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1. Introduction

Transport coefficients characterize fluctuations and relaxation onlémggh and time scales
in systems slightly away from thermal equilibrium. Consider a conservedmn+C-j =0,
in a system with a small nonuniformity in the dengiiy, x). To first approximation, a current will
form to wash out the imbalancé:= —DOn+ ..., where the dots indicate higher order terms in
gradients. Combining the conservation law with this constitutive equation immedyaeédig the
diffusion equatiorg;n = DO?n. The proportionality factob is the diffusion constant and is the
only quantity determined by the underlying microscopic theory: one may viesval av-energy
constant. Similarly, consider the conserved energy-momentum tefigdr While in equilibrium
T'l = 5'IP, with P the pressure, a perturbation characterized by a nonuniform flowufigbe) will
change this to (in the local rest frame, wh@i® = 0)

T =sp—n <aiui +dlu — §5ijd|u'> —Z8au +.... (1.1)

Again the dots indicate higher order terms in gradients. The coefficienedfdbeless combina-
tion is the shear viscosity and{ is the bulk viscosity. Combining energy-momentum conserva-
tion with the constitutive equation above yields the hydrodynamic equaticedicting e.g. sound
waves. In the context of thermal QCD one may therefore view hydradigzas thdow-energy
effective theory describing real-time dynamics at sufficiently large length and time scales. The
form of the hydrodynamic equations is fixed by combining exact conserviaws and constitu-

tive equations, which are obtained in a gradient expansion. In the latembaer oflow-energy
constants appear, determined by QCD: shear viscosif\bulk viscosity(, electrical conductivity

o, diffusion constant®, etc. In this talk | review the progress in determining these coefficients
from first principles.

The recent interest in transport in QCD and related theories is mainly due telttivistic
heavy ion program at RHIC [1]. The remarkable effectiveness afl iodygdrodynamics in describing
heavy ion phenomenology [2, 3] suggests that transport coefficiemtgeay small (when appro-
priately normalized). This in turns implies that thermalization times are short arrddtitsns are
strong, suggesting that in the temperature rangeTl/T; < 2 the quark-gluon plasma is not a
weakly coupled system of quarks and gluons, but instead strongly étiteggsQGP). A second
reason for interest in transport is the fertile applicability of gauge/grawiglity (or AAS/CFT
correspondence) to study strongly coupled thermal gauge theories hydnedynamic regime
[4]. This has led to many (semi-)analytical results for those theories thait adyravity dual and
provides an important stimulus for QCD, where a gravity dual is not availalie best-known
example concerns the ratio of the shear viscosity and the entropy dgnsity

n 1
<= A 1.2)
which is obtained in all thermal gauge theories in the (strongly coupled) retgseribed by a dual
gravity theory. This ratio is much smaller than in weakly coupled QCD, where
.n 1
a0 ginijg
It is an open question what this ratio is in QCD just above the deconfinenaasition. Below |
describe recent progress in lattice QCD that will bring us closer to ansyvwrat question.

(1.3)
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2. Transport coefficients at weak and strong coupling

According to the Kubo relations, transport coefficients are given bgltpe of current-current
spectral functions, computed in thermal equilibrium, at vanishing eneayyexample, the electri-
cal conductivityo (or charge diffusion constai times susceptibilityg) is determined by

pH(w) 2.1)

9

o=D==Iim
w—0 2w

where the current-current spectral function is given by
P (@) = [ dXE(i#(1.). ' (O))eq 22)

For a single fermionic charge carrier with chaegthe electromagnetic current reads= ey (.
Similarly, the shear and bulk viscosities are given by

L p12,12(w) B 1. piij(w)
= 2w C=gdm 2w (@3)
in terms of the energy-momentum tensor spectral function
pHYPO () = / A ([THY (t,X), TP% (0)])eq (2.4)

2.1 Weak coupling

At weak coupling transport coefficients can be computed using eithetikitheory or by
summing sets of Feynman diagrams. In this limit, transport coefficients are sthngeoportional
to the mean free path or the inverse collisional widjfi 1 They are therefore very large and
inversely proportional to the coupling constants in the theory, see Eg. (& @trarelativistic QCD
the shear viscosity, electrical conductivity and diffusion constants beea computed to leading-
logarithm order [5] and subsequently to full leading order [6] in the gataupling. The relevant
physics at leading-log are those-2 2 scattering processes that are logarithmically sensitive
infrared screening effects. The extension to full leading order regubesides the other<2 2
scattering processes, also the inclusion of specific particle number chgmgicesses [7]. The
bulk viscosity is more complicated since particle number changing processddmbe included
from the start; the first calculation in QCD can be found in Ref. [8]. It mamthat a parametrically
correct estimate is given by

7 ~ 150 (1/3-12)%, (2.5)

where for light quarks the speed of sounds determined by?2 —1/3 ~ B(g?) ~ g*. The equiv-
alence between kinetic theory and diagram summation in thermal gauge thexsieeen demon-
strated in a number of papers [9, 10, 11, 12, 13]. A one-loop calculastioever sufficient; instead
an infinite set of ladder diagrams has to be taken into account.

A complete leading-order calculation is also possible in the |Bkgémit, whereN¢ indicates
the number of flavours. This has been done using kinetic theory for masglarks [14] and
extended to massive quarks using diagrams [15]. Only Coulomb scattedogsses contribute.
Also in this limit one is effectively in the weakly coupled regime, simges ~ Nt — co.
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(1

Figure 1: Typical skeleton diagram contributing to the shear vidgdaithe O(N) model at largeN.

In all cases above only the leading-order result is known. This ptewgty reasonable extrap-
olation to stronger coupling, unlike in the case of e.g. the pressure wheeterths up t@fin1/g
are known [16]. Recently the first subleading correction to a transpefficient in a relativistic
field theory has been computed by Moore [17], namely to the shear visaositalarg® theory.
The shear and bulk viscosity for single-component scalar theoriedlegvecomputed a long time
ago to leading order at weak coupling using ladder diagram summationlfi&je O(N) model
the shear viscosity has also been found to leading order in/Neetpansion [19], using similar
techniques as in largé; gauge theories. Itis shown in Ref. [17] that the first subleading ctiore
to the shear viscosity at weak coupling is sensitive to soft physics antecartracted from the
same set of diagrams that contribute at leading order by an expansiommdéthe thermal mass
mn/T ~ V/A. The result in thed(N) model, with aA /(4!N) (g )? interaction, reads [17]

T3 3N8 2\ A
n= ENTD (303354+ 15483 <1+N> 72+6’(A)>
3N2T3 A
=7 303354+ 15483 7—2+6"()\,1/N) , (2.6)

where the second line is valid in the combined lalgand weak coupling limit. As mentioned
above, the complete largéresult, without employing the weak-coupling expansion, is also known
[19]. This includes a resummation of the thermal mass to all orders, as wilé asclusion of
other diagrams suppressed in the weak coupling limit, see Fig. 1. Therafoassessment of the
perturbative expansion can now be made. This is shown in Fig. 2, whenetturbative result

18 ‘ ; ‘ ‘

— exact |
- - perturbative

VAT

Figure 2: Shear viscosity], normalized with the result at vanishing coupling, in fB&N) model as a
function ofv/A: comparison between the perturbative [17] and the exa¢rfkailt in the largeN limit.
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n/no= 1+#/A is compared with the complete lartjeresult. Hereng is the result at vanishing
coupling, which is used for normalization. From the first two terms, it afgotbart the convergence
of the weak coupling expansion is not impressive. A possible approaetptove the convergence
[17] would be to include the thermal mass without re-expanding, as hasttiee for the pressure
[20]. How to include alld’(A) effects is currently not known.

Considerable effort has been spent on nonrelativistic dynamics dndidif of heavy quarks
(with Mg > T). I will not discuss that here, but refer to Ref. [21] where definitiand a leading-
order calculation of the momentum diffusion coefficient can be foundi@mef. [22] for the first
next-to-leading order result at weak coupling.

2.2 Strong coupling

In order to complement weak coupling results as discussed above, itiiabdedo have an
analytic method tailored for strongly coupled field theories. For a certais oliathermal gauge
theories such a method is available, via the gauge/gravity or AdS/CFT pon@snce [23]. It uses
the duality between a field theory at finite temperature and black holes in Ad® siescribed in
string theory. The best-known case relat¢s= 4 supersymmetric Yang-Mills theory to type IIB
string theory on Ad§x S, but there are many other field theories for which a gravity dual can be
found (but not QCD). The parameters in field theory, the number of c®luand the coupling
constany?, are related to the parameters of string theory in AdS space. It turnsattihénduality
is most powerful wher? is small, since then loops in the string theory are suppressed, but with the
't Hooft couplingA = g?N; large, since then stringy effects are suppressed and the string theory
reduces to a supergravity theory. Strongly coupled gauge theorieslangth’t Hooft coupling,
are therefore the natural area of application. Using the gauge/gravigspondence, it has been
shown that the field theories for which the duality holds behave hydraodigadly at large length
and time scales, which supports the framework of (nearly ideal) hydesdigs to understand the
dynamics in thermal gauge theories at strong coupling.

The most famous example concerns the shear viscosity ia 4 SYM. In the limit that both
N; andA go to infinity, it is equal to [24]

T
n= gN§T3. (2.7)
In the same limit the entropy density is [25]
S= ?NCT = ZSA:O’

such that the ratio ig /s= 1/4m. This result for the ratio is universal and is achieved in all thermal
gauge theories that can be described by a gravity dual [26, 27]. Olke/iscosity vanishes due to
conformal invariance.

The shear viscosity i” = 4 SYM at strong coupling is another rare example of a transport
coefficient where the first subleading correction is known. One fig8&p [

_m 75¢(3)
1= gher® (14 o0 ). 28)
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The first correction to the ratio then reads

n_1 13%(3)

(2.9)

It has been conjectured that4t is a lower bound for a wide class of systems, including e.g.
the quark-gluon plasma and trapped atomic gases [29, 26]. For a w@iteral assessment, see
Ref. [30].

Other transport coefficients that have been computed include-tharge diffusion coefficient
and the bulk viscosity. These are not universal and depend on the tineder consideration. In
A =4 SYM theR-charge diffusion constant, susceptibility and conductivity are givei3bly

1 _ NZT? oo NZT

2nT’ - 8 ’ 16m’

The bulk viscosity in a number of theories is discussed in Ref. [32]. Fongly coupled systems
it is proposed that it satisfies (cf. Eqg. (2.5) and the absent square)

(2.10)

{>2n(1/3-\2). (2.11)

Also heavy quark dynamics has been studied extensively in stronglyetbup = 4 SYM, see e.g.
Ref. [33] for a clear discussion.

Due to the interest in4” = 4 SYM as a testbed for thermal field dynamics, various quantities
have also been studied at weak coupling. The rafie has been computed in this theory to full
leading order in the small limit (the result is independent d;) and compared with the same
quantity in QCD [34]. Heavy quark diffusion has been studied to leadidgramt weak coupling
in Ref. [35].

3. Spectral functions

So far, in discussing transport coefficients, the focus has been aretbesnergy limit of
spectral functions. In this section | give a (restricted) review of spefiinctions at arbitraryo,
motivated mainly by hydrodynamic structure at weak and strong couplirig.with turn out to be
useful for lattice QCD studies of spectral functions, to be discussed nex

In the weak coupling limit, current-current spectral functions have sacieristic energy de-
pendence [36]. At large energy they increasedswhere the powen is determined by the (mass)
dimension. For example, the energy-momentum tensor spectral functidin@dases as* and
the EM current spectral function (2.2) a# (unless there is a cancelation between components).
At small energies, there is a transport peak. In free field theory, tldk penifests itself as a
singular term,

p(ww) ~ 218 (W), (3.1)

reflecting that in a free theory the mean free path is infinite and transpdfice@s diverge.
Interactions regulate this singular behaviour and after the resummation cblttstonal width',
the transport peak is modified to
p(w) 2r
w  w?r?

(3.2)
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Figure 3: Shear viscosityp(w)/wT?2 vs. w/T in QCD (sketched) for two values of the collisional width
/T =0.1,0.5 (left) and in.#" = 4 SYM at strong coupling (right).
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Figure 4: Charge diffusion:p(w)/wT vs. w/T in QCD (sketched) for two values of the collisional width
/T =0.1,0.5 (left) and in.#" = 4 SYM at strong coupling (right).

For simplicity, | parametrized the effect of interactions with a single constaithw ; in reality
the width depends on the momentum of the (quasi-)particles contributing t@darang\t weak
coupling the collisional widtH™ ~ g*T: therefore the transport peak is narrow ¢*) and high
(~1/9%).

The w dependence of spectral functions of conserved charges, sﬁh:aﬁ(Too(t,x) or
Q= J, j°(t,x), is completely fixed by the conservation laws. For example, the specteidarior
the total charge density reads

Pw) _ =215(w), (3.3)
)

where= is again the susceptibility. This ensures that unequal-time correlation fuscsoch
(Q(t)Q(0)), are in fact constant and equaMd =, whereV is the spatial volume and it is assumed
that(Q) = 0. Here | only discuss spectral functions at zero spatial momentum; fazreno spatial
momentum see e.g. Ref. [37].

Combining the rising high-energy part and the transport peak at smafjiesgields spectral
functions as shown in Fig. 3 (left) for the energy-momentum tensor (in thereh relevant for the
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shear viscosity) and Fig. 4 (left) for the EM current (charge diffusiddere the width is taken
as a free parameter and artificially increased to larger valu€g £ 1), while keeping the rest of
the spectral function unchanged. As a result the transport peaki) wghiarrow at weak coupling
(/T <« 1), becomes less singular and gets smeared out.

Interestingly enough, this behaviour can be compared with spectraidoaccomputed in
A =4 SYMin the limit of largeN; and large 't Hooft couplind , using gauge/gravity duality [38,
39]. The energy-momentum tensor spectral function has to be computeztioally by solving an
ordinary differential equation, but for tHecurrent the analytical result is known and reads [40]

_Ng w?sinh(w/2T)
plw) = 16mcosi{w/2T) — coqw/2T)"

(3.4)

These spectral functions are shown in Figs. 3 and 4 (right). Ratheditidimg by powers of\, |
have simply pulN; = 3. It is clear that at strong coupling the transport peak is no longeratepa
from the high-energy contribution and the spectral functions go smootlily-4d0. The intercept
is of course proportional to the shear viscosity and the conductivityeotisply.

Comparing the spectral functions on the left with those on the right makes riegtitey to
speculate what happens in QCD in the strong coupling regime above thafidecoent transition.

4. Transport from lattice QCD

We have seen that weak-coupling methods are probably not applicabkeiiméhesting tem-
perature regime of QCD probed by current heavy ion collisions. Fumiher, these calculations
are so involved that in most cases only the leading-order result is tyrkerown; it is an open
guestion how to determine subleading corrections. On the other hand,dhg-stsupling results
discussed above are obtained in theories that are not QCD. So the imppésgtion is what can
be said about transport in QCD wherIl /T, < 3, using nonperturbative lattice simulations.

The euclidean correlator calculated in numerical simulations is related to tresponding
spectral function via a dispersion relation,

, *dw p(w)
Ge(iwh) = 2T i (4.1)
whereay, = 2rmT (n € Z) are the bosonic Matsubara frequencies. In euclidean time, veithr &
1/T, this relation becomes

®dw
Ge(r) = | SoK(@1)p(w), 42)
0 21
with the kernel

_ coshw(r—1/2T)]
K(0.T) = i@z

= [1+ng(w)]e T+ ng(w)e”", (4.3)

whereng(w) = 1/(e”/T — 1) is the Bose distribution. The first expression for the kernel shows
the characteristic euclidean time dependence, while the second expresgibasezes that the
correlator and its spectral function are essentially related via a Laplaxsfdren, made periodic to
satisfy the Kubo-Martin-Schwinger (periodicity) condition.
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If the euclidean correlator is known analytically, the spectral functionsoaply be obtained
by analytic continuation,

p(w) =2ImGg(itnh — w+ig). (4.4)

However, ifGg(T) is determined numerically on a lattice wity = 1/aT points in the euclidean
time direction & is the temporal lattice spacing), Eq. (4.1) has to be inverted by some othes.mean
This is an ill-posed inversion problem, sinGg(T) is known at, say¢(10) data points, whereas
p(w) is needed ar’(10°) values (after imposing a high-energy cutaff,ax and discretizing the
resulting finite interval < w < Wmay).

One possible solution is to provide an Ansatz for the spectral function, vgitiiedl number of
free parameters. In this case it is important to be able to judge the applicabilitg énsatz. An
orthogonal approach is to avoid giving functional forms but only supphynimal amount of prior
information, such as positivityudp(w) > 0) and asymptotic behavioup(w) ~ " for large w).
Methods based on this approach are usually collectively referred tayesBin techniques.

For a weakly coupled quark-gluon plasma, the extraction of transpefficgents is notori-
ously difficult, since euclidean correlators are remarkably insensitiveetatiucture of spectral
functions at energie® <« T [36, 41]. However, at stronger coupling the transport peak is much
broader and the smadb limit is no longer singular. As discussed above, smooth spectral functions
are also found in/” =4 SYM at strong coupling. This opens up the possibility that transport
coefficients are accessible in lattice QCD above the deconfinement transition.

So far the number of papers in the literature that have attempted to extrespgdranoeffi-
cients from the lattice in a head-on approach is very small. A first attempt to neetnansport
coefficients can be found in the pioneering paper by Karsch and Wsildg &n Ansatz [42]. This
method was followed by Nakamura and Sakai for the shear and bulk wisg#3]. For a critical
discussion of the Ansatz, see Ref. [36]. S. Gupta used Bayesian radthablate the transport
contribution at small energies in the case of the electrical conductivity [A4he past six months,
two significant steps have been made. A standard approach to perimandlytical continuation
using Bayesian techniques is known as the Maximum Entropy Method (MEM)e discussed
below. It was known from previous work that MEM performs poorly atadl energies. Aarts,
Allton, Foley, Hands and Kim have identified and resolved a numerical iistsb MEM in the
limit that w — 0 and applied the new formulation to obtain the electrical conductivity [45- Pr
cisely determined correlators are essential to have control over thdiaralytinuation; while for
the electrical conductivity this is not a problem, for the shear and bulk sitscetandard mea-
surement techniques are insufficient. Meyer has applied a two-levelthlgao better determine
energy-momentum correlators and found a result for the shear vis¢d8]tyAll calculations to
date have been performed in quenched QCD, so one may think of the electrmuctivity in
pure gauge theory as representing the transport properties of a slagtécally charged quark
diffusing through a gluon plasma.

In the following | describe in some detail the Maximum Entropy Method and ineliedny
the standard algorithm is unstable in the smeallegion [45]. In MEM one reconstructs thmaost
probable spectral function by extremizing the probability distributi®jp|GH], i.e. the probability
to find p, given the correlatoG and prior informatiorH. Using an identity for conditional prob-
abilities, P[pG|H] = P[p|GH]P[G|H]| = P[G|pH]P[p|H], P[p|GH] is written as the product of a
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Figure 5: First four basis functionsij(w) in the singular value decomposition as a functionaaf for
almax = 5, Ny = 1000,N; = 24, using the standard (left) and the redefined kernel {rigfte inset shows
a blow-up of the small energy region.

standard likelihood functiorR[G|pH] ~ e~ (x? fit), and a prior probabilityP[p|H] ~ €S which
is independent of the dat®[G|H] is a normalization factor. The prior information is encoded in
the entropy term,

s= [ G |pl@) - m@) - plw)og . (45)
via the default modein(w). Therefore, the combined function to extremiz@jp|GH] ~ e~-+2S,
wherea determines the relative weight of the data versus the prior information [47].

The most important aspect for my purpose here isrtdection step. Recall that after dis-
cretizationp(w) is wanted alN,, = ¢'(10°) values whereas the correlator is only knowrn4i.0)
points. | denote wittN the number of time slices included in the analysis; due to reflection sym-
metry,N < N;/2. To make this well-defined, the number of coefficients parametrizing ttatrape
function cannot exceeN, or in other wordsp(w) has to be restricted to an (at mobt)dimen-
sional subspace. In Bryan’s algorithm [48] this is achieved via a singalae decomposition
(SVD) of the kerneK (wn, 7;). Viewed as arN, x N matrix, the kernel is written a€ = UwWvT,
whereU is anN, x N matrix, withUTU = Ty,n, W is a diagonaN x N matrix, andV is an
orthogonalN x N matrix. TheN dimensional subspace is spanned by the column vectdds of
ui(an) = Uyi. These basis vectors are orthogonal but not complete. An analysie ekttemum
conditions shows that it is natural to write the spectral function in terms o&thasis vectors
asp(w) = m(w)expy N ; ciui(w). This ensures positivity and provides the actual reduction step.
Extremizing the probability distribution leads to nonlinear equations foNtkeefficientsc;.

The first four basis functions in the SVD are shown in Fig. 5 (left), for@dgl choice of
N = N;/2, Ny, andwmax. A blow-up of the small energy region reveals that the basis functions
appear to diverge whew — 0, although they are normalized (the smallest energy included here is
alAw = awmax/ Ny, = 0.005). This apparent divergence is due to the singular behaviour kéthel
(4.3): in the limit thatew — 0 one finds thaK(w,7) = 2T /w+ ¢ (w/T). Note that the leading
singular term ist independent; alt independence resides in the subleading terms. The behaviour
of the basis functions is therefore indicative of a real problem, whicinatabe solved by e.g.
decreasind\w. In actual applications of MEM, we (and others) found irregular behaat small

10
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Figure 6: Current-current spectral functige(w) /wT, wherej' = iy (, as a function otv/T in quenched
QCD forT/T¢ ~ 1.5 (hot,N; = 24) and 2.25 (very hot\; = 16). The intercept a® = 0 is proportional to
the electrical conductivity. Results are showngy = 1000, 2000 anth = 1.0, 0.5, 0.1 at fixedawmnax = 5.

w, in particular at the smallest nonzero valuecaf Needless to say that this prevents access to
the transport properties encoded in euclidean correlators. It is woirtkiny out that this problem
only appears at finite temperature, since at zero temperature the letneés t(w, 1) = e “*
and the limitcw — 0 is smooth. It is a manifestation of the fact that the linaits~ 0 andT — 0 do
not commute, which is well-known in thermal field theory.

Once the problem is identified, it is straightforward to solve it. The Hivergence can be
avoided by defining

- w a7

K(w, 1) = EK(C‘)7 T), p(w) = Ep(w) (4.6)

SinceK(w, T)p(w) = K(w, T)p(w) the standard relation with the euclidean correlator holds. How-
ever, the modified kernel is finite whem— 0: K(0,7) = 1. A SVD of K yields new basis functions
Ui(w). The first four are shown in Fig. 5 (right). Clearly they take a finite valbemw — 0, and

the w = 0 point can be included in the analysis. The redefined spectral functexpended as
p(w) = m(w)expy N, Tt (w) and the same MEM routine can be used to find the coefficgnts
MEM now reconstruct® ~ p/w rather tharp. This reshuffling of powers ab is nontrivial, since

p andp are not expanded in a complete set: the reduction step re&irtota different subspace
with manifestly different properties, in particular in the smallimit.

A second (minor) modification is needed to accet®)/w at zerow, relevant for transport
coefficients. For spectral functions of fermion bilinears, sucft'as gy y, the traditional default
model ism(w) ~ M(w)/w ~ w, determined by the high-energy behavi@{w) ~ w?. Unfortu-
nately, this introduces a bias and puts the intercept equal to zero frortatheT® avoid this, one
may usem(w) ~ (b+ w), whereb > 0 is a parameter that can be used to assess default model
dependence at smaili.

We have applied the modified algorithm to the problem of the electrical condyctr charge
diffusion) in quenched QCD with light staggered fermions and perforrnmediations on a fine lat-
tice atB = 7.192 of size 634 x N; above the deconfinement transition. The quarks are so light that

11
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chiral symmetry restoration is clearly visible when comparing pseudoscalascalar correlators
[49]. In Fig. 6, the spectral function normalized @y is shown for not too largey at two tempera-
tures above the deconfinement transitidrT; ~ 1.5 (N; = 24) andT /T, ~ 2.25 (N; = 16). In both
cases results for three values of the default model parameter shown. The slight spread of the
curves gives an indication of the uncertainty in the MEM reconstructioerd s no dependence
on the discretization along the axis, as can be seen from the resultslat 24 usingN,, = 1000
and 2000 at fixedanax. From the intercept the conductivity is found to 6¢T = 0.4+ 0.1 with
no significant temperature dependence. This result is normalized to a #avgler and should be
multiplied with the sum of the electric charge squared for light flavours. Tioe is systematic and
due to the MEM uncertainty. The statistical error is expected to be smallerrézhik is indicative
of strong interactions: at weak coupling the conductivity behaves/as~ 1/(g*In1/g) — oo,
whereas at strong coupling the scale is set solely by the temperature.

A similar conclusion has been drawn by Meyer in the case of the sheasitisdo Ref. [46]
an upper bound) /s < 1 is obtained in SU(3) gauge theory on lattice§ g = 1.24 (3 = 6.2,
20° x 8) and 1.65 8 = 6.408, 28 x 8).

5. Quarkonium at high temperature

Another signal of strong interactions in the quark-gluon plasma is thevalioficharmonium
and other heavy quark mesons ab@yeThis has been studied on the lattice a few years ago using
the Maximal Entropy Method [50, 51, 52]. A more recent extensive stafdsharmonium and
bottonium spectral functions can be found in Ref. [53]. This topic has logscussed last year in
Hatsuda'’s plenary talk [54], so | briefly mention developments that toolepiacently and were
discussed at this Conference.

Up to last year, all studies were performed in quenched QCD. The Trodl&aboration has
carried out dynamical simulations with two flavours on highly anisotropic lattisbéch can be
used to study charmonium at zero and nonzero temperature [55]. Kaganction analysis above
Te, using the modified version of MEM described in the previous section, eéound in Ref. [56].
The results suggest that the S-wavésy({ and ) survive up to temperatures close t@:2while
the P-waves)q and xc1) melt away below 2T.. However, there are systematic uncertainties that
need to be improved in order to make these conclusions more firm, in particulalasons at a
finer lattice spacing would be desirable. One reason this is necessarydadp inderstand the
appearance of artefacts at larger energy introduced by the finite Igitoing, which have been
discussed for a variety of lattice fermion formulations (Wilson, stagge@daih wall, overlap) in
the free field limit [57, 37, 58].

The presence of the transport contribution at smatian interfere with spectral features at
larger wo when not properly disentangled, as emphasized by Umeda [59]. Thibecpartially
avoided by subtracting the midpoint valuerat 1/2T from the correlator, which has the effect of
suppressing the contribution at small A spectral analysis can then be done@(r) — G(1/2T).

Petreczky and Mdécsy have provided a closer look at potential modeditidreally used to
study quarkonium at zero temperature. Doubts whether potential modetieseribe quarkonium
correlators at finite temperature have been expressed in Ref. [60)ek toelting temperature than

12
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usually obtained with MEM is found when a potential model based on lattice Q@Ulaions is
used, both in the quenched approximation [61] as well as in the theory withfEavours [62].

In order to avoid conceptual problems with the extension of zero-tempenattential mod-
els to nonzero temperature, a real-time static potential, firmly based in thermahieid;, was
introduced in Ref. [63]. When applied to quarkonium [64], the resubtssi® support the standard
interpretation of results obtained with MEM.

6. Summary

Results from relativistic heavy ion collisions at RHIC have highlighted the impoetaf
understanding transport and hydrodynamical behaviour in QCD abevdeconfined transition.
Nonperturbative first-principle calculations of spectral functionseeisly at small energie® <
T, are badly needed. Since this involves inherently real-time physics, it isieuttiproblem for
lattice QCD, but recently several steps forward have been made. Usiltiglewel algorithms,
accurately determined euclidean correlators of the energy-momentunr smesoow available.
Concerning the analytical continuation to real time, an instability at small esdrgthe standard
Maximum Entropy Method, preventing access to hydrodynamical featdregectral functions,
has been found and resolved. The first results support the idea ehgu#rk-gluon plasma is
strongly interacting in the temperature range T /T, < 2.5. Extension of the work described
here will hopefully yield a better understanding of the hydrodynamicahregf thermal QCD
from first principles.
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