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Studies on hadron interactions from lattice QCD are reviewed. TheS-waveππ scattering lengths

of the I = 0 andI = 2 channels are extracted from various lattice determinations of low energy

constants inNf = 2 chiral perturbation theory. The results agree with each other and agree also

with other non-lattice estimates. Recently theP-wave ππ scattering phase shift for theI = 1

channel has been calculated. A preliminary estimate of theρ meson decay width from the phase

shift is consistent with the experimental value. Two approaches to potentials between hadrons are

discussed. One is a method using static quarks to define the distance between two hadrons. The

other is a method to define a potential from a wave function of two hadrons. An application of

the latter to the nucleon-nucleon (NN) potential turns out to reproduce qualitative features of the

phenomenologicalNN potential such as attraction at long distance and repulsion at short distance.

Theoretical issues of this approach are also discussed.
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Hadron interactions from lattice QCD

1. Introduction

As numerical simulations in lattice QCD mature, we can attack more difficult or complicated
problems in strong interactions. Calculations of hadronic matrix elements of electroweak operators
are predictions from lattice QCD, which can be used to determine parameters of the standard model.
Another interesting application is to investigate interactions among hadrons using lattice QCD.
Since hadrons are bound states of quarks and gluons, their interactions are residual effects of strong
interactions among them inside hadrons, and therefore they are more complicated quantities in
lattice QCD than properties of an isolated hadron such as masses or decay constants. In addition,
the euclidean nature of lattice QCD makes problems of hadron interactions more complicated and
difficult. Thanks to the finite volume technique[1], however, scattering lengths and phase shifts of
hadrons can in principle be extracted from lattice QCD. Some recent progress on these quantities
is reviewed in this paper.

I also consider a more complicated but important quantity of hadron interactions, the force
between nucleons (the nuclear force). In 1935 Yukawa introduced a virtual particle, the pion, to
account for the nuclear force[2], by which protons and neutrons are confined in nuclei. Since
then enormous efforts have been made to understand the nucleon-nucleon (NN) interaction at low
energies both theoretically and experimentally. In Fig.1, I present modernNN potentials, which
are characterized by the following features[3, 4]. At long distances (r ≥ 2 fm ) there exists weak
attraction, which is well understood and is dominated by the one pion exchange (OPE), as first
pointed out by Yukawa. At medium distances (1 fm≤ r ≤ 2 fm), contributions from the exchange
of multi-pions and heavy mesons such asρ, ω andσ lead to slightly stronger attraction. At short
distances (r ≤ 1 fm), attraction turns into repulsion, and it becomes stronger and stronger asr
gets smaller, forming the strong repulsive core[5], which is essential not only for describing the

Figure 1: Three examples of the modernNN potential in1S0 (spin singlet andS-wave) channel: Bonn[8],
Reid93[9] and AV18[10].
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Figure 2: S-wave scattering lengths in unit of 1/Mπ .

NN scattering data, but also for the stability and saturation of atomic nuclei, for determining the
maximum mass of neutron stars, and for igniting Type II supernova explosions[6]. Although the
origin of the repulsive core must be related to the quark-gluon structure of nucleons, it remains one
of the most fundamental problems in nuclear physics for a long time[7]. It is a great challenge for
us to derive the nuclear potential including the repulsive core from lattice QCD. Recent progress
on this issue is explained in this paper.

2. Conventional method in lattice QCD

In this section, some recent results for the scattering length and phase shift for pions are dis-
cussed.

2.1 Scattering length of pions

In Fig. 2, recent theoretical estimates of theS-waveππ scattering lengths,a0
0 anda2

0 in units
of 1/Mπ , are summarized [11], whereL andI of the scattering lengthaI

L represent the total angular
momentum and the total isospin, respectively. The band bounded by two black solid lines repre-
sents the theoretically allowed region (universal band)[11]. The three black dots are predictions
from 2-flavor chiral perturbation theory (ChPT) at tree, 1-loop and 2-loop levels from left to right.
Other results are obtained by using the formulae[12]

Mπ(2a0
0 +7a2

0) = −6π
(

Mπ

4πFπ

)4(
l̄3−

193
210

)
+M4

πα3 +O(M6
π), (2.1)

Mπ(2a0
0−5a2

0) =
3M2

π
4πF2

π
+24π

(
Mπ

4πFπ

)4(
l̄4−

887
840

)
+M4

πα4 +O(M6
π), (2.2)
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whereM4
πα3,4 are corrections to ChPT from dispersion integrals. They are approximated at the

physical point as

M4
πα3 = 0.135+0.77(a0

0−0.220)−1.50(a2
0 +0.0444), (2.3)

M4
πα4 = 0.061+0.48(a0

0−0.220)−0.26(a2
0 +0.0444). (2.4)

l̄3,4 are the low energy constants inNf = 2 ChPT and defined by

M2
π = M2{1+

x
2

l̄3 +O(x2)}, Fπ = F{1+xl̄4 +O(x2)} (2.5)

with M2 = 2Bmandx≡ M2/(16π2F2). Herem is the quark mass andF is the pion decay constant
in the chiral limit. Oncēl3 andl̄4 are known, the above expressions givea0

0 anda2
0.

The red ellipse in the figure corresponds tol̄3 = 2.9(2.4) from the mass spectrum of the pseu-
doscalar octet and̄l4 = 4.4(2) from the scalar form factor of the pion. The narrow azure strip
indicates the region allowed if̄l3 is treated as free parameter whilel̄4 is fixed to the above value.
There exist several lattice determinations ofl̄3 andl̄4. The MILC collaboration[13], using 2+1 fla-
vors of staggered dynamical quarks, obtain the low energy constantsL4,5,6,8 of Nf = 3 ChPT, which
are translated tōl3 = 0.8(2.3) and l̄4 = 4.0(6) by standard one loop formulae. The results fora0

0

anda2
0 are given by a green ellipse in the figure, which is consistent with the previous estimate (the

red ellipse). The result ofNf = 2 dynamical Wilson quarks,̄l3 = 3.0(5)(1)[14], with free l̄4 leads
to the narrow purple strip in the figure, which intersects the red ellipse.

Recent results of the ETM collaboration[15], l̄3 = 3.65(12) and l̄4 = 4.52(6), give Mπa0
0 =

0.221(1) andMπa2
0 = −0.0427(1) (with Mπ = 140MeV andFπ = 93 MeV), which nicely agree

with the red ellipse with smaller errors.
These lattice results fora0

0 anda2
0 are indirectly obtained by usinḡl3 and l̄4, which have been

determined from the quark mass dependences ofMπ andFπ . There exist several direct estimates
on a2

0 using the finite volume method[1]. The horizontal orange band in Fig.2 indicates the direct
result fora2

0 by the NPLQCD collaboration[16] with domain-wall valence quarks on a 2+1 stag-
gered sea. Recently they have reported a more accurate result,Mπa2

0 = −0.0443(4)[17], which is
consistent with the red ellipse. So far ChPT predictions and all indirect /direct lattice results agree
with each other. However a direct evaluation ofa0

0 is missing. Thus it is a great challenge for lattice
QCD to extracta0

0 directly by the finite volume method.

2.2 Theρ meson decay width

A less difficult thana0
0 but still challenging problem is the determination of theP-wave scat-

tering phase shift for theI = 1 two-pion system, from which theρ meson decay width is extracted.
Applying the finite volume method in the laboratory system to this problem, the CP-PACS collab-
oration has calculated the decay width[18] in lattice QCD with a renormalization group improved
gauge action andNf = 2 dynamical clover quarks on a123×24lattice atmπ/mρ ' 0.41and the lat-
tice spacing1/a' 0.92GeV. In order to realize the kinematics such that the energy of the two pions
is close tomρ , one pion has a non-zero momentump = (2π/L)e3 and the other is at rest, while the
ρ meson has the same non-zero momentum. Energies of these states for non-interacting hadrons

areW0
1 =

√
m2

π + p2 +mπ for the two pions andW0
2 =

√
m2

ρ + p2 for theρ. At mπ/mρ ' 0.41 on
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Figure 3: Scattering phase shift sin2 δ (lower panel), positions ofmρ and resonance massMR (upper panel)
in lattice units. "Cont" refers to results obtained with the continuum dispersion relation while "Lat" to those
obtained with the lattice dispersion relation.

a 123×24 lattice, the invariant mass of two free pions takes the value
√

s' 0.97×mρ , which is
much closer tomρ than that in the center of mass system,E = 2

√
m2

π + p2 ' 1.47mρ . The hadron
interaction shifts the energies fromW0

n to Wn, which are related to the two-pion scattering phase
shift δ in the infinite volume through the Rummukainen-Gottlieb formula[19].

To extract two energy levelsWn close to each other, a2× 2 matrix of the time correlation
function

G(t) =

(
〈0|(ππ)†(t)(ππ)(ts)|0〉 〈0|(ππ)†(t)ρ3(ts)|0〉
〈0|ρ†

3(t)(ππ)(ts)|0〉 〈0|ρ†
3(t)ρ3(ts)|0〉

)
(2.6)

has been constructed, whereρ3(t) is an interpolating operator for the neutralρ meson with the
momentump and the polarization vector parallel top, and(ππ)(t) is an interpolating operator for
two pions,(ππ)(t) = (π−(p, t)π+(0, t)− π+(p, t)π−(0, t))/

√
2. Two energy levels are obtained

from two eigenvaluesλn(t, tR) of the matrixM(t, tR) = G(t)G−1(tR) as

λn(t, tR) = e−Wn(t−tR) (2.7)

for larget. To keep symmetry between source and sink inG(t) U(1) noises are introduced. The
total number of quark propagators per configuration becomes 520, including 10 noises times 2
source points[18].

From the energy levelsWn extracted, the invariant mass and the momentumk are given by√
s=

√
W2

n − p2 andk2 = s/4−m2
π , assuming the continuum dispersion relation, while they be-

comecosh(
√

s) = cosh(Wn)−2sin2(p/2) and2sin2(k/2) = cosh(
√

s/2)−cosh(mπ), using a lat-
tice dispersion relation. ThenW1 leads totanδ = 0.0791(9) at

√
s= 0.776(8) (continuum disper-

sion) ortanδ = 0.074(7) at
√

s= 0.800(8) (lattice dispersion), andW2 givestanδ = −0.38(11)
at

√
s= 0.95(3) (continuum) ortanδ = −0.52(14) at

√
s= 0.98(3) (lattice). In both cases it is

observed thatδ > 0 (attractive) at
√

s< mρ = 0.86(1) while δ < 0 (repulsive) at
√

s> mρ . This
property confirms the existence of a resonance at a mass aroundmρ [20].
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In Fig. 3, sin2 δ , which is proportional to the scattering cross section of the two-pion system,
is plotted against the invariant mass

√
s. The two lines in the figure represent fits of the data by

tanδ =
gρππ

6π
k3

√
s(M2

R−s)
, (2.8)

whereMR is the resonance mass, plotted also in the upper panel of Fig.3, andgρππ is the effective
coupling ofρππ. If gρππ were obtained at several quark masses, it could be extrapolated to the
physical quark mass. Since this calculation is performed only at one quark mass, however, it
is assumed thatgρππ is independent of the quark mass, so that theρ meson decay width at the
physical quark mass is estimated by

Γph =
g2

ρππ

6π
(kph)3

(mph
ρ )2

= g2
ρππ ×4.128MeV, (2.9)

where(kph)2 = (mph
ρ )2/4− (mph

π )2. The fit result ofgρππ givesΓph = 162(35) MeV (continuum)
andΓph = 140(27)MeV (lattice), which are consistent with the experiment value,Γ = 150MeV.

Since the first attempt is successful, the next step is the chiral extrapolation. Theρ meson
decay width is a good bench mark quantity which shows the dynamical nature of QCD vividly.
Therefore collaboration groups which have full QCD configurations at small quark masses are
encouraged to calculate this quantity.

3. Potentials for heavy hadrons

In the following two sections, extractions of the potential between hadrons from lattice QCD
are discussed. A straight-forward way to define a potential is to calculate an energy of a two-
hadron system as a function of the distance between the two hadrons. A difficulty exists in the
definition of the distance between two hadrons, since the two hadrons are moving around changing
their relative distance. To overcome this difficulty, one (infinitely) heavy quark may be introduced
in each hadron, so that the distance between two hadrons is defined by the distance between the
two heavy static quarks, which do not move in space for all the time. This definition, similar to
the static quark potential from a Wilson loop or Polyakov lines, is indeed employed to calculate
potentials between two heavy hadrons in lattice QCD.

0 0.2 0.4 0.6 0.8 1
Distance r [fm]

−0.5

0

0.5
(κ=0.1650)

VBB−2VB [GeV]

0 0.2 0.4 0.6 0.8 1
Distance r [fm]

−0.5

0

0.5
(κ=0.1650)

VBB−2VB [GeV]

0 0.2 0.4 0.6 0.8 1
Distance r [fm]

−0.5

0

0.5
(κ=0.1650)

VBB−2VB [GeV]

Figure 4: The binding energy,VBB −2VB (GeV), as a function ofr (fm). Left: All the light-quark flavors
are different. Middle: One pair of quark flavors is identical. Right: Two pairs are identical.
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Figure 5: The central meson-meson potential (MeV) as a function ofr in lattice units.

3.1 Baryon-Baryon

In Ref. [21], the energy of two heavy baryons has been measured as a function of the distance
r between two heavy quarksQ, using quenched QCD with the plaquette gauge action and the
Wilson quark action ata ' 0.19 fm on a203 × 24 lattice. The binding energy of two baryons,
VBB−2VB, is plotted as a function ofr in Fig. 4 atmπ ' 500MeV for the light quark, whereVBB is
an energy for two baryons whileVB is an energy for one baryon. The differences of the three figures
are explained in the caption. Surprisingly, the binding energy is very small and shows almost no
dependence onr for all three cases. Thus, a repulsive core is not seen for the heavy baryon potential
in this calculation.

3.2 Meson-Meson and others

In Ref. [22], the binding energy of two heavy-light mesons has been computed, each of which
is made of one static quark and one light quark, using quenched QCD with the DBW2 gauge action
at a' 0.1 fm and the Wilson quark action atmπ ' 400MeV. The central potential for total spinS
and isospinI of two light quarks in a meson-meson system is decomposed as

VI ,S(r) = V1(r)+(σ1 ·σ2)Vσ (r)+(τ1 · τ2)Vτ(r)+(σ1 ·σ2)(τ1 · τ2)Vστ(r) (3.1)

whereσi (τi) acts on the spin (isospin) of the light quarkqi , andr is the distance between the two
static quarks. Results forVX(r) (X = 1,σ ,τ,στ) are plotted in Fig.5. All potentials show attraction
at short distance (r ≤ 0.2 fm ).

In Ref. [23], a meson-meson potential and a meson-baryon potential has been calculated with
the same setup of the baryon-baryon case in the previous subsection. As shown in Fig.6, however,
the dependence onr is very small in both cases. In particular, no short-distance attraction is ob-
served for the two heavy-light mesons, contrary to the results in Fig.5. There are several candidates

7
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Figure 6: The meson-meson potential (left) and the meson-baryon potential as a function ofr at mπ ' 700
MeV. Triangles (circles) denote results without (with) light quark exchange diagrams.

which might cause the difference: the light quark mass, the lattice spacing, the lattice volume, the
statistics or the way to extract the binding energy. Further investigations are necessary for definite
conclusions about the static quark approach to potentials between hadrons.

4. Potentials from wave functions

In Ref.[24], the nucleon-nucleon (NN) potential has been extracted in lattice QCD by a totally
new and different method, which is explained in this section.

4.1 Wave functions and potentials

The starting point of the new method for theNN potential is a wave function defined by

ϕ(r ,E) = 〈0|N(x,0)N(y,0)|2N;E〉, r = x−y, (4.1)

whereN(x, t) is an interpolating field of the nucleon,|2N;E〉 is a 2N state with energyE < Einelastic

with the inelastic threshold energyEinelasticof the 2N system. This wave function was first analyzed
for a spin model in Ref. [25], and has been employed in lattice QCD to calculate theππ scattering
length[26].

This wave function has the following properties. For large enoughr = |r |, (H0−E)ϕ(r ,E) =

0, whereH0 =
−∇2

2µ
is a free non-relativistic Hamiltonian with the reduced massµ = mN/2. This

means that the interaction between two nucleons vanishes for a large separation. Moreover, for
example in the case of the1S0 channel, it can be shown that

ϕS(r ,E) ∼ eiδ0(k) sin(kr +δ0(k))
kr

+ · · · , (4.2)

whereδ0(k) is theSwave scattering phase shift andk is determined byE = k2/(2µ). In Ref. [26,
27], it is shown for a two-pion system that

ϕS(r ,E) = eikr +
ik

4πr
H(k;k) j0(kr)+P

∫
d3p

(2π)3

H(p;k) j0(pr)
p2−k2 + Iothers(r), (4.3)

8
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whereH(p,k) = (Ek + Ep)M(p,k)/(8EkEp) with Ep =
√

m2
π + p2 andM(p,k) is the (off-shell)

scattering amplitude. A similar but a little more complicated expression can be shown also for the
NN system[28]. For larger, if E < Einelastic, the contribution fromIothers vanishes exponentially
and eq.(4.3) approaches eq.(4.2).

The potential is defined from the wave function through the Schrödinger equation

[H0 +V(r)]ϕ(r ,E) = Eϕ(r ,E), (4.4)

which symbolically gives

V(r) =
(E−H0)ϕ(r ,E)

ϕ(r ,E)
. (4.5)

4.2 Lattice calculation

A corresponding lattice wave function in a finite box atE ' 0 is given explicitly by

ϕ(r ,E) ≡ 1
24 ∑

R∈O

1
L3 ∑

x
PI

i j P
S
αβ 〈0|N

i
α(R[r ]+x,0)N(x,0)|2N;E〉, (4.6)

whereNi
α = εabc(tqaCγ5τ2qb)qi,c

α , P1 = 1 andP0 = τ2 are isospin projections,P1 = 1 andP0 = σ2

are spin projections, and the summation overx gives zero total momentum. The summation over
the discrete rotationsR of the cubic groupO implies that the state belongs to theA+

1 representation
of the cubic group, which is expected to couple to anL = 0 ground state as well asL ≥ 4 excited
states of the rotation group in the continuum theory.

The wave function without projections has been extracted from the 4-point nucleon correlator
as

FNN(x,y, t; t0) ≡ 〈0|Ni
α(x, t)N j

β (y, t)JNN|0〉 = ∑
n

An〈0|Ni
α(x, t)N j

β (y, t)|2N;En〉eiEn(t−t0)(4.7)

whereAn = 〈2N;En|JNN(t0)|0〉 andJNN(t0) = PI
i j P

S
αβ N i

α N j
β . In N , a wall source is employed

by replacingq(x, t0) with Q(t0) = ∑x q(x, t0) after Coulomb gauge fixing. For large enought the
wave function forE = E0 is obtained.

In a finite volume, energy levels are shifted from those in the infinite volume as∆En(L) =
En(L)−En(L = ∞) = O(L−3) due to interactions. From these shifts, the scattering phase shift can
be extracted[1].

4.3 Numerical simulations

In the actual calculation, the NN scattering forL = 0 is considered. There are two channels,
the spin singlet (S= 0) channel1S0 and the spint triplet (S= 1) channel3S1, where the standard
notation2S+1LJ is used. Since only a central potential appears for1S0, the definition (4.5) directly
givesVNN(r) = VC(r). On the other hand, in the case of3S1, the potential becomesVNN(r) =
VC(r)+VT(r)S12(r), whereS12(r) = 3(σ1 · r)(σ2 · r)− (σ1 ·σ2) is the tensor operator. The tensor
potential induces mixing between3S1 and3D1 states, so that the definition (4.5) gives the so-called
effective central potential, which includes the mixing effect from the3D1 state as a second order
perturbation.

9
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Figure 7: Figures from [24]. Left: The normalizedNN wave function for the singlet(circles) and the
triplet(triangles) as a function ofr (fm) atmπ ' 527 MeV. Right: The central (effective central)NN potential
(MeV) as a function ofr (fm) for the singlet (triplet) atmπ ' 527 MeV.

Numerical simulations have been made in quenched QCD on a324 lattice with the plaquette
gauge action and the Wilson quark action, ata' 0.137fm from theρ meson mass. The number of
configurations is 2000 formπ ' 370MeV and 527 MeV, and 1000 formπ ' 732 MeV. A Dirichlet
boundary condition (DBC) in time and a periodic B.C. in space are employed, and the wall source
with Coulomb gauge fixing is placed att0 = 5, to avoid an influence of the DBC. Calculations have
been performed on a Blue Gene/L at KEK, which has 57.3 TFlops peak performance. It took about
4000 hours of 512 Nodes (a half-rack, 2.87TFlops peak) with 34–48% sustained speed to complete
them.

4.4 Results

In the left panel of Fig.7, the NN wave function normalized to 1 atr ' 2.2 fm is plotted
as a function ofr for 1S0 and3S1 at mπ ' 527 MeV. In both cases the wave function shows an
increase at 0.5 fm< r < 1.5 fm, suggesting attraction, while it decreases atr < 0.5 fm, indicating
the existence of the repulsive core. In the right panel of Fig.7 the central (effective central)NN
potential extracted from the wave function by eq.(4.5) at mπ ' 527 MeV is plotted as a function
of r for 1S0 (3S1). Interestingly the potential obtained qualitatively agrees with theNN potential
determined from scattering experiments: weak attraction at long distance, a little stronger attraction
at intermediate distance and strong repulsion at short distance (the repulsive core). The solid line
is the Yukawa potential (One Pion Exchange Potential) given by

VYukawa
C (r) =

g2
πN

4π
(τ1 · τ2)(σ1 ·σ2)

3

(
mπ

2mN

)2 e−mπ r

r
, (4.8)

which agrees well with the data at long distance, withg2
πN/(4π) ' 14.0 from experiments,mπ '

0.527GeV andmN ' 1.34 GeV from lattice data. Thus, in some sense, the Yukawa theory for the
nuclear force atr > 1 fm is confirmed by lattice QCD.

The quark mass dependence of theNN potential for1S0 is shown in Fig.8. As the quark
mass decreases, the repulsive core at short distance gets stronger, and at the same time, attraction
at intermediate distances also becomes a little stronger[29]. In the future it will be interesting to
see if this quark mass dependence remains in full QCD.

10
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Figure 8: The central NN potential (MeV) as a function ofr (fm) for 1S0 at mπ ' 320(red), 527(green) and
732(blue) MeV [29].

5. Theoretical considerations and future perspectives

5.1 Energy dependence of the potential

Since the wave function depends on the energyE = p2/(2µ), the potential defined by eq.(4.5)
is also energy dependent in general:

VJ(r,E) =
(E−H0)ϕJ(r,E)

ϕJ(r,E)
, (5.1)

whereJ, the total angular momentum, is fixed, andr = |r |. To make our argument simpler, the
spin degrees of freedom are not considered here. SinceVJ(r,E) carries more information than the
scattering phase shiftδ (E) does,VJ(r,E) is redundant and therefore not physical. For the potential
defined from the wave function to be physically meaningful, its energy dependence must be weak
for some range of smallE.

In Fig. 9, theππ wave function and the corresponding potential in theS channel are shown
at r = (x,y,0) in quenched QCD atmπ/mρ ' 0.51 for p = 0 (left) andp = (2π/L,0,0) (right) on
an L3 box[30] . Although the wave functions at the two different energies are very different, the
potentials look similar. For theππ system, the energy dependence of the potential is not so strong at
low energy. Note, however, that the wave function (and therefore the potential) atp = (2π/L,0,0)
is calculated at equal time in the laboratory system and is transformed back to the center of mass
system, so that the relative time between the two pions isx dependent:t = vγx.

5.2 A unique local potential

In this subsection a method to extract a unique potential from wave functions is proposed[28].
As mentioned in the previous subsection, the potential seemsE dependent in general. In addition, it
may also depend on the choice of the interpolating operatorN(x, t) in (4.1): one can use a different
Ñ(x, t) unless it changes the asymptotic behavior (the phase shift).
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Figure 9: Upper plots: Theππ wave function atpx = 0, t = 0 (left) and px = 2π/L, t = vγx (right) in
quenched QCD atmπ/mρ ' 0.51. Lower plots: The corresponding potential.

To begin with, it is argued that, by introducing a non-local potential, the energy dependence
of the potential can be removed. The non-local potential is defined by the following equation,

K(r,E) ≡ (E−H0)ϕ(r,E) = ∑
r ′

U(r, r ′)ϕ(r ′,E), (5.2)

where all quantities are taken to be real. For notational simplicity,∑ is used even for the case that
a variable is continuous and the superscriptJ for the angular momentum is omitted here. Since
{ϕ(r,E)}E form a complete set, there exists an inverse such that

∑
E

ϕ(r,E)ϕ−1(E, r ′) = δ (r − r ′), ϕ−1(E, r) = ∑
E′

η−1
E,E′ϕ(r,E′) (5.3)

whereη−1
E,E′ is the inverse ofηE,E′ = ∑r ϕ(r,E)ϕ(r,E′). Using this we obtain

U(r, r ′) = ∑
E

K(r,E)ϕ−1(E, r ′). (5.4)

In the actual simulations, it is impossible to obtainϕ(r,E) for all E. If ϕ(r,E)’s are obtained
for E = E0,E1, · · · ,En, we expandU in terms of a derivatived such that

U(r, r ′) =
[
U0(r)+U1(r)d+U2(r)d2 + · · ·

]
δ (r − r ′) =

n

∑
k=0

Uk(r)dkδ (r − r ′). (5.5)

The coefficientUk can be obtained as

Uk(r) =
n

∑
j=0

K(r,E j)φ−1
j,k (r) (5.6)
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whereφ−1
j,k is the inverse ofφ j,k = dkφ(r,E j). Note thatd becomes a difference on a lattice.

It is now argued that the non-local potentialU obtained above can be transformed to a localE
independent potentialV. The Schrödinger equations for them become

(H0 +U)|ϕ,E〉 = E|ϕ ,E〉, 〈r|U |r ′〉 = U(r, r ′), 〈r|ϕ,E〉 = ϕ(r,E) (5.7)

(H0 +V)|ψ,E〉 = E|ψ,E〉, 〈r|V|r ′〉 = V(r)δ (r − r ′), 〈r|ψ,E〉 = ψ(r,E), (5.8)

whereH0 +U is not hermitian unlessU(r, r ′) = U(r ′, r), while H0 +V is hermitian. Note here
that the eigenvaluesE in both equations must be equal to ensure that both wave functions give the
same scattering phase shift (and the bound state spectrum if any). Existence and uniqueness ofV
are suggested by the inverse scattering theory, which tells us that a local potential for a fixedJ is
uniquely reconstructed from the scattering phase shift for allE and informations of possible bound
states. Since the eigenfunctions|ψ,E〉 of the hermitian operatorH0 +V satisfy 〈ψ,E|ψ,E′〉 =
C2

EδE,E′ , in contrast to〈ϕ,E|ϕ ,E′〉 = ηE,E′ , the transformation function〈r|Λ|r ′〉 = Λ(r, r ′) defined
by

|ψ,E〉 = Λ|ϕ,E〉, |ϕ ,E〉 = Λ−1|ψ,E〉, (5.9)

can be constructed as

Λ = ∑
E,E′

|ψ,E〉η−1
E,E′〈ϕ ,E′|, Λ−1 = ∑

E

|ϕ,E〉 1

C2
E

〈ψ,E|. (5.10)

The compatibility of non-local and local potentials leads to

Λ(H0 +U)|ϕ,E〉 = EΛ|ϕ,E〉 = (H0 +V)Λ|ϕ,E〉, (5.11)

which, together with the completeness of|ϕ ,E〉, implies

[Λ,H0]+ΛU = VΛ. (5.12)

If the number of degrees of freedom forE and r is denoted as#E = #r = N on a finite lattice,
eq.(5.12) gives N×N constraints, while the unkownΛ andV haveN×N and N components,
respectively. Therefore the determination of bothΛ andV from eq.(5.12) seems an ill-posed prob-
lem. However,N(= #E) components ofΛ can be taken freely, since the eigenvalue equation (5.8)
does not depend onCE, the norm of the eigenfunction, for allE’s. Using this freedom, eq.(5.12) is
enough to determineΛ andV. Eq.(5.12) is the master equation, which determines the unique local
energy independent potentialV, once a non-local potentialU is obtained from a wave function
defined through a particular choice of operators. This conceptually solves the uniqueness (orE
dependence) problem of "the potential from a wave function". The results in the previous section
correspond to the 0th order solution of this equation:V = U0 andΛ = 1.

5.3 Future perspectives

To understand interaction properties of hyperons, baryons which include at least one strange
quark, is an important subjects in the nuclear physics. Hyperon-nucleon (YN) and hyperon-hyperon
(YY) interactions are relevant to structures of the neutron-star core and the existence/absence of H-
dibaryon states. Properties of hypernuclei, nuclei which contain hyperons, will be also studied, as
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Figure 10: Figures from [31]. Left: The normalized wave function ofpΞ0 in the 1S0 (circles) and3S1

(triangles) channels as a function ofr (fm). Right: The corresponding effective central potential (MeV) .

a project at J-PARC (Japan Proton Accelerator Research Complex). However,YN andYY interac-
tions are poorly known both theoretically and experimentally so far. Lattice QCD calculations of
theNN potential in the previous section can be extended toYN andYY potentials.

In Fig. 10, the wave function and the corresponding potential forpΞ0 are plotted as a function
of r in quenched QCD[31]. The lattice parameters are the same as in the case of theNN potential
in the previous section. The light quark mass corresponds tomπ ' 370 MeV while the strange
quark mass is tuned to reproduce the physical K meson mass,mK ' 550MeV. Qualitative features
of theYN potential are similar to those of theNN potential. Weak attraction appears at long and
intermediate distances while a strong repulsive core shows up at short distance. However the spin
dependence of the potential is stronger than in theNN case. In particular, the repulsive core in
the 1S0 channel is much stronger than that in the3S1 channel. Although these results are still
preliminary, they are interesting and encouraging as a first step.

Lattice QCD calculations of potentials between hadrons from wave functions have just begun
and the first result of theNN potential surprisingly reproduces all the known features of theNN
potential such as weak attraction at long distance, a little stronger attraction at intermediate distance
and a strong repulsive core at short distance. For a quantitative comparison between lattice results
and experimental ones, however, chiral and continuum extrapolations are necessary to remove
systematic errors. The inclusion of dynamical quark effects in theNN potential will be the most
exciting improvement in future calculations. Now a door is open for us to vast fields in nuclear
physics with lattice QCD.
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