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Warped extra dimensions have provided a new framework for addressing the hierarchy prob-
lem in extensions of the Standard Model. Many different applications of this idea have been applied
to areas ranging from Higgs physics, supersymmetry and even QCD. This will not be an extensive
review of the different applications but instead will outline the basic theoretical tools necessary to
construct models in a warped extra dimension and the corresponding 4D holographic interpreta-
tion. A simple application to Standard Model Yukawa couplings will be used to illustrate that all
warped model constructions can be given a purely 4D description with the warped extra dimension
merely being a calculational tool. Further details and references to the literature can be found in
Ref. [1].

1. Bulk fields in a slice of AdS5

Consider a 5D spacetime with the AdS5 metric

ds2 = e−2ky
ηµνdxµdxν +dy2 ≡ gMNdxMdxN , (1.1)

where k is the AdS curvature scale. The spacetime indices M = (µ,5) where µ = 0,1,2,3 and
ηµν = diag(−+ ++) is the Minkowski metric. The fifth dimension y is compactified on a Z2

orbifold with a UV (IR) brane located at the orbifold fixed points y∗ = 0(πR). Between these two
three-branes the metric (1.1) is a solution to Einstein’s equations provided the bulk cosmological
constant and the brane tensions are appropriately tuned. This slice of AdS5 is the Randall-Sundrum
solution [2] (RS1) and is geometrically depicted in Fig.1.

In RS1 the Standard Model particle states are confined to the IR brane. The hierarchy problem
is then solved by noting that generic mass scales M in the 5D theory are scaled down to Me−πkR

on the IR brane at y = πR. However on the IR brane higher-dimension operators with dimension
greater than four, such as those associated with proton decay, flavour changing neutral currents

AdS 5

π R

)UV (M  P IR (TeV)

y0

Figure 1: A slice of AdS5: The Randall-Sundrum scenario.
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(FCNC) and neutrino masses will now also be suppressed by the warped down scale

1
M2

5
Ψ̄iΨ jΨ̄kΨl →

1
(M5e−πkR)2 Ψ̄iΨ jΨ̄kΨl , (1.2)

1
M5

ννHH → 1
M5e−πkR ννHH , (1.3)

where Ψi is a Standard Model fermion and ν is the neutrino. This leads to generic problems with
proton decay and FCNC effects, and also neutrino masses are no longer consistent with experiment.
Instead in the slice of AdS5 with the Standard Model fields confined on the IR brane one has to
resort to discrete symmetries to forbid the offending higher-dimension operators. Of course it is
not adequate just to forbid the leading higher-dimension operators. Since the cutoff scale on the
IR brane is low (O(TeV)), successive higher-dimension operators must also be eliminated to very
high order.

This feature of RS1 stems from the fact that all Standard Model particles are localised on the
IR brane. However to address the hierarchy problem, only the Higgs field needs to be localised on
the IR brane. The Standard Model fermions and gauge fields do not have a hierarchy problem and
therefore can be placed anywhere in the bulk [3, 4, 5]. In this way the UV brane can be used to
provide a sufficiently high scale to help suppress higher-dimension operators while still solving the
hierarchy problem [4].

Therefore let us introduce fermion Ψ, scalar Φ and vector AM bulk fields in a slice of AdS5

with 5D action given by

S5 = −
∫

d4x dy
√
−g
[

1
2

M3
5 R+Λ5 +

1
4g2

5
F2

MN + |DMΦ|2 + iΨ̄Γ
M

∇MΨ

+ m2
φ |Φ|2 + imψΨ̄Ψ

]
, (1.4)

where M5 is the 5D fundamental scale, Λ5 is the bulk cosmological constant and g5 is the 5D
gauge coupling. In curved space the gamma matrices are ΓM = eA

MγA, where eA
M is the funfbein

defined by gMN = eA
MeB

NηAB and γA = (γα ,γ5) are the usual gamma matrices in flat space. The
curved space covariant derivative ∇M = DM +ωM, where ωM is the spin connection and DM is the
gauge covariant derivative for fermion and/or scalar fields charged under some gauge symmetry.
The action (1.4) also includes a mass term mφ for the bulk scalar and a mass term mψ for the bulk
fermion which are consistent with gauge symmetries.

1.1 Scalar fields

Consider a bulk scalar field with mass squared m2
φ

= ak2 where we have defined the bulk
scalar mass in units of the curvature scale k and dimensionless coefficient a. The equation of
motion derived from the scalar part of the variation of the action (1.4) is

∂
2
Φ+ e2ky

∂5(e−4ky
∂5Φ)−m2

φ e−2ky
Φ = 0, (1.5)

where ∂ 2 = ηµν∂µ∂ν . The zero mode solution of this equation is obtained by assuming a separation
of variables

Φ(x,y) =
1√
πR ∑

n
Φ

(n)(x)φ (n)(y) , (1.6)

3
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where Φ(n) are the Kaluza-Klein modes satisfying ∂ 2Φ(n)(x) = m2
nΦ(n)(x) and φ (n)(y) is the profile

of the Kaluza-Klein mode in the bulk. The general solution for the zero mode (m0 = 0) is given by

φ
(0)(y) = c1 e(2−α)ky + c2 e(2+α)ky , (1.7)

where α ≡
√

4+a and c1,c2 are arbitrary constants. In general there is no zero mode solution for
simple Neumann or Dirichlet boundary conditions. Instead in order to obtain a zero mode we need
to modify the boundary action and include boundary mass terms [4]

Sbdy =−
∫

d4x dy
√
−g 2 b k [δ (y)−δ (y−πR)] |Φ|2 , (1.8)

where b is a dimensionless constant parametrising the boundary mass in units of k. The Neumann
boundary conditions are now modified to(

∂5φ
(0)−b k φ

(0)
)∣∣∣∣

0,πR
= 0. (1.9)

Imposing the modified Neumann boundary conditions at y∗ = 0,πR leads to a zero mode
solution

φ
(0)(y) ∝ ebky , (1.10)

where b = 2±α . Assuming α to be real (which requires a≥−4 in accord with the Breitenlohner-
Freedman bound [6] for the stability of AdS space), the parameter b has a range −∞ < b < ∞. The
localisation features of the zero mode follows from considering the kinetic term

−
∫

d5x
√
−g gµν

∂µΦ
∗
∂νΦ+ . . . =−

∫
d5x e2(b−1)ky

η
µν

∂µΦ
(0)∗(x)∂νΦ

(0)(x)+ . . . (1.11)

Hence, with respect to the 5D flat metric the zero mode profile is given by

φ̃
(0)(y) ∝ e(b−1)ky = e(1±

√
4+a)ky . (1.12)

We see that for b < 1 (b > 1) the zero mode is localised towards the UV (IR) brane and when b = 1
the zero mode is flat. Therefore using the one remaining free parameter b the scalar zero mode can
be localised anywhere in the bulk.

The differential equation (1.5) is actually a classical Sturm-Liouville equation which can be
written in the form

− d
dy

(
p(y)

dφ (n)

dy

)
+q(y)φ (n) = λnw(y)φ (n) , (1.13)

where p(y) = e−4ky, q(y) = m2
φ

e−4ky, w(y) = e−2ky and the eigenvalues λn = m2
n. From general

results in Sturm-Liouville theory we know that since p(y) is differentiable, q(y) and w(y) are
continuous, p(y) > 0 and w(y) > 0 over the interval [0,πR], the eigenvalues λn are real and well-
ordered i.e. λ0 < λ1 < · · ·< λn < · · ·→∞. Furthermore the eigenfunctions φ (n)(y) form a complete
set and satisfy the orthonormal relation

1
πR

∫
πR

0
dyw(y)φ

(n)
φ

(m) = δnm . (1.14)
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The general solution of the Kaluza-Klein modes corresponding to mn 6= 0 is given by

φ
(n)(y) = e2ky

[
c1Jα

( mn

ke−ky

)
+ c2Yα

( mn

ke−ky

)]
, (1.15)

where c1,2 are arbitrary constants. The Kaluza-Klein masses (or eigenvalues) are determined by
imposing the boundary conditions and in the limit πkR� 1 lead to the approximate values

mn ≈
(

n+
1
2

√
4+a− 3

4

)
π k e−πkR , (1.16)

for n = 1,2, . . .. The fact that the Kaluza-Klein mass scale is associated with the IR scale (ke−πkR)
is consistent with the fact that the Kaluza-Klein modes are localised near the IR brane, and unlike
the zero mode can not be arbitrarily localised in the bulk.

1.2 Fermions

Consider next bulk fermions in a slice of AdS5 [7, 4]. In five dimensions an irreducible spinor
representation has four components, so fermions are described by Dirac spinors Ψ. Under the Z2

symmetry y→−y a fermion transforms (up to a phase ±) as

Ψ(−y) =±γ5Ψ(y) , (1.17)

so that Ψ̄Ψ is odd. Since only invariant (or even) terms under the Z2 symmetry can be added to
the bulk Lagrangian the corresponding mass parameter for a fermion must necessarily be odd and
given by

mψ = c k (ε(y)− ε(y−πR)) , (1.18)

where c is a dimensionless mass parameter and ε(y) = y/|y|. The corresponding equation of motion
for fermions resulting from the action (1.4) is

eky
γ

µ
∂µΨ̂−+∂5Ψ̂+ +mψΨ̂+ = 0 ,

eky
γ

µ
∂µΨ̂+−∂5Ψ̂−+mψΨ̂− = 0 , (1.19)

where Ψ̂ = e−2kyΨ and Ψ± are the components of the Dirac spinor Ψ = Ψ+ + Ψ− with Ψ± =
±γ5Ψ±. Note that the equation of motion (1.19) is now a first order coupled equation between the
components of the Dirac spinor Ψ.

The solutions of the bulk fermion equation of motion (1.19) are again obtained by separating
the variables

Ψ±(x,y) =
1√
πR ∑

n
Ψ

(n)
± (x)ψ(n)

± (y) , (1.20)

where Ψ
(n)
± are the Kaluza-Klein modes satisfying ηµνγµ∂νΨ

(n)
± = mnΨ

(n)
± . The zero mode solu-

tions can be obtained for mn = 0 and the general solution of (1.19) is given by

ψ̂
(0)
± (y) = d± e∓cky , (1.21)

where d± are arbitrary constants. The Z2 symmetry implies that one of the components ψ± must
always be odd. If γ5 = diag(1,−1), then (1.17) implies that ψ∓ is odd and there is no corresponding

5
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zero mode for this component of Ψ. In fact this is how 4D chirality is recovered from the vectorlike
5D bulk and is the result of compactifying on the Z2 orbifold. For the remaining zero mode the
boundary condition with the boundary mass term (1.18) is the modified Neumann condition(

∂5ψ̂
(0)
± ± c k ψ̂

(0)
±

)∣∣∣∣
0,πR

= 0 . (1.22)

Thus there will always be a zero mode since the boundary condition is trivially the same as the
equation of motion. For concreteness let us choose ψ− to be odd, then the only nonvanishing zero
mode component of Ψ is

ψ
(0)
+ (y) ∝ e(2−c)ky . (1.23)

Again the localisation features of this mode are obtained by considering the kinetic term

−
∫

d5x
√
−g iΨ̄Γ

µ
∂µΨ+ . . .

=−
∫

d5x e2( 1
2−c)ky iΨ̄(0)

+ (x)γµ
∂µΨ

(0)
+ (x)+ . . . . (1.24)

Hence with respect to the 5D flat metric the fermion zero mode profile is

ψ̃
(0)
+ (y) ∝ e( 1

2−c)ky . (1.25)

When c > 1/2 (c < 1/2) the fermion zero mode is localised towards the UV (IR) brane while the
zero mode fermion is flat for c = 1/2. So, just like the scalar field zero mode, the fermion zero
mode can be localised anywhere in the 5D bulk.

The nonzero Kaluza-Klein fermion modes can be obtained by solving the coupled equations
of motion for the Dirac components ψ

(n)
± . This solution can be included as part of one general

expression for all types of bulk fields [4]

f (n)(y) =
e

s
2 ky

Nn

[
Jα

( mn

ke−ky

)
+bαYα

( mn

ke−ky

)]
, (1.26)

for f (n) = (φ (n), ψ̂
(n)
± ,A(n)

µ ) where

bα =−
(−r + s

2)Jα(mn
k )+ mn

k J′α(mn
k )

(−r + s
2)Yα(mn

k )+ mn
k Y ′α(mn

k )
, (1.27)

and
Nn '

1√
π2R mn e−πkR

, (1.28)

with s = (4,1,2), r = (b,∓c,0) and α = (
√

4+a, |c± 1
2 |,1). The graviton modes h(n)

µν are identical
to the scalar modes φ (n) except that a = b = 0. The Kaluza-Klein mass spectrum is approximately
given by

mn '
(

n+
1
2
(α−1)∓ 1

4

)
πk e−πkR , (1.29)

for even (odd) modes and n = 1,2, . . .. Note that the Kaluza-Klein modes for all types of bulk fields
are always localised near the IR brane. Unlike the zero mode there is no freedom to delocalise
the Kaluza-Klein (nonzero) modes away from the IR brane. Note that the zero mode of the bulk
graviton is localised on the UV brane [8], with a profile given by (1.12) with a = b = 0, while the
zero mode of the bulk gauge field is flat and not localised in the 5D bulk [9, 10].

6
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2. AdS/CFT and holography

Remarkably 5D warped models in a slice of AdS can be given a purely 4D description. This
is essentially what makes warped extra dimensions more interesting than flat extra dimensions.
This holographic correspondence between the 5D theory and the 4D theory originates from the
AdS/CFT correspondence in string theory [11]. It conjectures that

type IIB string theory
on AdS5×S5

DUAL
⇐⇒ N = 4 SU(N) 4D gauge theory (2.1)

where N is the number of supersymmetry generators and

R4
AdS
l4
s

= 4πg2
Y MN , (2.2)

with RAdS ≡ 1/k, ls is the string length and gY M is the SU(N) Yang-Mills gauge coupling. The
N = 4 gauge theory is actually a conformal field theory (CFT).

In the warped bulk we have only considered gravity and neglected any string corrections. This
bulk gravity description is only valid provided RAdS � ls and via (2.2) leads to the condition that
g2

Y MN � 1, which means that the 4D dual CFT is strongly coupled! Thus for our purposes the
correspondence takes the form of a duality in which the weakly coupled 5D gravity description is
dual to a strongly coupled 4D CFT.

An AdS/CFT dictionary that relates the two dual descriptions can be established. For every
bulk field Φ there is an associated operator O of the CFT. In the AdS5 metric (1.1) the boundary
of AdS space is located at y =−∞. The boundary value of the bulk field Φ(xµ ,y =−∞)≡ φ0(xµ)
acts as a source field for the CFT operator O [12, 13]. If a UV brane is then placed at y = 0, the
−∞ < y < 0 part of AdS space is chopped off and the remaining 0 < y < ∞ part is reflected about
y = 0 with a Z2 symmetry. The presence of the UV brane with an associated UV scale ΛUV thus
corresponds to an explicit breaking of the conformal invariance in the CFT at the UV scale (but
only by nonrenormalisable terms) [14, 15, 16]. The fact that the CFT now has a finite UV cutoff
means that the source field φ0 becomes dynamical. A kinetic term for the source field will always
be induced by the CFT but one can directly add an explicit kinetic term for the source field at the
UV scale. Thus in the presence of a UV brane the AdS/CFT correspondence can be quantified in
the following way ∫

Dφ0 e−SUV [φ0]
∫

ΛUV

DφCFT e−SCFT [φCFT ]−
∫

d4x φ0O

=
∫

Dφ0 e−SUV [φ0]
∫

φ0

Dφ e−Sbulk[φ ] , (2.3)

where SUV is the UV Lagrangian for the source field φ0. It is understood that now the source field
φ0 = Φ(x,y = 0). Moving away from the UV brane at y = 0 in the bulk corresponds in the 4D
dual to running down from the UV scale to lower energy scales. Since the bulk is AdS the 4D dual
gauge theory quickly becomes conformal at energies below the UV scale.

The presence of the IR brane at y = πR corresponds to a spontaneous breaking of the confor-
mal invariance in the CFT at the IR scale ΛIR = ΛUV e−πkR [14, 15]. The conformal symmetry is

7
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nonlinearly realised and particle bound states of the CFT can now appear. Thus, the dual interpre-
tation of a slice of AdS not only contains a 4D dual CFT with a UV cutoff, but also a dynamical
source field φ0 with UV Lagrangian SUV [φ0]. In particular note that the source field is an elemen-
tary (point-like) state up to the UV scale, while particles in the CFT sector are only effectively
point-like below the IR scale but are composite above the IR scale.

2.1 Holography of scalar fields

As a simple application of the AdS/CFT correspondence in a slice of AdS5 we shall present
the dual 4D Lagrangian corresponding to a bulk scalar field Φ with boundary mass terms. It is
customary to use conformal coordinates z = (eky− 1)/k, with A(z) = (1 + kz)−1, q = p/(kA(z))
and Φ(p,z) is the 4D Fourier transform of Φ(x,z). Imposing the IR boundary condition (1.9) for
the bulk scalar solution leads to the on-shell action

Se f f =
1
2

∫ d4 p
(2π)4

[
A3(z)Φ(p,z)

(
Φ
′(−p,z)−b k A(z)Φ(−p,z)

)]∣∣∣∣
z=z0

=
k
2

∫ d4 p
(2π)4 F(q0,q1)Φ(p)Φ(−p) , (2.4)

where

F(q0,q1) =∓ iq0

[
Jν∓1(iq0)−Yν∓1(iq0)

Jν(iq1)
Yν(iq1)

][
Jν(iq0)−Yν(iq0)

Jν(iq1)
Yν(iq1)

]
, (2.5)

and ν ≡ ν± = α±1.
The dual theory two-point function of the operator O sourced by the bulk field Φ is contained

in the self-energy Σ(p) obtained by

Σ(p) =
∫

d4xe−ip·x δ 2Se f f

δ (A2
0 Φ(x,z0))δ (A2

0 Φ(0,z0))
,

=
k

g2
φ

q0(Iν(q0)Kν(q1)− Iν(q1)Kν(q0))
Iν∓1(q0)Kν(q1)+ Iν(q1)Kν∓1(q0)

, (2.6)

where A0,1 = A(z0,1) for z0,1 the location of the UV (IR) brane. A coefficient 1/g2
φ

has also been
factored out in front of the scalar kinetic term in (1.4), so that gφ is a 5D expansion parameter with
dim[1/g2

φ
] = 1. The behaviour of Σ(p) can be studied for various momentum limits in order to

obtain information about the dual 4D theory. The analytic terms in Σ(p) are normally subtracted
away by adding appropriate counterterms. However with a finite UV cutoff (corresponding to the
scale of the UV brane) these terms are now interpreted as kinetic (and higher derivative terms) of the
source field φ0, so that the source becomes dynamical in the holographic dual theory. The source
field can now mix with the CFT bound states and therefore the self-energy Σ(p) must be resummed
and the modified mass spectrum is obtained by inverting the whole quadratic term SUV + Se f f . In
the case with no UV boundary action SUV this means that the zeroes of (2.6) are identical with
the Kaluza-Klein mass spectrum (1.16) corresponding to (modified) Neumann conditions for the
source field.

To obtain the holographic interpretation of the bulk scalar field, recall that the scalar zero mode
can be localised anywhere in the bulk with −∞ < b < ∞ where b≡ b± = 2±α and −∞ < b− < 2

8
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and 2 < b+ < ∞. Since b± = 1± ν± we have −1 < ν− < ∞ and 1 < ν+ < ∞. The ν− branch
corresponds to b− < 2, while the ν+ branch corresponds to b+ > 2. Hence the ν−(ν+) branch
contains zero modes which are localised on the UV (IR) brane.

Consider first the ν− branch. In the limit A0 → ∞ and A1 → 0 one obtains

Σ(p)'−2k
g2

φ

[
1
ν

(q0

2

)2
+
(q0

2

)2ν+2 Γ(−ν)
Γ(ν +1)

+ . . .

]
, (2.7)

where the expansion is valid for noninteger ν . The expansion for integer ν will contain logarithmns.
Only the leading analytic term has been written in (2.7). The nonanalytic term is the pure CFT
contribution to the correlator 〈OO〉. If A0 is finite then the analytic term in (2.7) becomes the
kinetic term for the source field φ0. Placing the UV brane at z0 = 0 with A0 = 1 leads to the dual
Lagrangian below the cutoff scale Λ∼ k

L4D =−Z0(∂φ0)2 +
ω

Λν−
φ0O +LCFT , (2.8)

where Z0,ω are dimensionless couplings. This Lagrangian describes a massless dynamical source
field φ0 interacting with the CFT via the mixing term φ0O . This means that the mass eigenstate
in the dual theory will be a mixture of the source field and CFT particle states. The coupling of
the mixing term is irrelevant for ν− > 0 (b− < 1), marginal if ν− = 0 (b− = 1) and relevant for
ν− < 0 (b− > 1). This suggests the following dual interpretation of the massless bulk zero mode.
When the coupling is irrelevant (ν− > 0), corresponding to a UV brane localised bulk zero mode,
the mixing can be neglected at low energies, and hence to a very good approximation the bulk zero
mode is dual to the massless 4D source field φ0. However for relevant (−1 < ν− < 0) or marginal
couplings (ν− = 0) the mixing can no longer be neglected. In this case the bulk zero mode is no
longer UV-brane localised, and the dual interpretation of the bulk zero mode is a part elementary,
part composite mixture of the source field with massive CFT particle states.

Finally consider the case ν = ν+ > 1. In the limit A0 → ∞ and A1 → 0 we obtain for noninte-
ger ν

Σ(p)'−2k
g2

φ

[
(ν−1)+

(q0

2

)2 1
(ν−2)

+
(q0

2

)2ν−2 Γ(2−ν)
Γ(ν−1)

]
, (2.9)

where only the leading analytic terms have been written. The nonanalytic term is again the pure
CFT contribution to the correlator 〈OO〉. At low energies q1 � 1 one obtains

Σ(p)IR '−
2k
g2

φ

[
(ν−1)+

(q0

2

)2 1
(ν−2)

−ν(ν−1)2 A2ν
1

A2ν
0

(
2
q0

)2
]

, (2.10)

where the large-A0 limit was taken first. We now see that at low energies the nonanalytic term has
a pole at p2 = 0 with the correlator

〈OO〉=
8k3

g2
φ

ν+(ν+−1)2e−2ν+πkR 1
p2 , (2.11)

where A0 = 1 and A1 = e−πkR. This pole indicates that the CFT has a massless scalar mode at low
energies! What about the massless source field? As can be seen from (2.9) and (2.10) the leading

9
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analytic piece is a constant term which corresponds to a mass term for the source field [16]. This
leads to the dual Lagrangian below the cutoff scale Λ∼ k

L4D =−Z̃0(∂φ0)2 +m2
0φ

2
0 +

χ

Λν+−2 φ0O +LCFT , (2.12)

where Z̃0,χ are dimensionless parameters and m0 is a mass parameter of order the curvature scale k.
The bare parameters Z̃0 and m0 can be determined from (2.9). Thus, the holographic interpretation
is perfectly consistent. There is a massless bound state in the CFT and the source field φ0 receives
a mass of order the curvature scale and decouples. In the bulk the zero mode is always localised
towards the IR brane. Indeed for ν+ > 2 the coupling between the source field and the CFT is irrel-
evant and therefore the mixing from the source sector is negligible. Hence to a good approximation
the mass eigenstate is predominantly the massless CFT bound state. When 1≤ ν+ ≤ 2 the mixing
can no longer be neglected and the mass eigenstate is again part elementary and part composite.

3. Application: Yukawa couplings

3.1 5D gravity description

The solution to the hierarchy problem only requires the Higgs field to be localised on the IR
brane. This means that fermions and gauge fields can propagate in the bulk. The gauge field zero
mode is flat and therefore couples with equal strength to both the UV and IR brane. However the
fermions can be localised anywhere in the bulk, and therefore Yukawa coupling hierarchies can
be naturally generated by separating the fermions from the Higgs on the IR brane. Each Standard
Model fermion is identified with the zero mode of a corresponding 5D Dirac spinor Ψ. For example,
the left-handed electron doublet eL is identified with the zero mode of ΨeL+, which is the even
component of the 5D Dirac spinor ΨeL = ΨeL+ +ΨeL−. The odd component ΨeL− does not have a
zero mode, but at the massive level it pairs up with the massive modes of ΨeL+ to form a vectorlike
Dirac mass. This embedding of 4D fermions into 5D fermions is repeated for each Standard Model
fermion. The Standard Model Yukawa interactions, such as Ψ̄eLΨeRH, are then promoted to 5D
interactions in the warped bulk. This gives∫

d4x
∫

dy
√
−g λ

(5)
i j

[
Ψ̄iL(x,y)Ψ jR(x,y)+h.c.

]
H(x)δ (y−πR)

≡
∫

d4x λi j (Ψ̄(0)
iL+(x)Ψ(0)

jR+(x)H(x)+h.c.+ . . .) , (3.1)

where i, j are flavour indices, λ
(5)
i j is the (dimensionful) 5D Yukawa coupling and λi j is the (dimen-

sionless) 4D Yukawa coupling. Given that the zero mode profile is

ψ̃
(0)
iL+,R+(y) ∝ e( 1

2−ciL,R)ky , (3.2)

this leads to an exponential hierarchy in the 4D Yukawa coupling [4]

λi j ' λ
(5)
i j k
√

(ciL−1/2)(ciR−1/2) e(1−ciL−c jR)πkR , (3.3)

for ciL,R > 1/2. Assuming ciL = c jR for simplicity then the electron Yukawa coupling λe ∼ 10−6

is obtained for ce ' 0.64. Instead when ciL,R < 1/2, both fermions are localised near the IR brane
giving

λi j ' λ
(5)
i j k
√

(1/2− ciL)(1/2− ciR) , (3.4)
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Figure 2: The Standard Model in the warped five-dimensional bulk.

with no exponential suppression. Hence the top Yukawa coupling λt ∼ 1 is obtained for ct '−0.5.
The remaining fermion Yukawa couplings, c f then range from ct < c f < ce [4, 17]. Thus, we see
that for bulk mass parameters c of O(1) the fermion mass hierarchy is explained. The fermion
mass problem is now reduced to determining the c parameters in the 5D theory. This requires a UV
completion of the 5D warped bulk model with fermions, such as string theory.

The geometric picture that emerges is a Standard Model in the warped bulk as depicted in
Figure 2. The fermions are localised to varying degrees in the bulk with the electron zero mode,
being the lightest fermion, furthest away from the Higgs on the TeV brane while the top, being the
heaviest, is closest to the Higgs.

3.1.1 4D holographic description

The Yukawa coupling hierarchies can also be understood from the dual 4D theory. Consider
first an electron (or light fermion) with c > 1/2. In the dual 4D theory the electron is predominantly
an elementary field. The dual 4D Lagrangian is obtained from analysing Σ(p) for fermions, where
the CFT induces a kinetic term for the source field ψ

(0)
L . It is similar to the dual scalar field

Lagrangian (2.8) and given by [18]

L4D = LCFT +Z0ψ̄
(0)
L iγµ

∂µψ
(0)
L +

ω

Λ|c+
1
2 |−1

(ψ̄(0)
L OR +h.c.) , (3.5)

where Z0,ω are dimensionless couplings and dim OR = 3/2+ |c+1/2|. The source field ψ
(0)
L per-

tains to the left-handed electron eL and a similar Lagrangian is written for the right-handed electron
eR. At energy scales µ < k we define the dimensionless coupling ξ (µ) = ω/

√
Z(µ)(µ/Λ)γ with

γ = |c+1/2|−1. Since c > 1/2 the coupling ξ decreases in the IR and at the TeV scale (ke−πkR)
is given by

ξ (TeV)∼
√

c− 1
2

4π√
N

(
ke−πkR

k

)c− 1
2

=

√
c− 1

2
4π√

N
e−(c− 1

2 )πkR . (3.6)
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ΨR

ΨL

H

Figure 3: The three-point Yukawa coupling vertex in the dual theory when the fermions are predominantly
elementary source fields.

The actual physical Yukawa coupling λ follows from the three-point vertex between the physical
states. Since both eL and eR are predominantly elementary they can only couple to the composite
Higgs via the mixing term in (3.5). This is depicted in Fig. 3. In a large-N gauge theory the
matrix element 〈0|OL,R|ΨL,R〉 ∼

√
N/(4π), and the vertex between three composite states Γ3 ∼

4π/
√

N [19]. Thus if each of the elementary fields eL and eR mixes in the same way with the CFT
so that ceL = ceR ≡ c then

λ ∝ 〈0|OL,R|ΨL,R〉2 Γ3 ξ
2(TeV) =

4π√
N

(c−1/2)e−2(c− 1
2 )πkR . (3.7)

This agrees precisely with the bulk calculation (3.3) where λ
(5)
i j k ∼ 4π/

√
N.

Similarly we can also obtain the Yukawa coupling for the top quark with c≤−1/2 in the dual
theory. With this value of c the top quark is mostly a CFT bound state in the dual theory and we
can neglect the mixing coupling with the CFT. As in the scalar field example this follows from the
fact that the two point function 〈ORŌR〉 now has a massless pole. The CFT will again generate a
mass term for the massless source field, so that the only massless state in the dual theory is the CFT
bound state. The dual Lagrangian is given by [18]

L4D = LCFT +Z0 ψ̄
(0)
L iγµ

∂µψ
(0)
L + Z̃0 χ̄Riγµ

∂µ χR

+d k (χ̄Rψ
(0)
L +h.c.)+

ω

Λ|c+
1
2 |−1

(ψ̄(0)
L OR +h.c.) , (3.8)

where Z0, Z̃0,d,ω are dimensionless constants. The fermion ψ
(0)
L pertains to tL and a similar La-

grangian is written for tR. Just as in the scalar case (2.12), this dual Lagrangian is inferred from the
behaviour of Σ(p) for fermions. The CFT again induces a kinetic term for the source field ψ

(0)
L but

also generates a Dirac mass term of order the curvature scale k with a new elementary degree of
freedom χR. Hence the elementary source field decouples from the low energy spectrum and the
mixing term is no longer relevant for the Yukawa coupling. Instead the physical Yukawa coupling
will arise from a vertex amongst three composite states so that λt ∼ Γ3 ∼ 4π/

√
N ∼ λ (5)k, and

consequently there is no exponential suppression in the Yukawa coupling. This is again consistent
with the bulk calculation.
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