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QCD vacuum Falk Bruckmann

1. Confinement: areas of activity not covered

Confinement, one of the main phenomena in QCD, is usually associated with a gluonic string
between quarks and antiquarks giving rise to a linear potential. This QCD string remains under
investigation on the lattice, in particular its breaking by dynamical quarks has been seen in lattice
simulations [1].

However, there are other criteria for confinement that dominated this years confinement ses-
sion. The Kugo-Ojima and Gribov-Zwanziger confinement criterion concern the infrared properties
of propagators in Landau gauge. According to these criteria, the gluon propagator behaves as

D(p2)
p→0−→ (p2)2κ−1, κ > 0. (1.1)

Dyson-Schwinger equations in the continuum predictκ = 0.595, but with finite volume effects
up to L � 2π/ΛQCD ' 5 fm. Fig. 1 shows how the finite volume curves bend towards zero as
p→ 0, together with some first lattice computations of this observable. This figure is taken from
ref. [2], where many more references and details of the approach can be found. At this conference,
various groups presented lattice computations on huge lattices, but so far could not grasp beyond
the plateau in the gluon propagator. This mismatch needs to be clarified.
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Figure 1: Comparison of Dyson-Schwinger (curves) and lattice results (data points) on the gluon propagator
in Landau gauge, from ref. [2].

A partially similar method utilizes the Schrödinger picture in Coulomb gauge. In both cases
gauge fixing is plagued by the Gribov problem. The latter is rooted in the non-trivial configuration
space of gauge theories. It is not always a problem, but has also been used to get information about
the equation of state [3]. A completely different approach to confinement is based on renormaliza-
tion group decimation [4].
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2. Topology

The question which nonperturbative degrees of freedom are relevant for the QCD vacuum
brings me to the topic of topology. Over the years there has been established a ‘Standard model’
of topological objects. Table1 summarizes properties of center vortices, magnetic monopoles and
instantons, namely their dimensionality, to which subgroup of the gauge group they are related and
by which technqiue they can be obtained, e.g. on the lattice.

center vortices magnetic monopoles instantons

dimensionality 2 dim. sheets 1 dim. worldlines pointlike
subgroup center max. Abelian subgroup full gauge group
technique center projection Abelian projection semiclassics

Table 1: Properties of topological degrees of freedom proposed in the QCD vacuum.

The effect of chiral symmetry breaking is rather robust in that all these topological excitations
have been shown to induce it. Confinement is generated by vortices and monopoles, but not by
instantons; for a detailed review and a discussion of the interesting case of a centerless gauge
group see the plenary talks of M. Engelhardt [5] and M. Pepe [6] at previous Lattice conferences.

I would like to emphasize some new insights about interrelations of these objects. Concerning
vortices and monopoles, it has been observed that removing one type of object destroys the con-
finement mechanism of the other [7]. Monopoles and instantons, on the other hand, are related at
finite temperature, which will be discussed in more detail in the next section.

3. Calorons

Instantons are configurations with minimal action in a sector of non-trivial topological charge.
They are classical solutions, fulfilling in addition first oder (self-duality) equations. In most cases,
instantons are localised lumps of action/topological density with locations, sizes and color orienta-
tions as moduli.

Caloronsare instantons at finite temperature. In the continuum they are defined over the
manifold S1×Rd−1 whereas on the lattice on takes one extension much smaller than the others,
L0 � Li ; the circumference of the compact direction isβ = 1/kBT.

Calorons can be constructed naturally by putting infinitely many instanton copies alongx0.
This leads to overlap effects depending on the size and the relative color orientation of these copies.

Let me illustrate this with a rather simple example, the two-dimensionalO(3) model. Identi-
fying R2 with the complex plane, it can be shown that any meromorphic function is a solution of
the first order equations and hence of the equations of motion of this system. The polez0 in the
simplest meromorphic functions,

u(z) = (z−z0)/λ , u(z) = λ/(z−z0) , λ ,z0 ∈ C , (3.1)

has the meaning of the center of the instanton, whereas|λ | is its size.
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Figure 2: The topological charge of calorons in theO(3) model, eq.s (3.3) and (3.4), with holonomy param-
eterω = 1/3 and small (left) and large (right) size parameterλ (0.03 and 100 in units ofβ , the extension of
the compact direction), cf. ref. [8]. .

The conjecture that in this model instantons may contain a substructure, known under the name
of ‘instanton quarks’, arose from an alternative rational parametrisation,

u(z) =
z− ẑ
z− ž

, ẑ, ž∈ C. (3.2)

However, also thisR2 instanton consists of one lump, centered at(ẑ+ ž)/2 with size|ẑ− ž|/2.
Recently I have analyzed the finite temperature case [8]. The function

u(z) =
λ ·eω

2πz
β

e
2πz
β −1

, ω ∈ [0,1] , (3.3)

has poles atz= k · iβ with residuesλ ·e2π iωk. Hence it realizes a caloron coming from instanton
copies atx1 ≡ Rez= 0 of size|λ | and with orientations constantly rotated bye2π iω .

The topological charge density in this model has a rather simple form in terms ofu(z) and its
derivative:

q =
1
π

1
(1+ |u|2)2

∣∣∣∣∂u
∂z

∣∣∣∣2 . (3.4)

Fig. 2 shows profiles ofq for two caloron solutions with non-trivial parameterω in (3.3). While
the small caloron resembles a pointlike instanton, the large caloron consists ofstatic constituents
with fractional chargesω and1−ω, adding up to one unit. The size parameter of large calorons
transmutes into the distance of its constituents, which themselves have a size proportional toβ .
The role of these constituents in the dynamics of theO(3) model at finite temperature has not been
explored yet.

In 3+1 dimensional (pure) gauge theories one needs the ADHM formalism to construct the
most general caloron solution. Again, large calorons dissociate into static constituents, namely
magnetic monopoles[9, 10]. This and other features have made the caloron attractive in recent
years.

Fig. 3 shows such a ‘dissociated’ caloron. For gauge groupSU(2), the monopole masses are
2ω and 1−2ω. In the limiting case ofω = 0 one of the monopoles is massless and one arrives at
the old Harrington-Shephard caloron [11].
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Figure 3: Space-space plot of anSU(2) caloron withω = 1/8 and size 1.6β , from [9].

For gauge groupSU(Nc) there areNc constituent monopoles, just like quarks in a baryon. Due
to self-duality, these objects are electrically charged as well and therefore can be called dyons,
too. Some higher charge calorons are known [12–14] with the number of consituents of each type
being proportional to the topological charge. The constituent monopoles also carry the fermionic
zero modes (depending on the boundary conditions), an interesting story on its own.

By construction the gauge fields are periodic up to a gauge transformation. They can be made
periodic by a time-dependent gauge transformation, which in turn gives rise to an asymptotic field
A0(|~x| → ∞). Accordingly, the asymptotic Polyakov loop, named holonomy, becomes non-trivial

P∞ ≡ lim
|~x|→∞

P exp
∫

β

0
A0dx0 = e2π iωσ3 . (3.5)

It serves as a Higgs field (in the gauge group) or as a non-trivial ‘background’ for this novel type
of instanton solution.ω is the vacuum expectation value governing the masses of the monopoles,
while their charges appear in the long-range gauge field along the Higgs directionσ3 (in contrast
to these ‘photon’ fields, the ‘W-boson’ fields proportional toσ1,2 decay exponentially).

Apparently, the instanton liquid model at finite temperature needs to be modified. The hope
is to make contact to the dual superconductor picture based on magnetic monopoles and to the
deconfinement order parameter. In the confined phase the latter is〈tr P〉= 0, which would be best
mimicked by trP∞ = 0, the case of maximally non-trivial holonomy with identical monopoles.

Two recent findings are very encouraging: The first one concerns the effective potential at
finite temperature for the gauge field in the compact direction. It is well-known that at one loop
the effective potential favours trivial holonomyω = 0 (or ω = 1/2). This argument, however, is
overruled by a nonperturbative contribution from a caloron gas [15]: lowering the temperature,
ω = 0 becomes unstable and non-trivial holonomy is preferred, which can be interpreted as the
onset of confinement, visible in the caloron properties.

The second investigation is a semi-analytical study of calorons atT ' Tc [16]. Calorons of
fixed holonomy have been superposed and discretized on a lattice. As the main effect, a linearly
rising interquark potential has been found just for non-trivial holonomy.
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4. Filtering methods

The identification of topological objects in the QCD vacuum, as represented by lattice configu-
rations, is plaqued by the fact that the latter are dominated by UV (i.e.O(a)) fluctuations. Therefore
I will now discuss methods to filter these lattice configurations.

The most well-known filtering methods are cooling and smearing1, iterative modifications of
the links that average them with the surrounding staplesU (ν)

µ (x),

Uµ(x)→ P
[
αUµ(x)+ γ ∑

ν 6=µ

U (ν)
µ (x)

]
, α,γ ∈ [0,1] . (4.1)

In the case ofSU(2) the projectionP back onto the gauge group is just a scalar multiplication.

This method removes the UV ‘noise’ and drives the configuration towards classical solutions.
For example, calorons on the lattice have been obtained this way [18, 19]. As a filtering method,
however, smearing is biased, it prefers instantons (of certain size). Moreover, it is not clear how
long smearing should be applied.

Recently developed filtering methods are based on the eigenvalues and eigenvectors of lattice
Dirac operators. One of the key ideas is that (isolated) vortices, monopoles and instantons possess
a topological zero mode. Hence, low-lying eigenmodes are expected to be localized to topological
objects.

This localization has been used to probe the dimensionality of the underlying topological ex-
citations by the scaling of the inverse participation ratio with the lattice spacing [20, 21]. Some
evidence for brane-like objects was reported, but altogether the approach seems inconclusive [22].

By virtue of chiral fermions the topological charge density can be defined on the lattice alter-
natively to gluonic definitions. With a Ginsparg-Wilson type Dirac operatorD it reads [23]:

q(x)≡ tr γ5(
1
2

Dx,x−1) =
Vol·4Nc

∑
n=1

(
λn

2
−1)ψ†

n(x)γ5ψn(x) . (4.2)

q(x) sums up to an integer, determined purely by the zero modes. Moreover, this definition ap-
proaches the conventional trFµν F̃µν/16π2 for smooth configurations.

In eq. (4.2) I have included the spectral representation of the topological charge density. Now
the idea of filtering is totruncate the corresponding spectral sumat a rather small numberN�Vol
of modes.λN can then be viewed as the resolution of the filter.

In this way, first evidence for extended three-dimensional structures has been found by Hor-
vath et al. [26]. A refined analysis revealed all lower dimensions depending on the cut-off (and the
resolution), see table2 [24]. A peculiarity emerges at very low cut-off: space-time gets filled by
two connected components of topological charge, one positively and one negatively charged, being
entangled such that the opposite topological charge is nowhere far away.

1I will always refer to APE smearing, equivalent to RG cycling [17]. Its parameters in eq. (4.1) areα = 0.55 and
γ = 0.075, while for coolingα = 0.
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qcut/qmax 0.00 0.10 0.20 0.30 0.40 0.50

all-scale 2.7(1) 1.5(1) 1.1(1) 0.7(1) 0.4(1) 0.1(1)
λcut≤ 200 MeV 3.1(1) 1.8(1) 1.5(1) 1.0(1) 0.7(1) 0.2(1)

Table 2: Dimensions of topological structures found by truncating the fermionic definition of the topological
charge density, eq. (4.2), at some eigenvalue and cutting off the absolute value ofq at some level, from ref.
[24]. Note the appearance of (roughly) three-dimensional objects at low cut-off.

With the different filtering methods at hand, the obvious question is whether they2 reveal the
same topological structures. As the visualization in fig.4 suggests, all methods find the same ‘hot
spots’ of topological charge [25]. This excellent agreement is highly non-trivial given the different
nature of the filtering methods.

For the matching of the different filter parameters (and a more quantitative comparison) we
have considered crosscorrelators

χAB(r)≡ 〈qA(0)qB(r)〉 , ΞAB≡
χ2

AB(0)
χAA(0)χBB(0)

. (4.3)

The quantityΞAB is 1, if both methodsA andB give identical results. Fig.5 demonstrates how
an optimization ofΞAB serves to match the parameters of the filtering methods [25]. Structures
identified in this way faithfully represent infrared degrees of freedom in the QCD vacuum.

The distribution of the filtered topological lumps, in particular those which are common to all
methods, reveals an interesting power-law. It can be used to exclude a dilute instanton gas as a
model for the structures after filtering (for more details see S. Solbrig’s talk [27]).

Original H0.038L

Smear 10 H0.016L Dirac 50 H0.0066L Laplace 80 H0.030L

Smear 20 H0.020L Dirac 8 H0.0051L Laplace 20 H0.075L

Figure 4: The topological charge density of a thermalized (quenchedSU(2) zero temperature) configuration
in a fixed lattice plane, from ref. [25]. The left panel shows the original configuration with the typical UV
fluctuations. The other panels show the filtered topological charge density after smearing, Dirac and Laplace
filtering (according to eq.s (4.1), (4.2) and (5.2)) at different levels of filtering (top = mild, bottom = strong
filtering, cf. Fig.5).

2including the Laplace filter to be described below
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Figure 5: Matching of parameters of different filtering methods by maximizingΞAB, eqn. (4.3). S stands
for smearing, D for the fermionic topological charge and L for the Laplace filter, respectively, each with the
corresponding number of sweeps, fermionic or Laplacian modes. The triangles denote mild filtering, the
dots stronger filtering.

5. More spectral decompositions

In the comparison of the filtering methods, the Laplace filter [28] has been included, which
will be discussed now. From the definition of the gauge-covariant lattice Laplace operator and its
spectral decomposition,

−∆[U ]ab
xy ≡∑

µ

[−Uab
µ (x)δx+µ̂,y−U†ab

µ (y)δx−µ̂,y +2δ
ab
xy ] =

Vol·Nc

∑
n

λnφ
a
n(x)φ ∗bn (y) , (5.1)

an exact formula for the gauge links in terms of all Laplacian eigenvalues and eigenmodes follows:

Uab
µ (x) =−

Vol·Nc

∑
n

λn φ
a
n(x)φ ∗bn (x+ µ̂) . (5.2)

For filtering purposes it is again truncated at smallN (and projected back onto the gauge group):

U (N)ab
µ (x) =−P

[ N

∑
n

λn φ
a
n(x)φ ∗bn (x+ µ̂)

]
N�Vol . (5.3)

This method gives back filtered links, hence all observables can be measured on them. It is
also numerically cheaper than the fermionic filter (4.2). The string tension is preserved after fil-
tering [28], hence one can speak of alow mode dominanceof confinement. And as I have shown
before, it agrees to a large extent with smearing, although it is in principle nonlocal.

Other observables that have been given in a spectral representation of some lattice operators
are the field strength [29, 30, 24] and the action [31].

Of particular interest is a representation of the Polyakov loop, as the latter encodes the (de)con-
fining properties of QCD. This method starts with the fact that products of lattice operatorsD
generate products of links. Taken at same initial and final point, these products induce closed
loops. In the spectral representation of these loops the eigenvalue is simply raised to the according
power in the product.
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The other main ingredient is that different phase boundary conditions in the temporal direction
can be used to distinguish Polyakov loops from ‘trivially closed’ loops (like the plaquette) [33].
Summing over all space points, the following formula is exact:

∑
x

tr P(x) = const.
Vol·Nc

∑
n

[
(λn)Nt +z∗ (λz,n)Nt +z(λz∗,n)Nt

]
. (5.4)

Here,λz are the eigenvalues of the staggered Dirac operatorD – other one-link operators can be
used as well – with boundary conditions chosen to bez= exp(2π i/3), the gauge group isSU(3).

This relation has the potential to describe (de)confinement in terms of Dirac spectra, which is
very attractive since chiral symmetry breaking is related to the eigenvalue density atλ = 0 via the
Banks-Casher relation.

For filtering purposes, the sum on the r.h.s. of eq. (5.4) can be truncated in the IR. Generically,
this will reconstruct only a fraction of the Polyakov loop, depending not only on the absolute value
(to theNt th power) of the eigenvalues, but also on their dependence on the boundary conditionz.

As fig. 6 shows, the lowest modes are responding most to changingz, but contribute least to
P [32]. In other words, the (thin) Polyakov loop is obtained mainly from the UV modes. This
remains true for other values ofNt and other spatial volumes, for details see the talk of C. Hagen
and the poster of E. Bilgici [34] (and also for dynamical fermions [35]).

Why the modes at the lattice cut-off are so important is not fully understood. Partially the
issue is due to the fact that the IR modes have a low density (or even a gap) and a small absolute
value. But even their small contribution comes with an overall minus sign, as shown in fig.7. This
is caused by the twist in the boundary condition yielding larger eigenvalues at the lower end of the
spectrum (forNt = 6 the reconstruction of the Polyakov loop starts out with the correct phase, but
develops into the opposite phase in an intermediate region of the spectrum) [34].
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Figure 6: Details of the reconstruction of the Polyakov loop through eigenvalues of the staggered (quenched)
SU(3) Dirac operator on a 63 ·4 lattice, from [32]. The left panel shows a quantity measuring the change of
the eigenvalue with the 3 boundary conditions in eq. (5.4). The right panel displays how the absolute value
of the reconstructed Polyakov loop (i.e. the r.h.s. of that equation) evolves to the full original Polyakov loop,
set to 1.
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Figure 7: The average Polyakov loops of 20 independent configurations above the critical temperature in
the complex plane, from ref. [32]. Right the original Polyakov loops with the typical pattern close to the
center ofSU(3). Left the reconstructed Polyakov loops with 56% of the eigenvalues included in the sum in
eq. (5.4). The latter are roughly the former reflected at the origin (and multiplied by some constant).

Recently, this approach has been extended to other functions ofD [36] and to dressed Polyakov
loops (and the Laplacian taken forD) [34]. One of the goals is to get insight into the continuum
limit of this interesting connection between (de)confinement and chiral quantities.

6. Summary

I have presented several recent investigations about the physical mechanisms in the QCD vac-
uum and the role of topological excitations therein. So far we "tend to bear in mind that some
underlying ‘classical’ fields (be it ‘fat’ monopoles, vortices or instantons) drive the phenomena.
But attempts to identify them in non-perturbative ensembles have sytematically led to problems.
There might be some truth in it, but the key ingredient seems to be still missing" [37]. The new
results, in my opinion, exhibit the following tendencies:

The first one is towards a unification of topological objects in a ‘democratic vacuum’ (contain-
ing all of them). Calorons have been discussed as an example relating instantons and monopoles.
Three-dimensional sheets seem relevant, too.

Secondly, we have now at our disposal independent filtering methods to access the infrared
degrees of freedom in thermalized lattice configurations. As I have shown, they agree on the
topological charge structures and can be used to distinguish physical excitations from artefacts of
the methods. Actually, most of the studies of the QCD vacuum have been performed on quenched
backgrounds, some recent ones address more realistic situations with dynamical quarks [38].

The third tendency is that topological structures depend on cut-off and resolution. Together
with the first point, this new paradigm is a big challenge for modelling (also in view of the partic-
ular form of the topological charge correlator in the continuum containing contact terms [39]).
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