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The high resolution research tomograph (HRRT) is currently the most complex human brain
scanner due to its ability to detect the gamma depth of interaction in the crystal, its octagonal
geometry, and the large number of crystals (119,808) leading to approximately 4.5 x 10°
possible lines of response (LORs). The scanner has a spatia resolution of ~ (2.5mm)® and a
sensitivity of ~ 6% and it thus provides an unprecedented wealth of spatial information. It is
capable of very high acquisition count rates (~ 2.2 x 10° coincidence counts/sec) and is thus well
suited for imaging tracers labelled with short lived radionuclides typically used in the study of
cerebrovascular disease. Such performance comes at the cost of an increased hardware
complexity that requires dedicated development of software tools and algorithms capable of
dealing with large data sets, a highly variable number of acquired counts and count rates and
some hardware instabilities. A summary of the performance highlights and associated limitation
is presented.
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1. | ntroduction

The high resolution research tomograph (ECAT HRRT- Siemens, previously CTl PET
systems) is one of the most complex existing Positron Emission Tomographs (PET) [1,2]. It is
the only human size tomograph with a resolution of approximately 2.5 mm (axially and
transaxially) and a phoswitch detector, which employs two crystal materials with different
decay times for y depth of interaction (DOI) determination by pulse shape discrimination. The
two 1 cm thick detector layers are made of cerium-doped lutetium-yttrium oxyorthosilicate
(LSO, Lu;SiOs:Ce) and cerium doped lutetium-yttrium oxyorthosilicate (Lug .Y 1.4 SiOs:Ce,
i.e. 70% YSO and 30% LSO) with decay times of 43-44 ns and 53 ns, respectively. The
lutetium in the crystal contains 2.6% *°Lu, which is a p-emitter, thus providing a natural, low
level constant radiation background (ty, ~ 10°yr). The photomultiplier (PMT) quadrant sharing
detector design requires the overall 119,808 2.2x2.2x10 mm?® detectors of the 3D only scanner
to be assembled in planar detector heads.
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Figure 1. Physical layout of the HRRT scanner. Each head has 9 x 13 detector blocks, where
each block is comprised by two layers of 8 x 8 crystals.

This design introduces small gaps between detector heads (figure 1), which preclude
uniform sampling of the field of view (FOV). The FOV measures 25 cm in the axial and 31.2
cm in the trasaxial direction with a resulting slice thickness of 1.2 mm. Transmission scans,
used to determine attenuation correction factors, are performed with a **Cs point source (662
keV y-emitter, ty, = 30.2 yr). The total number of crystals alows for approximately 4.5 x 10°
lines of reponse (LORS), i.e. possible detector pairs along which a concident event consisting of
a simultaneous detection of two y rays, can be detected. The effects of the increased resolution
achieved as a consequence of smaller detector size and high number of LORs is clearly visible
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in figure 2 showing a ‘®F-fluorodeoxyglucose (FDG) image obtained from a 30 min scan.
However such improved performance is obtained at a cost of a much increased hardware and
software complexity: the combination of the hardware structure and the large number of
possible LORs presents new chalenges at many different levels: hardware setup, data
processing and image reconstruction. These challenges are particularly demanding in the realm
of dynamic scanning, where accurate data quantification, i.e. proportionality between image
count density and radioactivity concentration in the FOV, must be achieved in a situation of
greatly varying acquisition count rates and number of acquired counts. Some of these challenges
will be reviewed together with new advances in agorithm devel opment that were stimulated by
addressing these new challenges.

Figure 2. A transaxia, corona and sagittal cros-section of an ®F-fluorodeoxyglucose
distribution image acquired over 30 min with a 5 mCi injection.

2. Har dwar e aspects

Two hardware aspects will be addressed: detector efficiency normalization and hardware
stability issues. The y detection efficiency of individual detectors or individual LORs is
generally not completely uniform due to both intrinsic variations in crystal efficiency and to the
geometric configuration of individual LORs. Such non-uniformity is corrected by normalization
correction factors that bring each LOR to an average efficiency value and are determined from a
scan of a uniform radioactivity source (normalization scan). For most scanners such detector
uniformity correction factors tend to be fairly stable over a reasonably wide range of count
rates. In the case of the HRRT the count rate dependence of the normalization correction factors
is exacerbated by the DOI determination procedure. The DOI information is achieved using a
pulse shape discrimination tecnique. In the presence of high count rates the pulse shape
associated to an event can be altered by a ‘pile-up’ event, i.e. an event where a second y ray
interacts in the crystal and releases energy, while the system is integrating the energy released
by the first y ray (figure 3). This signal distortion results into a mis-assigment of the event to the
back-end, slower crystal, thus atering the apparent crystal efficiency. The effect of a mismatch
between the count rate at which the normalization scan and a regular emission scan are acquired
can be observed in figure 4, where a normalization data set acquired at a count rate of ~750,000
cps was used to correct an emission scan of a cylinder filled with uniform radiaoctivity
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concentration, acquired at a similar count rate (~ 650,00 cps) and an emission scan of the same
cylinder acquired at a lower count rate (~ 130,000 cps). The high frequency artifact present in
the mismatched situation is clearly visible.
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Figure 3. Pulse shape discrimination algorithm: a) the energy signal is sampled at two different
time points and the slope of the solid line is taken to be an indicator of the scintillator decay
time. b) slower scintillator (LY SO, back layer) has lower slope. ¢) a pile up event potentially
reduced the observed slope thus forcing the assignment of the event to the back layer.

~ matched norm (~ 650,000cps) ~mismatched norm (~ 130,000cps)

Figure 4. Image of a cylinder (and its 2D Fourier transform) filled with uniform activity in the
case of the data corrected with a normalization scan acquired at a similar count rate (matched
norm) and dissimilar count rate (mismatched norm).

An immediate solution to this problem is an attempt to match the count rates in the
normalization scan with those of the emission scans and this can be done for most human
studies where the amount of injected radioactivity is less than approximately 10 mCi. However
this problem prompted the development of a count-rate dependent normalization where the
apparent detector efficiency variation due to varying count rate is modelled into the correction
factors [3]. Preliminary results are very promising. This is of particular importance, since the
scanner is capable of much higher count rate than those observed after a 10mCi injection (fig.
5). Higher count rates would be indeed be obtained in a situation where a higher radioactivity
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amount is injected; for example, when performing blood flow imaging with *°0 it is not unusual
to administer 20-30 mCi as a bolus.

The second aspect discussed here is related to an observed hardware instability. It was
observed that after each detector set-up (that is the procedure performed to equalize PMT gains)
the observed count rate drops by approximately 5-10%. This effect was traced to a shift in the
energy spectrum over time that causes more events where a y ray undergoes Compton scattering
to be detected in the predefined energy window (figure 6) [2]. The exact origin of this shift has
not been identified to date and this problem is circumvented by performing frequent scanner
sensitivity calibrations.
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Figure 5. True coincidence event count rate curves. Each curve was obtained from a different
HRRT. The prototype refers to the first HRRT, which has a different crystal composition [4].
The arrow indicates the typical count rate obtained with a 10mCi in a 70 kg person.
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Figure 6. Energy spectrum observed immediately after scanner calibration (setup) and 1.5
months later. The acquisition energy window is 400-650keV. A shift to the left resulting into
more accepted counts is observed 1.5 months after setector setup.

3. Softwar e aspects
31 Reconstruction — non negativity bias.

Two main categories of reconstruction algorithms are used in the reconstruction of PET
data. anaytical and datistical reconstructions. The magor advantage of the analytica
reconstructions is that they are fast and linear, however they require uniform sampling. Thisis
not the case for the HRRT due to the presence of gaps between detector heads. The statistica
reconstruction algorithms, while able to model detector geometry and the random nature of the
decay process, are hot linear and generally do not perform in arobust fashion in a situation of a
low number of counts.

When performing dynamic scanning, i.e. performing a series of temporally contigous
scans (time-frames), which allow to follow the tracer spatial distribution as a function of time,
the number of acquired counts and the count rate vary significantly from frame to frame; for
example, in a study with a typical 10mCi injection of a *'C labelled dopaminergic tracer, often
histogrammed into a 16 frame sequence, the count rate ranges from 20,000 cps to 400,000 cps
and the number of events per frame from 2M to 100M. The duration of each frameis adjusted
to optimally capture tracer kinetics, while tracer decay is the main source of variation in count
rates. When performing data reconstruction care needs to be taken to eliminate random
coincidences from the acquired data sets together with events where one of the two or both y
rays undergo Compton scattering: such events introduce a mis-identification of the source
position and therefore detract from the quantitative accuraty of the final images. In the most
simplistic approach statistical algorithms perform such corrections by direct subtraction of
random and scattered events (random events are generally measured with a delayed coincidence
window technique, while scattered events are determined using modeling techniques).
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A very common iterative statistical reconstruction algorithm takes the forn of typical
ordered subsets maximum likelohood expectation maximization (OSEM) [5] and looks as
follows:

Am | _r —
Arjn+1 =— J XZ pij ( le rl S )
Z P; = Z Py
b-1

i=1

where 2 is the estimated image count density in image voxe j, y;, is the number of total
acquired event in the LOR i, and r; and s are the number of scatter and random events in the
same LOR, while pj is an elements of the system matrix (or sensitivity matrix) describing the
probability that an event emitted in the image voxel | is detected along the LOR i.

An immediately apparent problem with this formulation of the algorithm is the fact that in
a situation of low number of counts in the presence of high count rates (as is often the case in
the first frames of a dynamic study) the numerator of the image update factor may become
negative, since the estimate of the number of random events is obtained independently from the
total number of acquired counts. At first a non-negativity constrain on the update factor was
introduced, however this was found to cause a significant positive bias in the images [6]. This
problem stimulated significant development in the image reconstruction area, which lead to the
practical implementation of the currently most widely accepted reconstruction method, Ordinary
Poisson-OSEM [7-9], where the images are recosntructed using the following expression:

M+ Am l yi
AT = szij(J )
Z P; = z Pty +1; +5
i1 b=1

In this approach the random and scattered events are included into the image estimate
and no subtraction is performed in the numerator. This algorithm requires a statistically reliable
scatter and random estimate: since the scatter is generally estimated using model based scatter
approaches, this condition was satisfied from the very outset [10]. The inclusion of random
events into the image estimate however required the development of new variance reduction
approaches[11-12], which have considerably improved the robustness of the reconstruction
agorithm.

3.2 List modereconstruction

Considering the high number of possible LORs in the HRRT, it frequently happens that
the number of acquired events is lower than the number of LORs. Since the HRRT is capable
of acquiring datain list mode, it is often advantageous to reconstruct the data directly from the
list mode file as opposed to first assigning the data to sinogram bins. As a consequence severa
groups have explored list mode based reconstruction agorithms [6, 13-15] of which a particular
implementation resultsinto the following modifications of the expression listed above:
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Here the summation is performed over individual events (i) as opposed to being
performed over LORs. An idea situation would alow to switch between list mode and
sinogram mode reconstruction algorithms depending on the number of events acquired in each
frame. Developments in this direction are under way and preliminary results point towards
feasible agorithms [16].

4. Patient motion

Given the high resolution capabilities of the HRRT, patient motion has a relatively greater
impact on image degradation compared to other scanners. Patient motion monitoring and
correction become thus of great relevance. Since PET studies often extend over one hour or
more, complete immobilization of the patient head is not feasible. Although restraining devices
that limit patient motion are generaly used, there is often significant patient motion, especially
when imaging patient with medical conditions [17]. Figure 7 shows the amount of motion
detected with the Polaris motion tracking system averaged over typical frame durations for a
healthy volunteer compared to the amount of motion detected over the same length of time
when scanning a volunteer suffering from Parkinson’s disease (PD). It can be observed that for
the PD subject the magnitude of motion is greater than the resol ution of the scanner.

e
—
4 @
QF? - 1
By I | - . B T
. j I ‘ ﬁlﬁl I a m
(I S B |
1 - = -
R L B i |
M _?rﬁﬂuié%i%%gs'x;f*
L= - T = %‘P . g E 3& ﬁ ﬁ" g \EJ

Figure 7. Amount of motion determined with the Polaris tracking system for a series of 5 minute
intervals comprising a one hour long scanning session.
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The Polaris tracking system is becoming the method of choice to monitor patient motion.
When such information is synchronized with the scanner data acquisition, events can be
corrected for motion essentially on-line [18-19]. Such correction relies on two critical steps.
Firgt, for each event one must keep track of the crystal pair that detected that particular event so
that proper detector normalization factors are used. This can be perfomed directly on the
acquired data. The second step is more subtle and requires the modification of the
reconstruction agorithm. Considering that the HRRT has gaps, patient motion might cause an
event that might be detected in a situation of no motion to exit the active FOVin the presence of
motion and conversely an event that would not have been detected to hit the crystals. This
implies that the detection sensitivity associated with each position in the object varies as a
function of motion and thus the sensitivity matrix must be changed accordingly. Several
approaches to motion correction are currently investigated [18-20]. Figure 8 shows a simulated
data set, where a realistic amount of motion was introduced in the data, and compares the case
where the data were (i) not motion corrected, (ii) motion corrected including proper LOR
normalization only and (iii) motion corrected including proper LOR normalization factors and
variations in the sensitivity matrix during reconstruction. Clear residual artefacts are visible
when the the reconstruction algorithm does not account for variations in the sensitivity matrix.

No Motion  No Correction Motion corrected Motion corrected
LOR LOR + sengitivity

Figure 8. Smulated data set with no motion, realistic amount of motion and corrected with tho
motion correction procedures.

5. Image analysis
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The HRRT large axial field of view and small dlice thickness results into 207 imaging
planes (figure 9) . This provides a large amount of spatial detail, so that traditional region of
interest (ROI) based anadysis, where the anaysis is limited to pre-identified structures of
interest, might either not be practical or would not fully take advantage of the available
information. Parametric approaches, where the biologically important parameters are calculated
for each pixel, might be better suited to the analysis of such large data sets. Given the small
image pixel size of the HRRT images, it isimportant to determine the influence of the statistical
quality of the data on such parametric maps; it is infact known that different modelling
approaches exhibit different sengitivities to noise in the data [21]. Finally methods such 4D
imaging where kinetic parameters are extracted from the data directly during image
reconstruction are becoming of increasingly higher interest [22].

6. Conclusion

In conclusion the HRRT has provided the PET brain imaging field with a scanner of
unprecedented resolution and count rate capabilities. Such a scanner can be idedly suited for the
investigation of cerebrovascular diseases, where aministration of tracer with short lived
radionuclides, such as O results in high administered radioactivivity amount. However due to
its hardware complexity the HRRT is also a very high maintenance scanner, which requires
frequent calibration and constant monitoring and fine tuning. On the other hand, its very
complexity and required use for dynamic imaging stimulated the development and critical
examination of many new algorithms, ranging from detector normalization to patient motion
correction.

10
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Figure 9. 207 HRRT transaxial image planes: FDG distribution images.

References

[1] deJong HW, van Velden FH, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA.
Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution,
high sensitivity scanner. Phys Med Biol. (2007) 52(5):1505-26

[2] Sossi V.deJong, H, Barker, WC et al., The second generation HRRT - a multi-centre
scanner performance investigation, 1EEE Nucl Sci Symp Conf Rec, (2005) 4 2195 -
2199.

[3] Rodriguez M, Barker WC, Liow JS, Thada S, Chelikani S, Mulnix T, Carson RE. Count
rate dependent component-based normalization for the HRRT. J Nucl Med. 47:197P, 2006

[4] Wienhard K, Schmand, Casey ME et a., The ECAT HRRT: Performance and first clinical
application of the new high resolution research tomograph, IEEE Trans. Nucl. Sci., (2002)
49: 104-110

[5] Hudson H M and Larkin R S Accelerated image reconstruction using ordered
subsets of projection data IEEE Trans. Med. Imaging (1994) 13(4):601 — 609

[6] A Rahmim, M Lenox, A JReader, C Michel, Z Burbar, T JRuthand V Soss Satistical
list-mode image reconstruction for the high resolution research tomograph Phys. Med.
Biol. (2004) 49 4239-4258

[7] Politte DG and Snyder DL, Correctionsfor Accidental Coincidences and Attenuation in
Maxi mum-Likelihood Image Reconstruction for Positron-Emission Tomography, IEEE
Trans. Med. Imaging (1991) 10 (1): 82-89

[8] Comtat C, Bataille F, Michel, C et d., OSEM-3D reconstruction strategies for the ECAT
HRRT, IEEE Nucl Sci Symp Conf Rec (2004) 6:3492 - 3496

[9] Rahmim A, Cheng JC, Blinder S, Camborde ML, Sossi V Satistical dynamic image
reconstruction in state-of-the-art high-resolution PET. Phys Med Biol. (2005) 50(20):
4887-912

[10] C. C.Watson, New, Faster, Image-Based Scatter Correction for 3D PET, IEEE Trans.
Nucl. Sci., (2000) 47: 1587-1594

[11] Barker, W.C. Liow, J.-S. Rodriguez, M. Shanthalaxmi Thada lano-Fletcher, A.R.;Lenox,
M.; Michel, C. Johnson, C.A. Carson, R.E. Randoms estimation for list-mode
reconstruction for the ECAT HRRT IEEE Nucl Sci Symp Conf Rec (2004) 6:3510 - 3513

[12] Byars, L.G. Sibomana, M. Burbar, Z. Jones, J. Panin, V. Barker, W.C. Jeih-San Liow
Carson, R.E.Michel, C Variance reduction on randoms from coincidence histograms for
the HRRT. IEEE Nucl Sci Symp Conf Rec (2005) 5:2622 - 2626

11



Frontiersin brain PET imaging Vesna Sossi

[13] ParralL and Barrett HH, List-mode likelihood: EM algorithm and image quality estimation
demonstrated on 2-D PET, IEEE Trans. Med. Imaging, (1998) 17 228-235

[14] Reader A J, Ally S, Bakatselos F, Manavaki R, Walledge R, Jeavons A P, Julyan P J, Zhao
S, Hastings D L and Zweit J; One-pass list-mode EM algorithm for high-resolution 3-D
PET image reconstruction into large arrays |IEEE Trans. Nucl. Sci. (2002) 49 693-9

[15] Carson RE, Barker WC, Liow JS, Yao R, Thada S, Zhao Y, lano-Fletcher A, Lenox M,
Johnson CA, List-mode reconstruction for the HRRT , J Nucl Med, (2004) 45:105P

[16] ChengK, Rahmim A, Blinder S, Camborde M-L, Raywood K, and Soss V, A scatter-
corrected list-mode reconstruction and a practical scatter/random approximation
technique for dynamic PET imaging (2007) Phys. Med. Biol. 52 2089-2106

[17] Dinelle K, Blinder S, Cheng J-C, et a., Investigation of Subject Motion Encountered
During a Typical Positron Emission Tomography Scan IEEE Nucl Sci Symp Conf Rec
(2006) in press

[18] Carson, R.E.; Barker, W.C.; Jeih-San Liow; Johnson, C.A Design of a motion-
compensation OSEM list-mode algorithm for resol ution-recovery reconstruction for the
HRRT, |IEEE Nucl Sci Symp Conf Rec (2003) 5: 3281 - 3285

[19] Rahmim, A. Bloomfield, P. Houle et al., Motion compensation in histogram-mode and list-
mode EM reconstructions: beyond the event-driven approach; |IEEE Trans Nucl Sci
(2004) 51 (5.2):2588 — 2596

[20] Buhler, P. Just, U. Will, E. Kotzerke, J. van den Hoff, J. An accurate method for
correction of head movement in PET; |EEE Trans Med imaging (2004) 23 (9):1176 — 1185

[21] Sossi V, Blinder S, Dinelle K et a.,Comparison between the ROl based and pixel based
analysis for neuroreceptor studies performed on the high resolution research tomograph
(HRRT), IEEE Nucl Sci Symp Conf Rec (2006) in press

[22] Reader AJ, Sureau FC, Comtat C, Trebossen R, Buvat I. Point estimation of dynamic PET

images and temporal basis functions using fully 4D ML-EM. Phys Med Biol. (2006)
51(21):5455-74

12



