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ABSTRACT

This lecture provides an elementary introduction to the theory of branes.
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1 BRANES

1.1 History

Membrane theory has a strange history which goes back even further than strings. The

idea that the elementary particles might correspond to modes of a vibrating membrane was

put forward originally in 1962 by Dirac. When string theory came along in the 1970s, there

were some attempts to revive the membrane idea but without much success. Things did

not change much until 1986 when Hughes, Liu and Polchinski showed that it was possible

to combine membranes with supersymmetry: the supermembrane was born.

Consequently, while all the progress in string theory was going on, a small splinter

group was posing the question: Once you have given up 0-dimensional particles in favor of

1-dimensional strings, why not 2-dimensional membranes or in general p-dimensional objects

(inevitably dubbed p-branes)? Just as a 0-dimensional particle sweeps out a 1-dimensional

worldline as it evolves in time, so a 1-dimensional string sweeps out a 2-dimensional world-

sheet and a p-brane sweeps out a d-dimensional worldvolume, where d = p + 1. Of course,

there must be enough room for the p-brane to move about in spacetime, so d must be

less than or equal to the number of spacetime dimensions D. In fact, as we shall see in

section (1.4) supersymmetry places further severe restrictions both on the dimension of the

extended object and the dimension of the spacetime in which it lives. We can represent

these as points on a graph where we plot spacetime dimension D vertically and the p-brane

dimension d = p + 1 horizontally. This graph is called the brane scan. See Table 1. In the

early eighties Green and Schwarz had shown that spacetime supersymmetry allows classical

superstrings moving in spacetime dimensions 3, 4, 6 and 10. (Quantum considerations rule

out all but the ten-dimensional case as being truly fundamental. Of course some of these

ten dimensions could be curled up to a very tiny size in the way suggested by Kaluza and

Klein. Ideally six would be compactified in this way so as to yield the four spacetime di-

mensions with which we are familiar.) It was now realized, however, that these 1-branes in

D = 3, 4, 6 and 10 should now be viewed as but special cases of this more general class of

supersymmetric extended object.

Curiously enough, the maximum spacetime dimension permitted is eleven, where Bergshoeff,

Sezgin and Townsend found their supermembrane which couples to eleven-dimensional su-

pergravity. (The 3-form gauge field of D = 11 supergravity had long been suggestive of a

membrane interpretation). Moreover, it was then possible to show by simultaneous dimen-

sional reduction of the spacetime and worldvolume that the membrane looks like a string in

3
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D ↑
11 . S T

10 . V S/V V V V S/V V V V V

9 . S S

8 . S

7 . S T

6 . V S/V V S/V V V

5 . S S

4 . V S/V S/V V

3 . S/V S/V V

2 . S

1 .

0 . . . . . . . . . . . .

0 1 2 3 4 5 6 7 8 9 10 11 d →

Table 1: The brane scan, where S, V and T denote scalar, vector and antisymmetric tensor

multiplets.

ten dimensions. In fact, it yields precisely the Type IIA superstring. This suggested that

the eleven-dimensional theory was perhaps the more fundamental after all.

Notwithstanding these and subsequent results, the supermembrane enterprise was, until

recently, largely ignored by the mainstream physics community. Those who had worked

on eleven-dimensional supergravity and then on supermembranes spent the early eighties

arguing for spacetime dimensions greater than four, and the late eighties and early nineties

arguing for worldvolume dimensions greater than two. The latter struggle was by far the

more bitter!

In this chapter we shall review the progress reached over the last two decades and see

how it fits in with recent results in string duality, D-branes and M -theory.

1.2 Bosonic p-branes

Consider some extended object with 1 time and (d − 1) space dimensions moving in a

spacetime with 1 time and (D − 1) space dimensions. We shall demand that its dynamics

is governed by minimizing the worldvolume which the object sweeps out

S = −Td

∫

ddξ {−det∂iX
M ∂jX

NηMN}1/2 (1.1)

4
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where we have introduced worldvolume coordinates ξ i (i = 0, . . ., (d-1)) and spacetime

coordinates XM (M = 0, . . . , (D − 1)). To begin with, we assume spacetime is flat with

Minkowski metric ηMN and signature (−,+, . . . ,+). The tension of the object is given by

the constant Td which renders the action S dimensionless. This action was first introduced

by Dirac in the case of a membrane (d = 3) and later by Nambu and Goto in the case of a

string (d = 2).

The classical equations of motion that follow from (1.1) may equivalently be obtained

from the action

S = Td

∫

ddξ

(

−1

2

√−γγij∂ix
M∂jx

NηMN +
1

2
(d − 2)

√
−γ

)

(1.2)

where we have introduced the auxiliary field γij(ξ). γ denotes its determinant and γ ij its

inverse. Varying with respect to γij yields the equation of motion

1

2

√−γγijγk`∂kX
M∂`X

NηMN −√−γ∂kx
M∂`X

Nγikγj`ηMN =
1

2
(d − 2)

√−γγij . (1.3)

Taking the trace, we find for d 6= 2, that

γk`∂kX
M∂`X

N ηMN = d (1.4)

and hence that γij is just the induced metric on worldvolume

γij = ∂iX
M∂jX

NηMN . (1.5)

Varying (1.2) with respect to XM yields

∂i

(√−γγij∂jX
NηMN

)

= 0. (1.6)

Thus equations (1.5) and (1.6) are together equivalent to the equation of motion obtained

by varying (1.1) with respect to XM .

Note that the case d = 2 is special. Here, the worldvolume cosmological term drops out

and (1.2) displays a conformal symmetry

γij(ξ) → Ω2(ξ)γij(ξ)

XM (ξ) → XM (ξ) (1.7)

where Ω is some arbitrary function of ξ. In this case γij and ∂iX
M∂jX

NηMN are related

only up to a conformal factor. The actions (1.1) and (1.2) are, however, equivalent for all

d, at least classically.
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There are two useful generalizations of the above. The first is to go to curved space

by replacing ηMN by gMN (X); the second is to introduce an antisymmetric tensor field

BMN...P (X) of rank d which couples via a Wess-Zumino term. The action (1.2) then becomes

S = Td

∫

ddξ

[

−1

2

√−γγij∂iX
M∂jX

MgMN (X) +
1

2
(d − 2)

√−γ

+
1

d!
εi1i2..id∂i1X

M1∂i2X
M2 . . . ∂idX

MdBM1M2..Md
(X)

]

(1.8)

and the equations of motion are

∂i

(√−γγij∂jX
N

)

gMN + gMP ΓP
KL∂iX

K∂jX
Lγij

=
1

d!
FMNT ···Sεij···k∂iX

N∂jX
T . . . ∂kX

S (1.9)

and

γij = ∂iX
M∂jX

NgMN (X) (1.10)

where the field-strength F is given by

F = dB (1.11)

and hence obeys the Bianchi identity

dF = 0. (1.12)

The virtue of these generalizations is that they now permit a straightforward transition to

the supermembrane.

Our experience with string theory suggests that there are two ways of introducing su-

persymmetry into membrane theory. The first is to look for a supermembrane which has

manifest spacetime supersymmetry but no supersymmetry on the worldvolume. The second

is to look for a spinning membrane which has manifest worldvolume supersymmetry but

no supersymmetry in spacetime. An early attempt at spinnning membranes by Howe and

Tucker encountered the problem that the worldvolume cosmological term does not permit

a supersymmetrization using the usual rules of d = 3 tensor calculus without the introduc-

tion of an Einstein-Hilbert term. Indeed, these objections have been elevated to the status

of a no-go theorem for spinning membranes. Attempts to circumvent this no-go theorem

have been made starting from the conformally invariant action, but is is fair to say that the

spinning membrane approach never really caught on. Recently, there has been some success

in formalisms with both worldvolume and spacetime supersymmetry. The last ten years

6
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Dimension Minimal Spinor Supersymmetry

(D or d) (M or m) (N or n)

11 32 1

10 16 2, 1

9 16 2, 1

8 16 2, 1

7 16 2, 1

6 8 4, 3, 2, 1

5 8 4, 3, 2, 1

4 4 8, . . ., 1

3 2 16, . . ., 1

2 1 32, . . ., 1

Table 2: Minimal spinor components and supersymmetries.

of supermembranes, however, has been dominated by the approach with spacetime super-

symmetry and worldvolume kappa symmetry. At first, progress in supermembranes was

hampered by the belief that kappa symmetry, so crucial to Green-Schwarz superparticles

(d = 1) and superstrings (d = 2) could not be generalized to membranes. The breakthrough

came when Hughes, Liu and Polchinski showed that it could.

1.3 Super p-branes

Following Bergshoeff, Sezgin and Townsend, let us introduce the coordinates ZM of a curved

superspace

ZM = (xµ, θα) (1.13)

and the supervielbein EM
A(Z) where M = µ, α are world indices and A = a, α are tangent

space indices. We also define the pull-back

Ei
A = ∂iZ

MEM
A . (1.14)

We also need the super-d-form BAd...A1
(Z). Then the supermembrane action is

S = Td

∫

ddξ

[

− 1

2

√
−γγijEi

aEj
bηab +

1

2
(d − 2)

√
−γ

+
1

d!
εi1...idEi1

A1 · · ·Eid
AdBAd...A1

]

. (1.15)

As in (1.8) there is a kinetic term, a worldvolume cosmological term, and a Wess-Zumino

term. The action (1.15) has the virtue that it reduces to the Green-Schwarz superstring

7
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action when d = 2.

The target-space symmetries are superdiffeomorphisms, Lorentz invariance and d-form

gauge invariance. The worldvolume symmetries are ordinary diffeomorphisms and kappa

invariance which we now examine in more detail. The transformation rules are

δZMEa
M = 0, δZMEα

M = κβ(1 + Γ)α
β (1.16)

where κβ(ξ) is an anticommuting spacetime spinor but worldvolume scalar, and where

Γα
β =

(−1)d(d−3)/4

d!
√
−γ

εi1..idEi1
a1Ei2

a2 . . . Eid
adΓa1..ad

. (1.17)

Here Γa are the Dirac matrices in spacetime and

Γa1..ad
= Γ[a1···ad] . (1.18)

This kappa symmetry has the following important consequences:

1) The symmetry is achieved only if certain constraints on the antisymmetric tensor field

strength FMNP..Q(Z) and the supertorsion are satisfied. In particular the Bianchi identity

dF = 0 then requires the Γ matrix identity

(

dθ̄Γadθ

)(

dθ̄Γab1...bd−2dθ

)

= 0 (1.19)

for a commuting spinor dθ. This is satisfied only for certain values of d and D. Specifically,

for d ≥ 2

d = 2 : D = 3, 4, 6, 10

d = 3 : D = 4, 5, 7, 11

d = 4 : D = 6, 8

d = 5 : D = 9

d = 6 : D = 10 . (1.20)

Note that we recover as a special case the well-known result that Green-Schwarz super-

strings exist classically only for D = 3, 4, 6, and 10. Note also dmax = 6 and Dmax = 11.

The upper limit of D = 11 is already known in supergravity but there it is necessary to

make extra assumptions concerning the absence of consistent higher spin interactions. In

supermembrane theory, it follows automatically.

2) The matrix Γ of (1.18) is traceless and satisfies

8
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Γ2 = 1 (1.21)

when the equations of motion are satisfied and hence the matrices (1±Γ)/2 act as projection

operators. The transformation rule (1.16) therefore permits us to gauge away one half of

the fermion degrees of freedom. As described below, this gives rise to a matching of physical

boson and fermion degrees of freedom on the worldvolume.

3) In the case of the eleven-dimensional supermembrane, it has been shown that the

constraints on the background fields EM
A and BMNP are nothing but the equations of

motion of eleven-dimensional supergravity.

1.4 The brane scan

The matching of physical bose and fermi degrees of freedom on the worldvolume may, at first

sight, seem puzzling since we began with only spacetime supersymmetry. The explanation

is as follows. As the p-brane moves through spacetime, its trajectory is described by the

functions XM (ξ) where XM are the spacetime coordinates (M = 0, 1, . . . , D − 1) and ξ i

are the worldvolume coordinates (i = 0, 1, . . . , d − 1). It is often convenient to make the

so-called static gauge choice by making the D = d + (D − d) split

XM (ξ) = (Xµ(ξ), Y m(ξ)), (1.22)

where µ = 0, 1, . . . , d − 1 and m = d, . . . ,D − 1, and then setting

Xµ(ξ) = ξµ. (1.23)

Thus the only physical worldvolume degrees of freedom are given by the (D−d) Y m(ξ). So

the number of on-shell bosonic degrees of freedom is

NB = D − d. (1.24)

To describe the super p-brane we augment the D bosonic coordinates XM (ξ) with anticom-

muting fermionic coordinates θα(ξ). Depending on D, this spinor could be Dirac, Weyl,

Majorana or Majorana-Weyl. The fermionic kappa symmetry means that half of the spinor

degrees of freedom are redundant and may be eliminated by a physical gauge choice. The

net result is that the theory exhibits a d-dimensional worldvolume supersymmetry where

the number of fermionic generators is exactly half of the generators in the original space-

time supersymmetry. This partial breaking of supersymmetry is a key idea. Let M be the

number of real components of the minimal spinor and N the number of supersymmetries in

9
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D spacetime dimensions and let m and n be the corresponding quantities in d worldvolume

dimensions. Let us first consider d > 2. Since kappa symmetry always halves the number

of fermionic degrees of freedom and going on-shell halves it again, the number of on-shell

fermionic degrees of freedom is

NF =
1

2
mn =

1

4
MN. (1.25)

Worldvolume supersymmetry demands NB = NF and hence

D − d =
1

2
mn =

1

4
MN. (1.26)

A list of dimensions, number of real dimensions of the minimal spinor and possible super-

symmetries is given in Table 2, from which we see that there are only 8 solutions of (1.26)

all with N = 1, as shown in Table 1. We note in particular that Dmax = 11 since M ≥ 64

for D ≥ 12 and hence (1.26) cannot be satisfied. Similarly dmax = 6 since m ≥ 16 for

d ≥ 7. The case d = 2 is special because of the ability to treat left and right moving modes

independently. If we require the sum of both left and right moving bosons and fermions

to be equal, then we again find the condition (1.26). This provides four more solutions all

with N = 2, corresponding to Type II superstrings in D = 3, 4, 6 and 10 (or 8 solutions in

all if we treat Type IIA and Type IIB separately). Both the gauge-fixed Type IIA and

Type IIB superstrings will display (8, 8) supersymmetry on the worldsheet. If we require

only left (or right) matching, then (1.26) is replaced by

D − 2 = n =
1

2
MN, (1.27)

which allows another 4 solutions in D = 3, 4, 6 and 10, all with N = 1. The gauge-fixed

theory will display (8, 0) worldsheet supersymmetry. The heterotic string falls into this

category. The results are indicated by the points laled S in Table 1. Point particles with

d = 1 are sometimes omitted from the brane scan but in Table 1 we have included them.

An equivalent way to arrive at the above conclusions is to list all scalar supermultiplets

and to interpret the dimension of the target space, D, by

D − d = number of scalars. (1.28)

In particular, we can understand dmax = 6 from this point of view since this is the upper

limit for scalar supermultiplets. In summary, according to the above classification, Type II

p-branes do not exist for p > 1. We shall return to this issue, however, in section (1.6).

There are four types of solution with 8 + 8, 4 + 4, 2 + 2 or 1 + 1 degrees of freedom

respectively. Since the numbers 1, 2, 4 and 8 are also the dimension of the four division

10
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algebras, these four types of solution are referred to as real, complex, quaternion and oc-

tonion respectively. The connection with the division algebras can in fact be made more

precise.

1.5 Type IIA superstring in D=10 from supermembrane in D=11

We begin with the bosonic sector of the d = 3 worldvolume of the D = 11 supermembrane

given in (1.29).

S3 = T3

∫

d3ξ

[

−1

2

√−γγij∂ix
M∂jx

NgMN (x) +
1

2

√−γ +
1

3!
εijk∂ix

M∂jx
N∂kx

P AMNP (x)

]

,

(1.29)

where T3 is the membrane tension, ξi (i = 0, 1, 2,) are the worldvolume coordinates, γ ij

is the worldvolume metric and xM (ξ) are the spacetime coordinates (M = 0, 1, . . . , 10).

Kappa symmetry then demands that the background metric GMN and background 3-form

potential AMNP obey the classical field equations of D = 11 supergravity.

To see how a double worldvolume/spacetime compactification of the D = 11 supermem-

brane theory on S1 leads to the Type IIA string in D = 10, let us denote all (d = 3, D = 11)

quantities by a hat and all (d = 2, D = 10) quantities without. We then make a ten-one

split of the spacetime coordinates

x̂M̂ = (xM , y) M = 0, 1, . . . , 9 (1.30)

and a two-one split of the worldvolume coordinates

ξ̂ î = (ξi, ρ) i = 1, 2 (1.31)

in order to make the partial gauge choice

ρ = y , (1.32)

which identifies the eleventh dimension of spacetime with the third dimension of the world-

volume. The dimensional reduction is then effected by taking the background fields ĝM̂N̂

and ÂM̂N̂P̂ to be independent of y. The string backgrounds of dilaton φ, string σ-model

metric gMN , 1-form AM , 2-form BMN and 3-form AMNP are given by

ĝMN = e−2φ/3





gMN + eΦAMAN e2φAM

e2φAN eΦ





ÂMNP = AMNP

ÂMNY = AMN . (1.33)

11
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The choice of dilaton prefactor, e−2φ/3, is dictated by the requirement that gMN be the

D = 10 string σ-model metric. ( To obtain the D = 10 fivebrane σ-model metric, the pref-

actor is unity because the reduction is then spacetime only and not simultaneous worldvol-

ume/spacetime. This explains the remarkable “coincidence” between ĝMN and the D = 10

fivebrane σ-model metric.)

The action (1.29) now reduces to

S2 = T2

∫

d2ξ

[

− 1

2

√−γγij∂iX
M∂jX

NgMN (X)

− 1

2!
εij∂iX

M∂jX
NBMN (X) + · · ·

]

(1.34)

One may repeat the procedure in superspace to obtain

S2 = T2

∫

d2ξ

[

−1

2

√−γγijEi
aEj

bηab +
1

2!
εij∂iX

M∂jX
NBMN (Z)

]

(1.35)

which is just the action of the Type IIA superstring.

1.6 Type II p-branes: the brane scan revisited

According to the classification described in section (1.4), no Type II p-branes with p > 1

can exist. Moreover, the only brane allowed in D = 11 is p = 2. These conclusions were

based on the assumption that the only fields propagating on the worldvolume were scalars

and spinors, so that, after gauge fixing, they fall only into scalar supermultiplets, denoted by

S on the brane scan of Table 1. Indeed, for some time, these were the only kappa symmetric

actions. Using soliton arguments, however, it was later realized that both Type IIA and

Type IIB superfivebranes exist after all. Moreover, the Type IIB theory also admits a

self-dual superthreebrane. The no-go theorem is circumvented because in addition to the

superspace coordinates XM and θα there are also higher spin fields on the worldvolume:

vectors or antisymmetric tensors. This raised the question: are there other super p-branes

and if so, for what p and D? An attempt to answer this question can be made by asking

what new points on the brane scan are permitted by bose-fermi matching alone. Given

that the gauge-fixed theories display worldvolume supersymmetry, and given that we now

wish to include the possibility of vector and antisymmetric tensor fields, it is a relatively

straightforward exercise to repeat the bose-fermi matching conditions of the section (1.4)

for vector and antisymmetric tensor supermultiplets.

Let us begin with vector supermultiplets. Once again, we may proceed in one of two

ways. First, given that a worldvolume vector has (d − 2) degrees of freedom, the scalar

12
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multiplet condition (1.26) gets replaced by

D − 2 =
1

2
mn =

1

4
MN. (1.36)

Alternatively, we may simply list all the vector supermultiplets and once again interpret D

via (1.28). The results are shown by the points laled V in Table 1.

Next we turn to antisymmetric tensor multiplets. In d = 6 there is a supermultiplet with

a second rank tensor whose field strength is self-dual: (B−

µν , λI , φ[IJ ]), I = 1, . . . , 4. This

is has chiral d = 6 supersymmetry. Since there are five scalars, we have D = 6 + 5 = 11.

There is thus a new point on the scan corresponding to the D = 11 superfivebrane. One

may decompose this (n+, n
−
) = (2, 0) supermultiplet under (n+, n

−
) = (1, 0) into a tensor

multiplet with one scalar and a hypermultiplet with four scalars. Truncating to just the

tensor multiplet gives the zero modes of a fivebrane in D = 6 + 1 = 7. These two tensor

multiplets are shown by the points laled T in Table 1. Several comments are now in order:

1) The number of scalars in a vector supermultiplet is such that, from (1.28), D = 3, 4, 6

or 10 only.

2) Vector supermultiplets exist for all d ≤ 10, as may be seen by dimensionally reducing

the (n = 1, d = 10) Maxwell supermultiplet. However, in d = 2 vectors have no degrees of

freedom and in d = 3 vectors have only one degree of freedom and are dual to scalars. In

this sense, therefore, these multiplets will already have been included as scalar multiplets

in section (1.4). There is consequently some arbitrariness in whether we count these as new

points on the scan. For example, by dualizing a vector into a scalar on the gauge-fixed d = 3

worldvolume of the Type IIA supermembrane, one increases the number of worldvolume

scalars, i.e. transverse dimensions, from 7 to 8 and hence obtains the corresponding world-

volume action of the D = 11 supermembrane. Thus the D = 10 Type IIA theory contains

a hidden D = 11 Lorentz invariance!

3) This dualizing of the scalar into a vector on the 3-dimensional worldvolume, which

has the effect of lowering the spacetime dimension by one, is a special case of a more

general phenomenon of dualizing scalars into antisymmetric tensors of rank (d − 2) on a d-

dimensional worldvolumes. For example, one could argue that one should also include new

points on the scan with (d = 6, D = 9), (d = 5, D = 8), (d = 4, D = 7) and (d = 4, D = 5)

obtained by dualizing one of the four scalars in the hypermultiplets describing the known

points at (d = 6, D = 10), (d = 5, D = 9), (d = 4, D = 8) and (d = 4, D = 6). The problem

with this is knowing when to stop.

4) In listing vector multiplets, we have focussed only on the abelian theories obtained by

13
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dimensionally reducing the Maxwell multiplet. One might ask what role, if any, is played

by non-abelian Yang-Mills multiplets. See below.

5) We emphasize that the points laled V and T merely tell us what is allowed by

bose/fermi matching. We must then try to establish which of these possibilities actually

exists. When this scan was first written down in 1993 we knew of the following soliton

solutions: First the Type IIA and Type IIB superfivebranes and the self-dual Type IIB

superthreebrane (the first example of a supermembrane carrying Ramond-Ramond charges)

all found in 1991, then the D = 11 superfivebrane found by Gueven in 1992, then the Type

IIA p branes with all p = 0, 1, 2, 3, 4, 5, 6 found in 1993. The other points laled V were

still something of a mystery. To see why these choices of p were singled out, we recall

that Type II string theories differ from heterotic theories in one important respect: in

addition to the usual Neveu-Schwarz charge associated with the 3-form field strength, they

also carry Ramond-Ramond charges associated with 2-form and 4-form field strengths in

the case of Type IIA and 3-forms and 5-forms in the case of Type IIB. Accordingly,

the new solutions of the Type IIA string equations were found to describe electric super

p-branes with p = 0, 2 and their magnetic duals with p = 6, 4 and new solutions of Type

IIB string equations were found to describe electric super p-branes with p = 1, 3 and

their magnetic duals with p = 5, 3. Interestingly enough, the Type IIB superthreebrane is

self-dual, carrying a magnetic charge equal to its electric charge.

However, the whole subject of Type II supermembranes underwent a major sea change

in 1995 when Polchinski realized that Type II super p-branes carrying Ramond-Ramond

charges admit the interpretation of Dirichlet-branes that had been proposed earlier in 1989.

These D-branes are surfaces of dimension p on which open strings can end. The Dirichlet

p-brane is defined by Neumann boundary conditions in (p +1) directions (the worldvolume

itself) and Dirichlet boundary conditions in the remaining (D−p−1) transverse directions.

In D = 10, they exist for even p = 0, 2, 4, 6, 8 in the Type IIA theory and odd p =

−1, 1, 3, 5, 7, 9 in the Type IIB theory, in complete correspondence with the points marked

V on the brane scan of Table 1. The fact that these points preserve one half of the spacetime

supersymmetry and are described by dimensionally reducing the (n = 1, d = 10) Maxwell

multiplet fits in perfectly with the D-brane picture. In hindsight there also exists a Type

IIB supergravity interpretation of the (−1)-brane, which is an instanton, and its 7-brane

dual. The 9-brane emerges from the fact that purely Neumann strings can end anywhere.

Also in hindsight the 8-branes of the Type IIA theory also admit a soliton interpretation

because there exists a version of D = 10 Type IIA supergravity with a gravitino mass term

14
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and cosmological constant proposed by Romans. But in D dimensions a cosmological term

is equivalent to a rank D antisymmetric tensor field strength, and hence yields a (D − 2)

-brane, which is a domain wall.

Moreover when N branes coincide, the individual U(1)s on each brane conspire to form

a non-abelian U(N) thus filling in the non-abelian gap in the supermultiplets.

1.7 Bibliography

Introductory treatments of supermembranes may be found in [1, 2, 3, 4, 5, 6, 7, 8, 9]
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