulk field
theory which is integrable. Thus we assume that the bulk theory has infinite set of local currents
Jµ

n = (Jx
n,J

y
n), each satisfying the continuity equation

∂µJµ
n ≡ ∂xJx

n +∂yJy
n = 0 , (1)

and that the associated charges Qn =
∫

Jy
n(x,y)dx commute

[Qn,Qm ] = 0 . (2)

Here I discuss in terms of the Euclidean version of the QFT, and (x,y) are Cartesian coordinates of
2D space, with y = −it interpreted as the Euclidean time.

yt  ( = i    )

Integrable "Bulk" 

Boundary

x

Next, we assume that the boundary is present at x = 0, as shown in Fig.1. In order to preserve
the integrability, one needs to choose special boundary conditions at x = 0, such that appropriately

1In more general context, integrable models with boundary of course have long history beginning with the pioneer-
ing works Cherednik and Sklyanin, which I do not attempt to review. Furthermore, the citations I give are not meant to
be complete or systematic. I mention only works directly relevant for the discussion.
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modified charges Qn still conserve. One easily checks that it is sufficient to have

Jx
n(x,y)

∣

∣

x=0 =
d
dy

Θn(y) , (3)

where Θn(y) are some local boundary fields. Then the charges

Qn =
∫ 0

−∞
Jy

n(x,y)dx+Θn(y) (4)

are independent on the “time” y.

x

y BoundaryC

For reasons which will become clear later, we will assume that the coordinate y is compactified
on a circle with a circumference 2π R, as shown in Fig.2. This of course is the same as taking the
field theory in a thermal equilibrium state, with the temperature T = (2π R)−1.

Alternative interpretation is achieved by interchanging the roles of the coordinates x and y as
the space and time. Taking now x as the Euclidean time, we have have a system in which the space
is a circle, with no boundary. Operator quantization of such system leads to the space of states
Hclosed which knows nothing about the boundary at x = 0. The boundary at x = 0 appears now as
a sort of initial condition, i.e. it generates certain state

| B〉 ∈ Hclosed , (5)

so that expectation values are represented as the matrix elements

〈 · · · 〉 =
〈0 | · · · | B〉
〈0 | B〉 , (6)

where | 0〉 is the ground state in this Hamiltonian picture.
The theory still have conserved (i.e. x-independent) charges associated with the currents (1),

Hn =
∫ 2πR

0
Jx(x,y)dy . (7)

In quantum theory this integrals are operators acting in Hclosed, and by our assumption they form
commutative set,

Hn : Hclosed → Hclosed , [ Hn,Hm] = 0 . (8)

3
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Note that now the charges (4) do not involve terms related to the boundary conditions at x = 0.
Therefore their conservation depends only on the continuity equations (1), but does not require
the conditions (3). What are the implications of the Eqs.(3) in this picture? Since the integrals
(7) do not depend on x, we can send x to 0, where the equations (3) apply. As the result the
integrands in (7) become total derivatives, and the integrals vanish. That is, the local conditions (3)
are implemented as the constraints on the boundary state,

Hn | B〉 = 0 . (9)

Thus, constructing integrable boundary interaction involves two steps: (a) Understanding the
structure of the space Hclosed (in other words, finding solution of the integrable theory in the bulk),
and (b) Identifying the boundary state (5), subject to the integrability constraint (9) 2. In this
discussion I will concentrate attention of special case where the first step is trivial. Namely, I will
consider theories whose bulk dynamics is that of free massless bosons. generally, such theory
involves D scalar fields X = (X 1,x2, . . . ,XD), with the bulk action

Abulk =
1

4π

∫ 0

−∞
dx

∫ 2π R

0
dy

(

∂aX
)2

, (10)

where I assumed the 2D geometry as in Fig.2. Then, the interaction can be generated by adding
non-linear boundary conditions at the boundary x = 0. Generally, it can be done in two ways:

I. By adding a nonlinear boundary term to the action,

A = Abulk +
∫ 2π R

0
V (XB(y), Ξ(y))dy , (11)

which can depend only on the boundary values

XB(y) ≡ X(x,y)
∣

∣

x=0 (12)

of the fields; it can also involve additional boundary degrees of freedom Ξ(y) (like the impurity
spin in the Kondo problem) which have no bulk counterparts.

II. By imposing nonlinear constraints on the boundary values XB:

XB ∈ Σ ⊂ RD (′′Brane′′) (13)

where Σ is a sub-manifold embedded in the ”target space” RD.

Of course, combinations of I and II are possible. There are two reasons to be interested in this
class of models. One is the technical advantage already mentioned above: the solution of the bulk
theory, and the space of states Hclosed are understood upfront. Besides, these models have inter-
esting physical interpretations, as the models of quantum Brownian motion: The boundary values
XB(y) are interpreted as the coordinates of a Brownian particle (with y = −it being imaginary

2Of course, boundary state must be generated by a local boundary condition. Therefore true boundary states con-
stitute very special subset (not a subspace!) in Hclosed. Unfortunately, in general no useful abstract characterization of
the locality condition (would be generalization of the annulus bootstrap of the boundary CFT) is yet available.
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time), while the bulk part of X plays the role of Caldeira-Leggett quantum thermostat, generating
friction and noise.

In any case, we would like to identify boundary interactions which preserve integrability,
i.e. fulfill the conditions (9), with some Hn. The free bulk theory certainly has an infinite set of
commuting local integrals of the form (7). In fact, there usually is more then one such commuting
set. Let us recall general structure of the local currents in the free theory (10). It is useful to discuss
it terms of the complex coordinates

z = y+ ix , z̄ = y− ix . (14)

The bulk dynamics is such that the field splits into the left- and right- moving parts,

X(z, z̄) = XL(z)+XR(z̄) , (15)

implying that any local polynomial which involves only z-derivatives

Ps+1(∂zX,∂ 2
z X, ... ,higher derivatives) (16)

is a holomorphic field

∂z̄Ps+1 = 0 ⇒ Ps+1 = Ps+1(z) . (17)

Below I always assume that the polynomials are homogeneous in the number of the derivatives,
which is indicated as the spin s+1 of the field Ps+1. The equation (17) is a special case of (1), and
the associated integral of the form (7)

Is =
∫ 2π R

0
Ps+1(∂zX,∂ 2

z X, ...)dz (18)

conserves. Of course, there ”right-moving” counterparts to these integrals of motion, Īs =
∫ 2πR

0 P̄s+1 dz̄,
where P̄s+1 are the same polynomials (16) with the z-derivatives replaced by the z̄-derivatives. By
construction, the right integrals commute with the left ones, [Is, Īs′ ] = 0. But the full set of, say, the
left integrals of the form (18), with all independent Ps+1, form non-commutative algebra. What we
need is a commutative subalgebra(s) thereof.

Complete classification of such commutative subalgebras is an interesting mathematical prob-
lem, which remains largely open. Some explicit constructions are known. The best known is the
so called KdV series of commuting IM. It is one-parameter family realized in the case D = 1 by
infinite set of currents PKdV

s+1 with s = 1,3,5,7, .... Explicitly

PKdV
2 =

(

∂X
)2

, (Energy−Momentum tensor)

PKdV
4 =

(

∂zX
)4

+(1−α0)
(

∂ 2
z X

)2
+ derivatives , (19)

· · ·
PKdV

2k =
(

∂zX ∂zX
)2k

+
k(k−1)(2k−1)(2k−3−α0)

6
(

∂ 2
z X

)2(∂zX ∂zX
)2k−4

+ · · ·

5
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where α0 ia the parameter 3. Next, one can prove existence, and in many cases give explicit
construction, of several commutative subalgebras associated with W-algebras and their reductions.
Is there anything beyond these “regular” series? As far as I know only sporadic results obtained by
brute-force calculations are available, but they suggest that the problem is far from being exhausted.
I will mention here one example only.

Let us restrict attention to currents invariant with respect to orthogonal rotations of the target
space RD. That means the polynomials Ps+1 may only involve the O(D)-invariant terms, i.e.

PO(D)
2 =

(

∂zX∂zX
)

(Energy−Momentum tensor)

PO(D)
4 =

(

∂zX∂zX
)2

+b3
(

∂ 2
z X∂ 2

z X
)

(20)

PO(D)
6 =

(

∂zX∂zX
)3

+b5
(

∂ 2
z X∂ 2

z X
)(

∂zX∂zX
)

+ c5
(

∂ 2
z X∂zX

)2
+d5

(

∂ 3
z X∂ 3

z X
)

etc

Our goal is to adjust the coefficients b3, b5, c5, etc, in such a way that the integrals (18) commute.
This condition turns out to be surprisingly rigid. While the conditions [Is,I1] = 0 are satisfied under
any choice of these coefficients in a trivial way, the first nontrivial equation

[I3,I5] = 0 (21)

fixes the coefficients in P4 and P6 above essentially uniquely. More precisely, there are three solu-
tions of these equations. Two of them are not unexpected: one is the KdV series associated with
the Virasoro algebra which was already mentioned above, and another is the the ”free-field” series
where all the currents Ps+1 are quadratic in X. But the third solution is new:

b3 =
D+2

3
, b5 =

3(D+4)

5
, (22)

c5 =
7(D+4)

5
, d5 =

(D+4)(36D+59)

600
.

Once these coefficients are fixed, the equations [I3,Is] = 0 determine the higher currents

P2k =
(

∂zX∂zX
)k

+b2k−1
(

∂ 2
z X∂ 2

z X
)(

∂zX∂zX
)k−2

+ · · · (23)

uniquely,

b2k−1 =
k(k−1)(2k +D−2)

2(2k−1)
, c2k−1 =

k(k−1)(k−2)(2k +1)(2k +D−2)

6(2k−1)
. (24)

I will refer to this series of commuting integrals of motion as the O(D) series. Below I describe
integrable boundary condition associated with this series. At this moment my point is bringing

3These currents can be written, up to total derivatives, as the composites of the "modified EM tensor" T =

−
(

∂X
)2

+ iα0 ∂ 2X , which generates the Virasoro algebra with c = 1−6α2
0 . Thus,

PKdV
2 = −T +derivatives , PKdV

4 = T 2 +derivatives , PKdV
6 = T 3 − c+2

12
(

∂T
)2

, etc

6
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attention to this interesting and mostly open problem - classification of commutative subalgebras
in the algebra of local integrals (18).

Once the set {Is} of commuting integrals is selected, we turn attention back to the boundary
state which satisfies the Eqs.(9). How the operators Hs is (9) relate to the integrals (18)? As will
become clear in a moment, it is natural, indeed necessary, to take

Hs = Is − Īs . (25)

Note that the equations
(

Is − Īs
)

| B〉 = 0 (26)

are somewhat similar to the conditions of conformal invariance
(

Ln − L̄−n
)

| Bconf 〉 = 0 , (27)

well known in boundary CFT. And as in the CFT, they also can be written as certain commutativity
conditions. Indeed, because of the left- right separation (15), the space Hclosed admits holomorphic
factorization

Hclosed =
∫

P
FP ⊗ F̄P , (28)

well-known general feature of CFT, where in this case FP and F̄P are the Fock spaces associated
with the left- and right- movers in (15), with the zero-mode momentum P. The space (28) is a
subspace of a direct product of two isomorphic spaces. There is a natural correspondence between
states in such space and endomorphisms of the Fock spaces:

F ⊗F ↔ End(F ) . (29)

Let B be operator associated in this manner with the boundary state:

| B〉 ∈ F ⊗F B ∈ End(F ) . (30)

I will refer to B as the boundary state operator. Note that this correspondence owes its existence
to the holomorphic factorization, i.e. ultimately to the conformal character of the bulk theory; the
boundary state operator acts in the chiral component F =

∫

P FP, not in the full space (28). In fact,
they act in each component FP separately,

Is : FP → FP . (31)

It is easy to check that the equation (26) is equivalent to the commutativity condition

[Is,B] = 0 for all Is . (32)

It is instructive to compare it with the conformal case, where the equation (27) writes as

[Ln,Bconf] = 0 for all Ln (33)

7
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Here Ln is the full set of the Virasoro algebra generators, and (33) leads to a well-known decom-
position of a conformal boundary state into the Ishibashi states,

Bconf = ∑
r

br Pr , (34)

where Pr are projectors on the irreducible representations of the Virasoro algebra, and the coeffi-
cients are determined from the conditions of locality (in practice, from the Cardy’s annulus modular
bootstrap equations).

Now, in the Eq.(32) {Is} is a commutative algebra. Let us assume that this set of operators is
”resolving” one, in the sense that all simultaneous eigenvalues of {Is} are one-dimensional. This
is likely the case for all known sets of commuting integrals, it can be verified for few lowest levels
by direct calculations. Then it follows

B = ∑
a

Ba Pa , (35)

where now Pa are projectors on the simultaneous eigenspaces of all the integrals {Is}.
Unlike CFT, here we are interested in more general boundary conditions, which are integrable

but not conformal. Since scale invariance is not assumed, such boundary condition should involve
dimensional parameter, i.e. some characteristic energy λ . The boundary state | B〉, or equivalently
the operator B, depends on this parameter,

B = B(λ ) . (36)

On the other hand, the integrals Is do not involve any scale parameter at all - recall that the bulk
theory (10) has scale invariance as the part of its conformal symmetry. Hence the eigenspaces of
{Is} are independent of λ , and the scale can enter the equation (35) only through the coefficients
Ba,

B(λ ) = ∑
a

Ba(λ )Pa . (37)

Immediate consequence is that the operators B(λ ) commute at different scales,

[B(λ ),B(λ ′)] = 0 . (38)

This of course is reminiscent of the Baxter’s commuting families of Transfer-matrices. Since
the operator B acts in the space F =

∫

P FP, which is the chiral space of the Conformal Field
Theory, one may expect relation to the Baxter’s operators of the CFT. In fact, direct relation can be
established in the simplest cases. For instance, the Baxter’s T and Q operators associated with the
Uq(sl(2)) R-matrix are explicitly constructed in the Fock space with D = 1, and they are manifestly
related to the operators B of the boundary sine-Gordon model. Thus, the T-operators we have

T(λ ) = tr
[

eiπβ PH
P exp

{

λ
∫ 2πR

0

[

E e−2iβXL(z) +F e2iβXL(z)]dz
}]

(39)

where E,F,H are generators of the Uq(sl(2)) algebra with q = eiπβ 2
,

[H,E] = 2E , [E,F] = −2F , [E,F] =
sinh(πβ 2H)

sinh(πβ 2)
. (40)

8
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and the trace is taken over one of its finite-dimensional representation. Here XL(z) is the left-moving
chiral part of the field X in (15), and P is its zero-mode momentum operator. The operator(s)
Q(λ ) admit similar representation, with E,F,H replaced by generators of the so-called q-oscillator
algebra [?]. Note that since the free-field exponentials are dimensional, the spectral parameter λ is
effectively dimensional as well, λ ∼ [length]β

2−1. The expression (39) explicitly have the form of
the boundary state operator for the boundary interaction involving the boundary “spin” (E,F,H)

(it can be regarded as the anisotropic generalization of the Kondo interaction). The Q operator can
be related to the boundary state of the boundary sine-Gordon model. Asymptotic expansions of the
above Baxter’s operators around the point λ = ∞ generate the local Integrals of Motion of the KdV
series; for instance

logT1/2(λ ) = C0 Rλ
1

1−β 2 +
∞

∑
k=1

Ck I2k−1 λ
1−2k
1−β 2 , (41)

where the subscript 1/2 in T1/2 indicates that the trace in (39) is taken over the 2-dimensional
representation. The parameter α0 in (19) is related to β in the standard manner

α0 = β −1/β . (42)

Connection to the Baxter’s operators opens way to another remarkable tool of integrable mod-
els. It was discovered by Doorey and Tateo [6] (see also [7]that the vacuum-vacuum matrix ele-
ments of the above Uq(sl(2)) Baxter’s operators are related to certain monodromy coefficients of
the ordinary differential equation

[

− d2

dη2 +
l(l +1)

η2 +η2α
]

Ψ(η) = EΨ(η) , (43)

where the parameters are related as

2l +1 = P/β , α = 1−1/β 2 , and E = (2/β 2)2(1−β 2) Γ2(1−β 2)λ 2 . (44)

The relation is quite remarkable - it allows to reduce calculation of certain characteristics of in-
tegrable field theory to finite-dimensional analysis (differential equations). It was established on
formal level, by comparing the functional equations on the both sides of the correspondence. Un-
fortunately, deeper root of this relation still escaped my understanding. For instance, it would be
important to find interpretation of the “coordinate” η , as well as the “wave function” Ψ(η), in
terms of the boundary quantum field theory. To my mind, this is one of the most compelling open
problems in this field. Furthermore, similar relation seems to exist in many integrable models of
boundary interaction, so that the solutions of such models can be incorporated in certain ordinary
differential operators. Below I write down what seems to be the differential equation associated
with the so-called circular brane model.

Let us go back to the O(D) series of IM, the Eq.(20). What integrable boundary condition is
invariant with respect to this series? Let us assume that the boundary interaction is of the “brane”
type, i.e. is due to the boundary constraint (13). (The assumption is be supported by the subsequent
analysis.) In view of the O(D) symmetry the sub-manifold Σ can not be anything but a sphere
SD−1 ⊂ RD. The boundary constraint takes the explicit form

X2
B = ρ2

0 ≡ 1/g0 , (45)

9
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where I introduce more convenient parameter g0 instead of the radius of the sphere ρ0. We refer to
this boundary interaction as the “spherical brane model”. It is possible to argue that the model is
integrable. One has to show that there is an infinite number of local IM which satisfy the condition
(9). In practice, it suffices to construct just one nontrivial (going beyond the energy-momentum)
local current satisfying the equation (3). It is possible to do that explicitly for the current of the
spin s = 4, in which case we look for Jx in the form

Jx
4 = P4 − P̄4 , P4 =

(

∂zX∂zX
)2

+b3
(

∂ 2
z X∂ 2

z X
)

, (46)

with yet undetermined coefficient b3. By enumerating all possible boundary operators which by
virtue of dimension and symmetries can appear in the r.h.s. of (3), one can verify that there is only
one, modulo the equations of motion, non-derivative term of this kind, and hence the equation (3)
can always be satisfied by suitable choice of b3

4. The fact that the O(D) series (20) is the right
choice of IM associated with this boundary conditions can be confirmed by explicit calculations
within the 1/D expansion.

The case D = 2 goes by the name of “circular brane model”. It is of special interest because
of its applications in condensed matter theory. It relates to the so-called Ambegaokar-Eckern-
Schön (AES) model which is the model of dissipative quantum mechanics commonly adopted in
describing the Coulomb charging of a quantum dot, in the limit of large conduction. By integrating
out the bulk part of the field X = (X ,Y ) in the functional integral with the Gaussian bulk action
(10) one reduces the circular brane model to the non-local action

Adiss = −H
∫ 2πR

0
cosϕ(y)dy+

1
8π2R2 g0

∫ 2πR

0
dy

∫ 2πR

0
dy′

sin2 (ϕ(y)−ϕ(y′)
2

)

sin2 ( y−y′
2R

)
, (47)

where ϕ(y) is the angle associated with the boundary field XB(y) = (XB(y),YB(y)),

XB(y) =
cosϕ(y)√

g0
, YB(y) =

sinϕ(y)√
g0

, (48)

and H is proportional to the zero-mode momentum P,

H =
i|P|

2πR
√

g0
. (49)

The Eq. (47) is exactly the dissipative action of AES 5, with g0 interpreted as the dimensionless
conductance of the tunneling contact, and of course 2πR = 1/T .

4In this analysis the PT symmetry of the theory is implicit. Therefore it applies only when the topological angle θ is
0 or π . The topological angle is defined with respect to the winding number W , the number of times the boundary value
XB(y) winds over the circle (45) when y goes around the boundary circle in Fig.2. Therefore this "counting argument"
is valid only at θ = 0,π . It is not known whether the circular brane integrable at generic θ (see however [8]).

5More precisely, (43) reproduces the dissipative part of the AES action. In general, AES action involves also the
term associated with the capacitive energy,

AAES = Adiss +
1

4EC

∫ 2πR

0
(ϕy)

2 dy , EC =
e2

2C
,

it reduces to (47) in the limit of large conductance, g0 → 0. At small g0 the capacitive term provides explicit UV cutoff,
with the cutoff energy Λ = EC/g0.

10
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The solution of the circular brane model can be found by identifying the associated differential
equation analogous to the Eq.(43), which turns out to have the form

[

− d2

dw2 +κ2 eew
+h2 ew

]

Ψ(w) = 0 . (50)

Here h = π√g0 RH, and κ = E∗R, with E∗ being the physical energy scale of the model. The latter
is related to the UV cutoff Λ by the “RG flow equation” of the model, i.e.

E∗ =
Λ
g0

e−
1

2g0 . (51)

Once solutions of the differential equation (50) are found, the partition function of the circular
brane model is obtained in closed form

Z(E∗R,H) =

√

π
κ
{2eγE−2 κ2}κ

Γ(1+2κ)

[

Ψ+,Ψ−
]

, (52)

where the last factor is the Wronskian Ψ+(w)Ψ′
−(w)−Ψ′

+(w)Ψ−(w) of two suitably normalized
solutions of (50), one (Ψ+) decaying at w → +∞, and another (Ψ−) decaying at w →−∞ 6.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1.2  1.4  1.6  1.8  2  2.2  2.4

χ m

α

βEC=5*101

5*102

5*103

5*104

5*105

6The normalization is such that Ψ+(w) → exp
(

− ew/4−κ Ei(ew/2)
)

as w → +∞, and Ψ− → eκw as w →−∞.
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Comparison of the exact result with recent Monte Carlo data on the AES model is shown in
Fig.3. The plot (borrowed, with permission, from Ref.[9]) shows the "magnetic susceptibility"
χm = ∂ 2

∂H2 logZ, obtained from Eq.(52), vs the MC results, at different values of the parameter
α = (2π2 g0)

−1.
Let me mention two other integrable "brane" models, together with the associated differential

equations.
One is the "paperclip model", generalizing the circular brane model. The constraint (45) is

replaced by

r cosh
( XB√

n

)

− cos
( YB√

n+2

)

= 0 , |YB| ≤ π
√

n+2 . (53)

Here r and n are parameters. The boundary constraint is subject to the RG flow, so that the param-
eter r is not a constant but flows with the energy scale E,

(n+1)rn (1− r2) = E∗/E . (54)

where E∗ is the characteristic energy scale (the integration constant of the RG equation). The
Eq.(53) defines the "paperclip curve" shown in Fig.4.

-6 -4 -2 2 4 6
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���������������!!!!n
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0.5
1

1.5

Y
��������������������������!!!!!!!!!!!!!2 + n

The associated differential equation is identified in Ref.[3],
[

− d2

dw2 +
A2 ew

1+ ew +
B2 ew

(1+ ew)2 +(E∗R)2 (1+ ew)n
]

Ψ(w) = 0 . (55)

Here A = −nP2 and B = 1/4− (n + 2)Q2, where P,Q are the components of the zero mode mo-
mentum, P = (P,Q). The circular brane model (and the differential equation (50)) is recovered in
the limit n → ∞.

The "pillow" brane model [5] has three-dimensional target space, X = (X ,Y,Z) ∈ R3. The
boundary constraint has the form

√

(1+ρ1)(1+ρ2) cos
ZB√
n+2

=
√

ρ1ρ2 cosh
XB√
νn

+ cosh
YB

√

(1−ν)n
, (56)

where n and ν are parameters, and ρ1 and ρ2 are two roots of the algebraic equation

ρnν(1+ρ)−(n+2)
(

n(1−ν)(2+n(1−ν))ρ2 +2n2ν(1−ν)ρ +nν(2+nν)
)

= RE∗ . (57)
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Integrable Boundary A.B. Zamolodchikov

The equation (56) defines two-dimensional surface in R3 of the pillow shape:

The action involves special B-field term,

A =
1

4π

∫

|z|<R

[

∂µX∂µX− iεµν B(X)
(

∂µX∧∂νX
)

]

d2x (58)

such that 7

BX
∣

∣

Σ = −i
a((1−ν)2 −b2)√

1−ν D
sinh

X√
νn

,

BY
∣

∣

Σ = i
b(ν2 −a2)√

ν D
sinh

Y
√

(1−ν)n
, (59)

BZ
∣

∣

Σ = i
b2 ν2 −a2 ((1−ν)2

√

ν(1−ν)D
sinh

Z√
n

.

where

a =

√ρ1ρ2

(1+ρ1)(1+ρ2)
, b =

√

1
(1+ρ1)(1+ρ2)

, (60)

and

D = a
(

(1−ν)(a2 −1)+(1+ν)b2) cosh
X√
νn

+

7Extended away from Σ, the B-field (59) is solenoidal, ∇B = 0, so that the B-field term in (58) reduces to the
boundary term

− i
2π

∫ 2πR

0
dyA(XB)e j ∂yη j ,

where locally B = ∇×A, and η j are local coordinted on Σ.
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b
(

ν (1−b2)+(2−ν)a2) cosh
Y

√

(1−ν)n
. (61)

The pillow brane model is integrable. The corresponding differential equation has the form [5]
[

− d2

dw2 +
A2 ew +C2

1+ ew +
B2 ew

(1+ ew)2 +(E∗R)2 e−nν w (1+ ew)n
]

Ψ(w) = 0 , (62)

where the coefficients are expressed through the zero-mode momentum P = (PX ,PY ,PZ),

C2 = −nν
4

P2
X , A2 = −n(1−ν)

4
P2

Y , B2 =
1
4
− n+2

4
P2

Z . (63)

Conclusion: Recent advances of integrable field theories with boundary reveal remarkable re-
lations between integrable boundary states, Baxter’s families of commuting operators and local IM,
and ordinary differential equations. These relations provide powerful tool for analysis of interest-
ing models of boundary interactions, including the models with direct applications in Condensed
Matter theory. At the same time, the deeper origin of these relations remains to be uncovered.
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