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2+1 flavour DWF simulations Peter Boyle

The RBC and UKQCD collaborations have jointly performed 2+1 flavour sitiwia of QCD,
representing the up, down, and strange quarks with the standard doalbfarmion action. This
review will firstly cover the theoretical foundations of our simulations cosrsid) issues such as
locality, chirality and topology. We will secondly present the ensemble paessand algorithms
used in our simulations, and discuss algorithmic performance and trasléAddfwill finally sum-
marise important results presented elsewhere in this confer@ri¢g][#,5.8.[7 [B[]9] and recent
publications [IP[ 31, 14, 1.8, LE.]16) 16] 17, L8, 19]. These resulisda pseudoscalar masses and
decay constants and low energy constants of the chiral effectivenigigra We also review re-
sults for the neutral kaon mixing amplitu@g, the KI3 form factor, pseudoscalar meson structure,
and vector meson decay constants. In the baryon sector we revielg fesuhe spectrum, and
nucleon form factors and structure functions. Highlights of our progna include preliminary
quark masses, and determinationsvgf from both fx / f; and from KI3, and an updated result
for Bx. We find significant finite volume effects in the nucleon axial chaygéor our m; = 330
MeV ensemble on &2.7fm)? lattice, and highlight the importance of large physical volumes for
non-trivial nucleon physics.

1. Latticeaction, algorithms, cost
We use the lwasaki gauge action and domain wall fermion action
D5l ¢ (Ms,mr) = 85Dy (Ms) + 8 Dag (M)

Dl‘(,x’(M5) = Dw/(—Ms)

Dgg(Mf) = % [(1— ¥5)Osi1,9 + (1+¥5)0 15 — 25;4
(1= 16) 80,1805 + (1+6)&081,-15 (L1)

m¢
2

HereDyy is the Wilson Dirac operator, and the boundary conditions are under&idmdDirichlet
in the fifth dimension, periodic in spatial directions and anti-periodic in time. a&8arktates of
either chirality are bound to the 4-dimensiosat 0 ands= Ls— 1 hyperplanes and are identifed
with physical, four-dimensional modes

g(x) = RW(x,0) + PRW(x,Ls— 1).

In dynamical simulations the bulk infinity of the five dimensional partition functioreisaved
using Pauli-Villars fields.

Our simulations, tablf] 1, have principally been performed using a single faltiee lattice
spacinga* = 1.73 GeV, and using both #@nd 24 lattice volumes corresponding t@.0fm)3
and(2.7fm)3. A status report on simulations in progress at a second, finer lattice gpaitma
328 lattice is also given. These latter simulations are carried out as part of hawitan between
RBC, UKQCD, and LHPC.

The degree of flexibility and choice of the implementation of Hybrid Monte-Chds ad-
vanced greatly in recent years, with several new algorithmic variantsopeal. These advances
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L3x T xLs (am,mg) B | al(GeV)|L(@Fm)| m;(MeV) Myes TMD
(0.01,0.04) 400 4000
16°x32x16 | (0.02,0.04) | 2.13| 1.62(4) | 1.94 530 3.08x 1073 | 4000
(0.03,0.04) (0) 630 7500
(0.005,0.04) 330 4500
243 x 64x 16 | (0.01,0.04) | 2.13| 1.73(3) | 2.73 420 3.15x 1073 | 4700
(0.02,0.04) Q) 560 2800
(0.03,0.04) 670 2800
32 x64x 16 | (0.004,0.03)| 2.25| ~2.15 | ~293| ~260 | ~6x10"* | 1100+
(0.006,0.03) ~310 1300+

Table 1: Ensemble parameters for the UKQCD/RBC data set. TResB2emble production is in collabo-
ration with LHPC since July 2007. The negative Wilson maghédomain wall formalism was 1.8 for all
ensembles.

include the (affordable) extension of exact algorithms to odd numberswadifts [2D], several
schemes for splitting the fermionic force into UV and IR portions that can dateg on different
timescales, and improved numerical integrators. Experimenting with the availptites, we
have settled on RHMC with a hybrid combination multi-mass preconditioning at light etades
[BF] and multiple pseudofermion fields &t]21] heavier mass scales with Omiglfegrators|[[23].
The simulated fermion determinant is included as

D'D(m) D(ms) D(ms) D(ms)
et ooy 54 o117 1 %64 om0
where each determinant factor is estimated via a separate pseudo-femtdofthfis four in all).
The degenerate,d flavours are mass preconditioned by the strange mass, the remaining three
factors of the strange mass make use of the RHMC n-roots force redtratiorand the factors of
D(1) are the Pauli-Villars fields. The “A’ and “B” determinants are updated dewmifit timescales
using nested Omelyan integrators with Omelyan parametel0.22.

The coarsest timescale useddis= % for the most expensive up/down fields at our lightest
mass. A trajectory length= 1 is used and thus contains only six timesteps. The nature of the finer
timesteps are somewhat complicated by our use of the Omelyan integrator. Aga@rimgegra-
tion QPQPQ timestep involves two force calculations that are not equallygjpadéonte-Carlo
time. Reversibility leaves little flexibility for possible approaches to integrataingeand in our
nomenclature a 1:1 nesting implementsoapleteQPQPQ Omelyan timestep of the second force
contribution for each sub-timestep of the first. Our strange mass determamarits nested inside
the up/down determinants implying that each of the three “B” force contribsittma calculated
twice for every “A’ force contribution. The gauge force is nested insiee“B” contribution in a
similar way but with an Omelyan nesting ratio of 1:6. Convergence residuatsinsmolecular
dynamics phases vary between §@Gind 10 according to the typical force contribution, while
10-1%is used uniformly for all Metropolis steps. Guesses are history indepéeadd reversibility
has been demonstrated to very high precision.

lwe gratefully acknowledge the immense contribution of Mike Clark to ougnmme
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The two most important measures of cost are the technology indepefgianmthanic cost and
the wall clock time to run an ensemble on the machines available to the collabofti®scaling
with light quark mass is weak for our mass-preconditioned algorithm. To altowerete com-
parisons with other calculations, we quote that thé @dsemble withm = 0.02 requiresO(1f)
applications oDy for a1t = 1.0 trajectory. Around 4@ = ltrajectories per day are produced on
a 4096 node QCDOC partition and sustained performance is around 1p19 Blo this machine
size. For our 32simulations on the same machine size around 10 units of MD time are produced
per day, with a trajectory length af= 2 MD time units.

2. Theoretical foundations

The DWF five dimensional system can be represented as a Fock spaeevitia a transfer
matrix T = """ where tani = ;™% — Ks. The four dimensional effective action of DWF is a
functional of the gauge fields and is not manifestly local. This approximateserlap operator

making use oHt as the argument to the sign function.

[detDawi(1)]* detDgui(m) = det% [1+m+ y5(1— m) tani(Lstanh ' Ks)]
— det% [14+m+ (1—m)yssgrKs| (2.1)

Ignoring anomalous chiral symmetry breaking for now, consider theudlavon-singlet axial
current in this formulation. The five dimensional theory has a conservedlimensional vector
current. The DWF (five dimensional) axial transformation associates \ositid negative chiral
charges with the positive and negative halves of the fifth dimension. Omeastruct a four
dimensional axial current that is extensive in the fifth dimension and fartwthe chiral symmetry
breaking effect of finitd_s consists only of a mid-point term in the fifth dimension.

Ayt (x) = 2ms P?(x) 4 J&,(X)

where
A= signs- = hbs)
IJ S; 2 IJ ’ ’
. 17— N _
JB(X’ S) = é LP(X+ uas)(1+ VH)U)-(‘—+[1,utqu(X7 S) - LIJ(Xv S)(l_ VH)UX,thqJ(X+ [.l,S)

PA(X) = W(x,0)PrtW(x,Ls — 1) — W(x,Ls — 1)At2W(x,0) = §(X) yst?q(X)
38,(%) = W%, Ls/2) PR (x,Ls/2 — 1) — B(x, Ls/2 — LA LPY(x, Ls/2)

In low energy Greens functions, the midpoint densigyis equivalent to the dimension-three op-
erator 2nedy°q Wheremes is an additive mass renormalization, measured as

o B
== 2(Pax)PA(y))

All unphysical chiral symmetry breaking effects in DWF, includimgs, involve propagation from
a source field of one or other chirality on the corresponding domain walsacthe fifth dimension.
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These naturally involve the transfer matilixaised to an appropriate (large) power. This suppres-
sion mechanism is key to the quality of DWF lattice chiral symmetry, and thus sitadeling the
details of the nature of the spectrumldf are crucial. The asymptotic propagation in the fifth
dimension is, for largés, dominated by the modes éfr at the lowest eigenvalues at which the
eigenmode densitp(A) is non-zero. However, for modelsg these asymptotic contributions can
be very much suppressed and detaildigpfand the size distribution of the eigenmodes must be
considered.

The translational invariance of the DWF approach in the fictitious fifth dimenagimits
power counting inTts as a powerful tool, andves serves as qualitative guide to the cost of one
factor of T's. It is worth emphasizing that this counting carries real power; for exampbag
chirality mixings forBy require two crossings of the fifth dimension and are proportionattg
[E7]. Calculations o%' are feasible[[39] 7], while residual chiral symmetry breaking is suffilyien
enhanced in direct measurement of the chiral condensate that it wik problematic with DWF
without further reduction ims (or matching largé.s valence simulations to our sea pion masses)

(24l
2.1 Localisation structure of Aoki phase

The zero modes dfly andHy coincide and the known quenched Aoki phase behaviour of

Hw is directly relevant. It has recently been understood that the structuhe afuenched Aoki
phase is rich: there is a non-zero density of near zero modelg,pind a Banks Casher pionic
condensate, throughout all of the accessible phase diagram; howdeealisation transition is
thought to occur and, towards weak coupling, the phase is thought taylBsmon-zero mobility
edge. Establishing that we at least have a non-zero mobility edge (or Yetti@igap in the spec-
trum) is key to establishing locality of dynamical overlap or DWF simulations. Tmgectured
model for the structure of the spectrum fe®) # 0 andp(A¢) > p(0) - a volume factor enhances
the contributions from modes above the mobility edge A consequence of this model for the
structure of the spectrum éfr is that [13[25]

C1+ Cze_)‘ Ls

Mres(Ls) = L
s

Here these two contributions come from a low density of (volume factor ssppd) localised
near-zero modes and a larger density of extended modes near the molgiityTde: overall factor
of Lis represents an infrared cut off on the shell of modes that contributdisagrily imposed by
the size of the fifth dimension.

2.2 Locality

For sufficiently smooth gauge fields there is a gap in the spectruRwoénd this implies
locality of the corresponding overlap Dirac operator takihg as the kernel of the sign function
[B4]. This proof may be generalised to cover the Shamir Kefgehat corresponds to tHe — o
limit of DWF, and also the condition can be relaxed to require only a gap in teetrsin of
delocalised eigenmodefs [46] 13].

As there is no gap in the spectrum of thig (in the absence of a ghost Wilson determinant) it
is necessary to demonstrate that its spectrum displays a hon-zero mobiétioeskjablish locality
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Figure1: We display the dependencerofssonLs for valence quarks on Domain Wall 2+1f ensembles with
the lwasaki gauge action ahg = 8. The fit correspond to a model based on the conjectured ityodilge
structure in the Aoki phase, and a good description of oua @ageen. This evidence of a non-zero mobility
edge indicates locality for the DWF effective action.

of the effective four dimensional theory. The related maittix = ysDw which has identical zero
mode structure, and it also suffices to sty in its place.

This can be done in two ways. Firstly we have done so indirectly by demtingtthe consis-
tency of the behaviour afye(Ls) with the above model, figufé 1. Secondly microscopic inspection
of the eigenmodes dfiy, can check the locality of individual low lying eigenmodes on a mode by
mode basis, figurf] 2. Given an eigenmogex), we takey as the location of the maximum
of ¢'y(x) and find the lowest exponential localisation lengtl that forall coordinates< with
IX—y| > 5 satisfies bound

W) < glulye .
We note that the bounds the eigenmode large distance from its pealimirections, and
emphasize that this strict bound approach is robust against eigenmatesxtended lower di-
mensional sub-spaces and other pathological cases. We thereferedraonstrated a non-zero
mobility edgeA. > 0.2, and thus locality, for oy = 2.13 simulations and that we are therefore in
a correct part of the Aoki phase diagram for taking a continuum limit.

2.3 Chiral symmetry breaking and non-perturbative renormalisation

We use the Rome-Southampton RI-mom approach to determine the renormalifation
lattice operators non-perturbatively. The valence DWF action summ@sa) effects, both on and
off shell, and thus is particularly well suited to the off-shell renormalisatgpr@ach. The good
chiral symmetry of DWF is reflected in its renormalisation structure, and onetmigiect this to
be well demonstrated and tested by NPR.

In practice, however, there are substantial physical spontanemas symmetry breaking
effects at lowp? for standard RI-mom kinematics. These obscure a demonstration of tide goo
chiral properties of DWF in coarse lattice spacing simulations. An examplésdbitthe symmetry
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Figure 2: We look at the scatter of exponential bounds measured fontodes of the Hermitian Wilson
Dirac operator foMs = —1.8 for § = 2.13. A mobility edge is clearly seen, giving direct evidené¢he
locality of DWF for our simulated parameters.
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Figure 3: The left panel shows a class of vertex correction graphstidmnon-perturbative physics accom-
panied byonly as/p® suppression. This is a disadvantageous feature of theasthiRl-mom kinematics.
The right panel displays the (physical spontaneous) chynralmetry breaking effects that split the axial and
vector amputated verticés, — /Ay for these kinematics. The splitting is correspondinglynbosuppressed
in1/p?
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MS2GeV| Z stat sys
Zn | 0.7161] 0.0001
Zn | 1656 | 0.048 | 0.104
Zr | 0.7951| 0.0034| 0.0117
s | 09276 0.0052] 00222

Table 2: Renormalisation constants for oir=2.13 ensembles. Results are quoted in the chiral limit, and
obtained on the T6ensembles. Systematic errors quoted contain estimatesrapelation errors and those
from (continuum) perturbative conversionMtS. The exception iZx which is an improved measurement of
the ratio of the conserved axial curremf, (x) to the more commonly measured boundary field axial current

aA) ¥syua(x)-

breaking splitting of\p — Ay in shown in figurd]3. These effects also introduce an ambiguity in the
determination of the renormalisation constants of around 2%. This phy§ieel is three orders

of magnitude larger than any contamination expected from our residual siinmetry breaking
mé,s= (3 x 107%)?, and no improvement will be gained by improving the accuracy of the chiral
symmetry by either increasirlg, or using a more exact overlap approach.

The problem has been enhanced by the particular choice of kinematiusaditional RI-
mom NPR. For a standard bilinear vertex function the leg momenta are eqlalsaft subgraph
is only suppressed by tt‘é of a single hard gluon as shown in figife 3.

A better alternative is to gain further suppression of soft contributiomgyusmon-exceptional
momentum kinematicg? = p’? = (p— p')?, figure[4.

Unfortunately the large body of higher perturbative calculations foilouaroperators in RI-
mom is non-trivial to reproduce for these alternative kinematics. Howasercan be made of these
results since even without conversion functions the good chiral chioglgpties of DWF can be
demonstrated and omission of chirality mixing 8y justified without requiring the perturbative
conversion. There is no practical benefit, for these specific quantitas, further redution in
Mes It is better to focus our available effort on more pressing problems.giée improvement
in the scaling window we have demonstrated for RI-mom vertex functions withexceptional
kinematics should serve as encouragement to the revisit high order tialesilaf the conversion
to MS for non-exceptional kinematics. It is also quite possible that the conveegproperties
of the perturbative expansion will be improved in some cases. For exangpfeuhloop Wilson
coefficient relevant t@;, displays much better convergenceMis than for conventional RI-mom.

Table [} lists the axial current, field, mass, tensor and four quark opeeatormalisation
constants obtained in referenge][38].

2.4 Topological tunneling

One of the principal attractions of dynamical fermion simulations with good Ickyrametry
is the existence of a correct axial anomaly. However, this perfectioneddidtion could easily be
compromised by mundane algorithmic issues resulting in failure to sample the tmabkigucture
of the vacuum adequately. Problems arise with exact chiral symmetry siacggih function
has a discontinuity which molecular dynamics updates will skip over for anyzeoo timestep.
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Figure 4: By using non-exceptional momenta, spontaneous chiral stngnbreaking effects are pushed
to much lower momenta than with standard RI-mom kinemafitg right panel displays a cross-chirality
mixing matrix elements relevant Bx. The excellent chiral properties of DWF, when extrapolatethe
chiral limit are now apparent even at intermediate momerduates. This approach is promising and can
demonstrate the absence of unwanted lattice mixings. lerdodreduce NPR systematics for renormalised
guantities recalculation of RI-mom anomalous dimensigngquired to high order in continuum perturba-
tion theory for these new kinematics. The left panel displing difference between the amputated axial and
vector vertex functions.

1
n |
N4
e 05 —
5 | ]
; oL — Exact O\LEI’ ap n 1/LS i
9 °[ |- DWFLF16 ]
< o5k |
g | ]
-1 i | .
-1 -0.5 0 0.5 1
K

S

Figure5: Tanh approximation to the sign function fog = 16

Approximations to the sign function, DWF included, can involve a smooth transiver some
eigevalue range, figuf¢ 5. Problems of this nature have not beernvetiseith DWF simulations,
and are unlikely to appear as the integration is problem free proddeg ﬁ Healthy global
topological charge histograms are obtained on odre?¥embles in figurg 6 and the susceptibility
is displayed in figurg]7.

The molecular dynamics problems have resulted in two responses fromrtamtyal overlap
community. The reflection-algorithm treats the lowest modes exactly usingieuytanly expensive
approach, while other§ [R9] have used an auxiliary pseudofermiomuesnt to freeze the global
topological charge by suppressing the density of low modésofHere, it is worth noting that the
Zolotarev approximation to the sign function used has a coarse lower burd.1 and does not
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differ greatly from the tanh displayed in figyre 5. In the language of tieelap, the key difference
from the RBC-UKQCD approaches is that the author$ df [29] suppihessensity of low modes of
Hw in the region—0.1 < A < 0.1 using an auxiliary fermion determinant, and it is then feasible to
project and treat exactly the few remaining low eigenmodéd$af This results in a fixed topology
simulation with improved chiral symmetry. Similar approaches could equally wetbbsbined
with the DWF tanh approximatior [BL, 32, 93] 34].

We estimate that DWF simulations are around five times cheaper than the five iinans
Zolotarev approach used in ][29], and twenty times cheaper than the riestedimensional ap-
proach.

As DWF shows, issues with integrability of the fermion contributions in molecylaathics
are likely either solvable or avoidable. We note that were the auxiliary detantnémd projection
dropped, then the remaining Zolotarev approximation would yield a very “domall-like” sim-
ulation and tunneling would likely take place. Some thought has recently IngEmtg developing
algorithms that continue to tunnel topology in the presence of an auxiliarynoietnt [30].

A more fundamental problem is the increasing potential barrier introdudaebr topologi-
cal sectors by the gauge action with increagihg=q.[2.1 and discussion indicates thags(Ls =
32) can be a qualitative guide to the near-zero mode dep$@y. Figure[J shows that this, and we
conjecture the tunneling rate per unit lattice volume, vanishes exponentially gatige coupling.

The trade off is clear: suppressing the low modes that mediate topologgehad attempting
to answer the difficult question about ergodicity of the simulation is one rdtibrwace. RBC and
UKQCD's choice has been to accept a level of residual chiral symmegaking that is merely
a minor irritant, but avoid questionable ergodicity and the risk of getting anoptglgics wrong
in a particularly expensive fashion. This is also a substantially cheapelasiom, allowing more
important systematic issues to be addressed.

3. Measurements

Table[B gives a summary table of the mesonic measurements made on our essEnntier
measurements have been made of nucleon two and three point functidrsfaticrlight two and
three point functiong]§] 9]. Between 150 and 700 measurements henertagle on each ensemble
depending on the quantity, and valence pseudoscalar masses vargib2adeMeV and 750 MeV.
Dynamical pion masses run from 330MeV to 650 MeV. Many more valenceesdlan dynamical
masses are used to increase the amount of information in the chiral regiraecagxploited in fits
to partially quenched chiral perturbation thedry][36], as highlighted byrtasses quoted in red.

4. Chiral effective lagrangian

In this section we review the results presented in more detail by Meifeng ditano Scholz
at this conference[J2]. Two approaches to fitting our data for pion @wh knasses and decay
constants to obtain the LEC's of the chiral effective Lagrangian hage beesented at this con-
ference. The finite range of validity of chiral perturbation theory leaweh determinations from
lattice (or indeed real world) data as something of an art. The rather raassivworld kaon is
neither unambiguously light nor heavy compared with chiral scales.

10
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Figure 6: Topological charge distribution on our four2dnsembles. These amg = 0.005 (top-left), 001
(top-right), Q02 (bottom-left), and 0.03 (bottom-right). The light feonimass is clearly constraining the
distribution, and we are likely sampling topology well egbito reproducé = 0 QCD.

One approach is to fit the full SU(8BU(3) chiral effective theory to data including the kaon
as an active chiral pseudoscalar. A strength of lattice formulations,aEWF, with controlled
flavour symmetry is that the chiral perturbation theory can be decouped lfttice artefacts in
our simulated flavour content.

A good available alternative is to treat the kaon as a non-Goldstone bosopled to an
effective SU(2x SU(2) theory. The analysis is applicable whenewgr« mg, whether or not the
kaon is heavy or light compared to other scales and we do not rely orl pbkitarbation theory
being convergent at kaon masses. The LEC’s will be strange massdigyieind, since the kaon
is somewhat lighter than a typical chiral scale, the convergence of thed ekpansion controlled

11
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Figure 7: Left panel displays topological susceptibility on ouf2¢hd 16 configurations; the line is the
leading order chiral behaviour withtaken from the Gell-Mann-Oakes-Renner relation. Righgpdisplays
the dependence ofies(Ls = 32) as a function of inverse gauge coupling. As discussed iretktetiis can be
taken as loosely indicative of trends in the density of neso modes and also of the topological tunneling
rate per unit lattice volume.

mx,my 0.001 0.005 0.01 0.02 0.03 0.04

0.001 | A,B; 240 290 340 420 490 550

0.005 AB A,B,C; 330 370 450 520 580

0.01 A,B AB A,B,C; 410 480 560 600

0.02 AB AB AB A,B,C; 550 600 650

0.03 AB AB AB AB A,B,C; 650 700

0.04 AB AB,C AB,C A,B, A,B, A,B,C; 750
Table 3: We display the available mesonic measurements for the fotf éhsemblesm <

{0.005,0.01,0.02,0.03}; ms = 0.04. The table lists valence masses andmy. In the upper right trian-
gle we give the approximate pseudoscalar meson mass in Megased of quarks with valence masegs
andmy,. Those masses quoted in red survive our cuts for making Nlr@apw quenched chiral fits. In the
lower left triangle we denote meson mass and decay constagurements by “A’, neutral meson mixing
matrix element measurements by “B”, and semileptonic decatyix elements and distribution amplitudes
by “C”. Black corresponds to valence measurements madeamtiie lightest two ensembles. Blue corre-
sponds to valence measurements made on all four ensembiesn Grresponds to unitary measurements
made only with the valence quark masses equal to sea quadesas

by these LEC’s may be correspondingly impacted. This will merely refleadéledynamics that
enters at the kaon mass scale. A reasonable estimate is that succetsisé@the chiral expansion
will only be suppressed by /ms. To estimate possible systematic NNLO contamination entering
when we perform SU(2) fits with a mass cut-oif we multiply the size of NLO corrections in our
NLO fit by m /ms. The relevant formulae can be easily obtained from standard SU(2) hezson
chiral perturbation theory under the simplification that vector contributioaslieopped[35].

We find that SU(3%SU(3) NLO partially quenched chiral perturbation thedry] [36] does not
describe our data well up to meson masses comparable to the kaon massd At gam only
obtained with a cut in bare quark massamf,g = (amy +am,)/2 < 0.01. while the kaon corre-
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Table 4: Fitted parameters from different fits with a valence massaomg < 0.01. For each fit the LECs
are quoted at two diffe rent scalés,. (Note: the value 0By depends on the renormalization scheme like
the quark masses: to obte#g, e.g., in theMS(2GeV) scheme, one has to divide the values quoted here by
ZMS(2GeV).

Ny (2Lg —Ls) Ls (2Lg—La4) Lg
SU(3) x SU(3) : aBy = 2.35(16), afy = 0.0541(40)
1GeV 519(45)-10% 251(99)-10% -4.7(42)-10° -6.7(8.0)-10°°
770MeV  243(45)-10% 8.72(99)-10% -0.1(4.2)-10° 1.39(80)-104
SU(2) x SU(2) : aBy = 2.414(61), afy = 0.066521)
1GeV 464(43)-10% 516(73)-10*% -7.1(6.2)-10° 13(1.3)-107%
770MeV  50(4.3)-10°° 9.30(73)-10% 3.2(6.2)-10°  3.3(1.3)-104

Table 5: Comparison of converted §8) x SU(3) fit parameters with those from $B) x SU(2) fits. Low
energy scalek 4 are defined af\ = 139 MeV.

aBy afy I3 I4
SU(3) x SU(3), conv. 2.457(78) 0.0661(18) 2.87(28) 4.10(05)
SU(2) x SU(2) 2.414(61) 0.0665(21) 3.13(33) 4.43(14)

sponds tamyyg~ 0.016. The utility of SU(3xSU(3) ChPT at NLO is questionable; however we
can quote LEC's that fit the data for valence strange and light quarkesas®ying the bound
amgyg < 0.01, and light dynamical quark massas < 0.01 but with a fixed dynamical strange
quark mass oadm; = 0.04. These LEC’s may well differ from those that would be obtained in the
unphysical true SU(3) chiral limit. The low energy constants obtainediaptaged in tablg|4 for
two popular choices of the chiral scale.

We also directly applied SU(&SU(2) to fit the LEC’s of the effective two flavour theory that
matches our simulated 2+1 flavour “real” world. These are also displayeblgj}. We fit the NLO
forms to our data using a mass euth,g < 0.01 to obtain a good quality of fit. We perturbatively
convert our results to the scale independ_gnﬂ SU(2) LEC's in tablg]s. Interestingly our 2+1f
results, both from a perturbatively converted SU(3) fit and from actigJ(2) fit are broadly
consistent with each other and with the 2f results of ETNIG [40] and CHR\N42]. This adds
somewhat to the picture discussed recently by Leutwylgr [43].

5. Quark masses and lattice spacing

We determinea !,am,q andam from a combination of the S=8~ baryon mass and the
pseudoscalar kaon and pion masses. These quantities then producerdoe® mass from
linear extrapolation in the valence massato; and toam,q in the light sea masses. They simul-
taneously produce consistent kaon and pion masses using our-&1{22) chiral extrapolations.

13
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Table 6: Determined lattice scale and spacing and unrenormalizamqnassew(nﬁhys: a4 amye).

al/GeV a/fm anpare anfy’® arrga’e anb™s
1.72928) 0.1141(18) —0.00184758) 0.00130G58) 0.034316) 0.037516)

The scale from th&~ can also be used to preditt, fk, ;—: and the quark massefd [2]. Based
on our preliminary analysis our bare quark masses correspond tanaised quark masses of
Myg = 3.72(16) MeV andms = 107.3(4.5) MeV in the MS at 2 GeV. We find> = 28.8(4). We
obtainedf; = 1241(3.6) MeV, fx = 149.6(3.6)MeV, which are around 5% lower than their ex-
perimental values. This is likely a®(a?) effect, and our ratio% = 1.205(18). This implies
IVus| = 0.223234). Here the errors on decay constants are statistical only, and the qussksna
andV,s contain only partial systematic errors. Full systematic errors will be estimaigbimrnal
paper [3p].

The lattice spacing determined frolf, is somewhat different, being around 1.65 GeV on
243 and 1.62GeV on 1% While on 16 we relied on vector meson states (which are unstable in
QCD) and an ad hoc value of4®5 fm forrg to set the scale, our larger2¥olume enables;; and
baryon masses to be safely considered. We find broad consistenayelneti®scay constants and
the Omega (which, being composed of three strange quarks, is physioallyfsr a baryon). We
have found that in the chiral limiy/a = 4.13(10), and this suggests we measure a physical value
of ro ~ 0.47 fm, and disfavourg = 0.495 fm. Were we to use the pseudoscalar decay constants to
set the scaley ~ 0.45 fm. This is a tendency that is consistent with other recent lattice calculations
[B7], and cautions against reliance on vector mesons for precisiée S8 are encouraged by
recent progress that has been made on treating vector meson decayerQ&ic44].

6. Neutral kaon mixing

We have updated our papgr][12] Bg with 243 results that have been presented by Cohen and
Antonio at this conferencé][3]. We use the two wall, operator sink methoditoagspatial volume
average. We use propagators that are the sum of solutions for peaimdiignti-periodic temporal
boundary conditions to eliminate unwanted round-the-world propagatibis. gives exceedingly
long plateaux on ouK; = 64 lattice. We have modified our analysis to set the lattice spacing from
theQ~ mass and now use fits assuming only SW(&W(2) chiral symmetry which we consider to
be more theoretically robust. We have access to lighter masses and more aligtistecise data
and see evidence of curvature in the fixed strange mass chiral extrapolRartially quenched
SU(2)x SU(2) chiral perturbation theory both describes the valence and ssadesndence well
in the region of our fit. The smaller volumm = 0.02 data point is not included in our fit, but the
unitary fit curve matches onto this data point reassuringly well.

The final results follow, with the first error statistical and the second satie.

BR!(2 GeV) = 0.514(10)(25), (6.1)
BYS(2 GeV) = 0.524(10)(28), (6.2)
Bk = 0.720(13)(37), (6.3)
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Figure 8: Results forBp together with the NLO partially quenche&U(2) x SU(2) ChPT fit to the 23
data plotted versus the light valence quark mags From top to bottom on the left-hand-side, the three
curves aran = 0.01, 0.005 andy respectively. The valence strange quark mass is fixed atiitary value

my = ms = 0.04. While the statistical errors are large, the growing uphamrvature inm, as the sea quark
mass is increased from 0.005 to 0.01 predicted by ChPT iblgisiThemy values are slightly shifted for
clarity.

Non-perturbative renormalisation 2%

Sea strange mass adjust 1%
Chiral extrapolation 2%
Discretisation 4%
Finite volume 1%

Table 7: Breakdown of systematic error estimate for ou? B4 result.

The components of the systematic error are shown in fhble 7. These eeradkiad in quadra-
ture, and the discretisation systematic is dominant. Simulations in progress wigh lafilte spac-
ing will directly address this. The two-loop perturbative conversiod &is currently a subleading
error but will soon become the most important error to address. Finer lafilmgings will only
yield logarithmic improvement, and a higher order calculation, preferably vatiraxceptional
momenta, is important. A non-perturbative step scaling approach couldyuodes even better
address the convergence of perturbation theory.

7. KI3 form factor

James Zanotti presented a status update of our calculation of the semileoniclécay
form-factor[3], f. (0) which is obtained from thi — 7T matrix element of the weak vector current

(1(p)Vu[K(p)) = Fi () (P + P)y) + F— () (Pp — P),)
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This is a promising approach for an accurate determinatio,gfand makes use of standard
double ratio technique$ [45] to measure the deviation of the form factor éirmity, giving a very
small overall error. An example ratio is given below.

<K(6) ’VO‘ n(6)><K(6) ’VO‘ 7T(6)> _ (nk + mﬂ)z | fo(q2 X)‘Z

(K(0)[VolK(0))(t(0) V| (0))  4MkMy i
Preliminary results using only tha, = 0.03, 0.02, 0.01 data points were presented[in|[[[7, 16]. We
have now added the lightest data poimt, = 0.005) and finalised our analysis in a full papr{[10].
The updated analysis includes unified chiral ghéxtrapolations, using a fit form that combines a
quark mass dependent pole dominance model with the constraints of the kal€uatio theorem:

fo(qz,nﬁ,nﬁ) _ 1+ fo+ (Mg —m2)2(Ag+ Ax(mg +mz2))

P
(Mo+My(mg +m2))?

: (7.1)

The results from a fit to the large volume 34lata is presented in Fify. 9. The left and right plots
show theg? and quark mass dependencies of Eq] (7.1), respectively. At theephygeson masses,
we obtain

fX7(0) = 0.964433)(34)(14) , (7.2)

which very much favours Leutwyler-Roof [48] results over more rebiggher order calculations
[69, BO]. The first error in Eq[(7.2) is statistical, while the second is image of the systematic
error due to our choice of ansafz {7.1) and the third is the estimate of diatimtigrrors. The
PDG quotesV,sf, (0)] = 0.21699) [A6]?, so using our resulf (7.2), we obtain

Despite being less mature, KI3 form factor appears very competitive wiffeceso fx / f,; as a
lattice method for constraining,s. We anticipate a substantial reduction in error by a recalculation
with a combination of twisted boundary conditiorjs][15] (removing the systematertainty in

the g? extrapolation) and stochastic volume averaging forraye= 0.005 data point (reducing the
error in the most important point in the chiral extrapolation). Finally, disattia effects will be
addressed before the next lattice conference using our new ensemithledfiner lattice spacing.

8. Pion and kaon distribution amplitudes

Chris Sachrajda presentdd [4] a calculation of the first and second n®wfedistribution
amplitudes of the pion and kaon computed from the following matrix elements

(K(0)|5(0) ;D) d(0)[0) = Ficipiciu (& )k

<7T<C])’u_(O)VSV{pDuDv}d(O)’(» = fniqlaiq“iqv<€2>n-
This calculation was performed on our®2dnsembles and follows on from an earlier work of 16
[LY, @8]. The first moment vanishes in the mass degenerate case antisnoofor the kaon,

2A more recent analysis find¥ysf, (0)| = 0.2167346) [@]
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Figure 9: We use a unified fit on the 34 64 data to both thg? and mass dependence of the form factor.
The data can be usefully displayed in two ways. Left panetains a pole dominance model interpolation
of the form factorfo(g?) to g2 = 0 having extrapolated to the chiral limit; the data points adjusted, using
the fit model, such that if the fit were perfect they would aldn the fit model. The small remaining scatter
is an indication of the quality of our unified fit. The right gshows the chiral extrapolation &f(g? = 0) ;
here the line is our fit model, while the data points are theltesf interpolation ta? = 0 for each ensemble
and these are consistent. We favour the Leutwyler-Roosqti@al and have a smaller error.

am = 0.005 )
am = 0.01 A —

>eon

X 1 Oogrr.‘:.(z gr?;a 003 0.035 0.04 0.045
Figure 10: Bare values of & )k vs the quark mass. The physical regioga— mqa = 0.037516) is marked.

figure[10, but not for the pion. The second moment has relatively weak dependence for both
kaon and pion, figurg 11. These were renormalised using one-loop latitebation theory and
we obtain the following preliminary results:

(E)NS(2GeV) =0.0292), (EX)MS(2GeV)=0.28(3), (&2)MS(2GeV)=0.27(2). (8.1)

9. Vector meson decay constants
These are defined through

(0[q2(0) Y au(0) [V(piA)) = fumy )
(0] G(0) " au(0) [V(p;A)) = ify () (e p” — ey p) .
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Figure 11: Bare values of £2),; and(&?)k as a function of the quark mass.

The vector meson decay consnépnis well constrained experimentally, but the tensor current
coupling is useful input that lattice gauge theory can provide to sum rog®#er phenomeno-
logical applications. Chris Sachrajda presented a 2+1f DWF calculatithresé transverse decay
constants, renormalised with RI-mom NPR using bothditd 24 volumes.

These results were obtained using only the input strange quark mag#of&ther than the
more physically realistic input quark mass (i.e. not includimgy) of 0.0343. The ratios%T display
very weak dependence an and an estimate absorbed this change in strange quark mass to the
physical point. As the tensor current is scheme and scale dependénatiresults were quoted at
2 GeV in theMSscheme as

T T bar T bar
fy(2GeV) Zr(2GeVa) fy "qa) _ 111(1) fy "29a) 9.1)
fV ZV f\k;are f\k;are
In theMS scheme withu = 2 GeV we finally obtain:
fT fT* fT
£ —068120); X =071211); - =0.7519). (9.2)

10. Nucleon mass and structure

Takeshi Yamazaki and Shigemi Ohta have presented refults [6] fedmform factors and
low moments of structure functions of the nucleon, and related work hadvato discussed at
other conference$ [B[L,|52]. These are performed using our #wersembles and the correspond-
ing Edinburgh plot[[5B] is displayed in figufe]12.

Nucleon three point functions have been calculated using a sourcérammkeparation of 12.
For our(2.7fm)3 simulation we find, figur§¢ 13, that the axial chagyeappears flat except at our
lightest datapoint, which is around 15% lower. Similar behavour was sedBlty; at heavier
masses on £1.9fm)3 2-flavour DWF simulation. We believe this is a finite volume effect with the
mass threshold determined by the volume. @ye= 0.01 data point on our Feensemble does not
display this effect, but carries very large statistical errors. Fifureid@ays our results against
myL, and is suggestive of mass dependent finite volume effects which ajgpseale withm;,L
and appear fom;L < 6. We observe similar behaviour if we plot the results with Wilson fermions
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Figure 12: Edinburgh plot obtained from various RBC and UKQCD joint@mbles. The DBW2 gauge
action was used witB = 0.764 and 072 while the Iwasaki gauge action was used \@ita 2.13 andB = 2.2.

The red data points represent the nucleon masses fof 0.005,0.01,0.02,0.03} for our 24 ensembles. In

the absence of a controlled extrapolation including cmcai-analyticities, our 2+1f results suggest plausible
agreement with experiment for Nucleon masses, and als@stiggasonable scaling behaviour across several
couplings and gauge actions.

by LHPC/SESAM and QCDSF in this fashiof] [6] 94] 55]. Improved statistedife 16 2+1f
measurements is important to clarify the one (statistically questionable) excapttos picture.

The lowest 23 data point is omitted from an extrapolation, ag= 1.16(6) obtained at the
physical pion mass. Results were also presented for the vector, axiatehdensor and induced
pseudoscalar form factors, some associated couplings (susR@and the induced pseudoscalar
couplinggp) and corresponding mean squared radii. The momentum fraction, heliajcin,
transversity and twist-8; structure function moments were calculated.

11. Conclusions

RBC and UKQCD have exploited the PPARC, Riken, and SciDAC QCDOC meshinEd-
inburgh and Brookhaven to simulate dynamical domain wall fermions with reasséicuark con-
tent. The analysis of the first lattice spacang = 1.73 GeV on g2.7fm)3 volume is well advanced
with a broad and rich physics programme presented at this conferehegrdgramme will con-
tinue to analyse two ensembles on a finer lattice spacing that are currenlydaesinrated. The
physics parameters are very competitive despite the cost of the addititnalifnension, with
sea pion masses down to 330 MeV and valence pions down to 240 MeVllpapgenched chiral
perturbation theory is exploited in our analysis programme and enabled magydata points to
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Figure 13: Left panel shows our results fgi as a function ofn,; for several ensembles. Potential finite
volume effects explain differences between these, andiatitavfrom experiment. The right panel displays
the same data as a functionrofL and the scaling of the deviant points with volume becomesammt. The
rather poorly determined blue result for oufEhsembles needs more effort to establish whether it confirms
this picture.

be measured within the SURBU(2) chiral regime. We have obtained results for the low energy
constants of the chiral effective lagrangian, quark ma®esandV,s from both fx / f; and from

KI3. We find that very large lattice volumes;L > 6 may be required for non-spectral nucleon
physics based on suspected finite volume effects in the nucleon axigechar
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