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1. The Charmonium Landscape

Until rather recently, the bulk of experimental knowledge about charmonium spectroscopy
lay at energies below or only slightly above the threshold for open charm (DD̄) production. This
consisted of three vector resonances (J/ψ,ψ(3686),ψ(3770)), a pseudoscalar (ηc) and three states
with positive parity and charge conjugation (χc0,1,2). In addition, measurements had been made of
radiative transitions between these states (e.g.χc0→ J/ψγ) and of the two-photon decays of the
ηc, χc0,2. The only knowledge of states aboveDD̄ threshold came from badly-constrained fits to
inclusivee+e− cross-sections yielding a tentative excited vector meson spectrum. Overall these
observations have been described well by quantum-mechanical models in which charm quarks
move non-relativistically in an assumed potential.

In the current century the charmonium picture has filled out considerably and new mysteries
have arisen owing to the high statistics and new production methods made possible by CLEO-c and
theB-factories. The remaining expected sub-threshold states,η ′c, hc, have been observed, as have
radiative transitions from theψ(3770) down to theχcJ. The above-threshold spectrum is rapidly
being mapped[1], with some states living up to the expectations of potential models[2] and others
coming as something of a surprise[3]. The increasingly complete set of exclusive data ine+e−

looks set to allow determination of the vector spectrum with some confidence.

In a series of recent works[4, 5, 6], members of the JLab lattice group have investigated the
possibility of computing several of these quantities using lattice QCD. These initial studies have
been carried out on quenched lattices with rather promising results. In the sections that follow I
will briefly describe the work done.

2. Radiative Transitions

One motivation for investigating the coupling of photons to meson states is to extract photo-
couplings for use in studies of meson photoproduction. At Jefferson Lab this is of particular interest
with the likely future running of the GlueX experiment which will photoproduce light mesons using
a 9 GeV photon beam. Indications from models[7, 8] have been that there should be unsuppressed
production of previously unobserved exotic hybrid mesons in such a process. A firmer prediction
using lattice QCD is an aim of the JLab lattice group.

Validating any new lattice radiative technique in the light meson sector is rendered difficult
by the sparsity of good radiative data (something that GlueX aims to remedy), and as such it was
decided to initially investigate methods in the charmonium sector. Here, as well as there being
good data to compare with, there are also fewer (or at least different) lattice technical constraints -
signals are typically cleaner, boxes can be smaller and no extrapolation in charm quark mass should
be required.

In [4], the JLab group applied an ambitious combination of lattice techniques, computing
three-point functions with heavy domain wall fermions on an anisotropic lattice (ξ = 3 at as ∼
0.1fm) within the quenched approximation. Anisotropic lattices as applied to charmonium exploit
the fact that while the quark mass scale demands a cut-off above∼ 1.5 GeV, the internal three-
momentum scale is typically much lower,∼ 500 MeV. On the lattice used, we can have bothmcat
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and|~p|as reasonably small and a spatial box size& 1 fm without requiring very many spatial lattice
sites.

Three-point functions were computed using local fermion bilinears as interpolating fields, thus
limiting the states that can be considered to the set of quantum numbers0±+,1±−,1++. The se-
quential source technique was utilised, allowing without additional cost insertion of any current or
momentum, but requiring a new computation for each sink operator or momentum change. Dis-
connected diagrams were not included.

Relating the three-point functions to transition form-factors requires knowledge of the overlap
of operators on to states (e.g.Z = 〈χc0|ψ̄ψ(0)|0〉), the mass spectrum and a decomposition of the
matrix elements of the vector current. As an example of the latter, consider the following covariant
decomposition between a scalar (e.g.χc0) and a vector (e.g.ψ):

〈S(~pS)| jµ(0)|V(~pV , r)〉= Ω−1(Q2)

(
E1(Q2)

[
Ω(Q2)εµ(~pV , r)− ε(~pV , r).pS

(
pµ

V pV .pS−m2
V pµ

S

)]

+
C1(Q2)√

q2
mVε(~pV , r).pS

[
pV .pS(pV + pS)µ −m2

Spµ
V −m2

V pµ
S

])
,

whereΩ(Q2) is an invariant function. Here there are two possible transition form-factors,E1(Q2)
which corresponds to the electric dipole multipole of a transverse photon andC1(Q2) which occurs
only for a longitudinal photon and hence vanishes asQ2→ 0. The non-conserved local vector
current was used in this study, with the multiplicative renormalisation constant set by insisting that
theQ2 = 0 “form-factor” of theηc was 1.

Given knowledge of theZ, E, one can cast the extraction of the form-factors as the solution of
an overconstrained linear system to be solved at each value ofQ2 allowed by lattice kinematics.

By analogy to the electromagnetic form-factors of the proton, pion and other hadrons, one can
define form-factors for charmonia. However charmonia are states of definite charge conjugation
and as such do not have electromagnetic form-factors (the photon hasC = −1), but one can still
define a single-quark form-factor by coupling the vector current only to the quark field. This will
yield information about the quark distribution within the state. In the case of theηc, whose form-
factor decomposition is the same as that of the pion, we extract the data shown in figure1(a).

The first thing we note is that unlike the pion case, the form-factor is not well described by
vector dominance of the lightest vector resonance (here theJ/ψ - with the imperfect quark mass
tuning we used this has mass2.9 GeV on this lattice) . This can be understood by comparing
the complexQ2 plane in the two cases - in the pion case theρ meson is the closest timelike
singularity (neglecting the effect of multiparticle cuts) with the next nearest, the excitedρ(1460)
being relatively rather distant and hence having a much reduced effect. In the charmonium case,
the vector resonances are comparable distances from the spacelike region and can all be expected to
contribute. This suggests that parameterising the form-factor in terms of vector meson contributions
will be rather inefficient.

Instead we fit the lattice data with a simple analytic formf (Q2) = exp
[
− Q2

16β 2 (1+αQ2)
]
,

yieldingβ = 480(3)MeV, α =−0.046(1)GeV−2 and what is clearly a good fit. This corresponds
to a “charge radius” of

√
〈r2〉 = 0.25fm, giving some a posteriori justification for the lattice size

being only∼ 1.2fm. This form-factor can be computed in potential models where it corresponds

3
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Figure 1: (a) ηc form-factor (b)J/ψ ’charge’ form-factor (c)J/ψ ’magnetic dipole’ form-factor (d)J/ψ
’electric quadrupole’ form-factor

to wavefunction overlap with a vector current insertion, but since these models are not covariant it
suffers from a frame ambiguity[9].

Results for theJ/ψ which, like the vector deuteron, has three form-factors are shown in figures
1(b,c,d). We note that the “charge radius” is compatible with that found for theηc which is in line
with the idea that they have the same spatial wavefunctions up to small spin-dependent effects. The
value of the magnetic dipole form-factor atQ2 = 0 indicates that non-perturbative gluon effects do
not give rise to an effective anomalous magnetic moment for the charm quark as had been suggested
earlier[10]. The small magnitude of the quadrupole form-factor limits the size of gluonic tensor-
forces between charm quarks in potential models. The extracted form-factor for theχc0 is described
by a larger “charge radius” of∼ 0.3fm which within a potential model is explained by the state
having aP-wave between the charm quarks.

The transition with least statistical noise on the lattice signal isJ/ψ → ηcγ. However in
this channel there are problems with both the lattice extraction and the experimental value. The
experimental value ofΓ(J/ψ → ηcγ) quoted by the PDG[11] comes from a single experiment,
namely Crystal Ball[12]. It has never been confirmed and is known to be rather sensitive to a
number of factors, including a difficult experimental background, and the badly known total width
of theηc[13]. Most models, unless tuned to accommodate it, do not agree with the quoted value. A
sophisticated analysis at CLEO-c to extract this number with realistic systematic error estimation
is underway.
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From the lattice side, we have the problem that the hyperfine splitting, which sets the phase
space for this transition, is not well determined. It is only with dynamical lattices and improved
actions that one comes close[14]. We demonstrate this ambiguity by showing in figure2 the exper-
imental width converted to a matrix element atQ2 = 0 in two ways, dividing out either the physical
phase-space or the phase-space corresponding to our lattice estimate of the hyperfine splitting.
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Figure 2: J/ψ → ηcγ transition form-factor

We see in figure2 that the lattice kinematics do not provide a datum atQ2 = 0 and we are
forced to extrapolate. We use a simple exponential formV̂(Q2) = V̂(0)exp

[
− Q2

16β 2

]
that fits the

data well.

A channel with reasonable noise, little phase space ambiguity and relatively precise experi-
mental data is the electric dipole transitionχc0→ J/ψγ. In figure3(a) we show our results. The

data is fitted with the formÊ1(Q2) = Ê1(0)
(

1+ Q2

ρ2

)
exp

[
− Q2

16β 2

]
. The slightly timelike data al-

lowed by the lattice kinematics is not included in the fit, so the fact that the curve extrapolates
through these points is a non-trivial test of its suitability. The agreement with the experimental data
is reasonable. Shown in figure3(b) is the longitudinal multipoleC1(Q2).

In the transitionχc1 → J/ψγ, two multipoles persist asQ2 → 0, an electric dipole and a
magnetic quadrupole. In non-relativistic theories the quadrupole is much suppressed and has a
magnitude which is very sensitive to the approximations made within the model. Experimentally
the two multipoles can be separated by studying the angular distribution of the photon in the decay.
In the lattice extraction, all independent multipole amplitudes are extracted simultaneously when
we solve the linear system of three-point functions. Results are presented in [4].

One motivation for the fit forms we have used in the case of electric dipole transitions comes
from potential models in which the spatial wavefunctions are approximated by those of the har-
monic oscillator potential. In this case, including spin-dependent corrections to the lowest order
electric dipole operator one obtains

EQM
1 (Q2) = a

(
1+ r

|~q|2
4β 2

ψ

)
exp− |~q|

2

16β̄ 2
≈ EQM

1 (0)

(
1+ r

Q2

4β 2
ψ

)
exp− Q2

16β̄ 2
,
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Figure 3: χc0→ J/ψγ transition form-factors (a)E1 (b) C1

wherer is related to spin-orbit Clebsch-Gordan coefficients,r = 2(χc0), 1(χc1), 0(hc), and where
this is evaluated in theχc rest frame at smallQ2. Hence, to a first approximation we’d expect
that ρ ∼ 1√

r so thatρ(χc1) ≈
√

2ρ(χc0) and ρ(hc)→ ∞. In the same approximation we have
ρ(χc0)≈ 2βψ . Within the large errors on the lattice results, these relations appear to be satisfied.

3. Two-Photon Decays

Charmonium states of positive charge conjugation can undergo decay to two photons. Indeed
the time-reverse of this process, two-photon fusion, is a commonly used charmonium production
method.

Looking naively it is not clear that one can easily evaluate the matrix element for the decay
of a hadron to two-photons in lattice QCD. The method used previously for the radiative transition
worked because in the limit of large Euclidean time separation, the interpolating fields at source
and sink overlapped only with the lightest QCD eigenstates of the appropriate quantum numbers -
the vector current insertion between them initiating the transition between orthogonal states. In the
two-photon case, one external particle must be a photon. If we guessed that a vector current would
serve as an interpolating field for a photon, we would find a large time separations that we actually
overlapped with theJ/ψ1. The problem is that a photon is not an eigenstate of QCD. The solution
comes when one realises that the photon is, however, a superposition of QCD eigenstates, with this
defined precisely by the field-theoretic Lehmann-Symansik-Zimmerman reduction.

The connection between the LSZ reduction and external photons in the specific case of Lattice
QCD was first expressed in [15], where it was applied to the hadronic structure of the photon. In
[5] the method was demonstrated for the two-photon decays of theηc and theχc0. Here we outline

1in this quenched study without disconnected diagrams
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the method beginning with the LSZ reduction of the amplitude in the QCD+QED theory,

〈γ(q1,λ1)γ(q2,λ2)|M(p)〉=
− lim

q′1→q1
q′2→q2

ε∗µ(q1,λ1)ε∗ν(q2,λ2)×q′21 q′22
∫

d4xd4yeiq′1.y+iq′2.x〈0|T{
Aµ(y)Aν(x)

}|M(p)〉,

up to photon renormalisation factors. The explicit photon fields prevent direct computation of this
quantity in pure lattice QCD, however we can utilize the perturbative expansion of the photon-quark
coupling to approximately integrate them out (the path-integral over gluon fields is suppressed):

∫
DADψ̄DψeiSQED[A,ψ̄,ψ]Aµ(y)Aν(x) =

∫
DADψ̄DψeiS0[A,ψ̄,ψ]( . . .+ e2

2

∫
d4zd4w

[
ψ̄γρψAρ

]
(z) [ψ̄γσ ψAσ ] (w)+ . . .

)
Aµ(y)Aν(x),

The integration over the photon field can be carried out by Wick contracting the fields into propa-
gator products, so that, neglecting disconnected pieces,

〈γ(q1,λ1)γ(q2,λ2)|M(p)〉= (−e2) lim
q′1→q1
q′2→q2

ε∗µ(q1,λ1)ε∗ν(q2,λ2)q′21 q′22

×
∫

d4xd4wd4zeiq′1.xDµρ(0,z)Dνσ (x,w)〈0|T{
jρ(z) jσ (w)

}|M(p)〉.

The photon propagator can be writtenDµν(0,z) =−igµν ∫ d4k
(2π)4

eik.z

k2+iε , cancelling the inverse prop-
agators outside the integral and supplying some momentum-conserving delta functions.

As explained in [15], the resulting expression can be analytically continued from Minkowski
to Euclidean space-time provided the photon virtualities,Q2

1 = |~q1|2−ω2
1 , Q2

2 = |~q2|2−ω2
2 are

not sufficiently timelike that they can produce on-shell hadrons. In charmonium2 this limits us to
Q2 > −m2

J/ψ . Using suitable a QCD interpolating field to produceM and reversing the operator
time-ordering for convenience we have

〈M(p)|γ(q1,λ1)γ(q2,λ2)〉= lim
t f−t→∞

e2 εµ(q1,λ1)εν(q2,λ2)
ZM(p)
2EM(p)e

−EM(p)(t f−t)

×
∫

dtie
−ω1(ti−t)〈0|T

{∫
d3~xe−i~p.~xϕM(~x, t f )

∫
d3~yei~q2.~y jν(~y, t) jµ(~0, ti)

}
|0〉 (3.1)

It is clear from the previous discussion that obtaining two-photon widths is a natural extension
to the study of radiative transitions carried out in [4] - there we computed three-point functions
involving vector currents with the source(ti) and sink(t f ) positions fixed and varied the vector
current “insertion” (t) across the temporal direction to plot out a plateau. For two-photon widths
we repeat this but with a varying sink (or in the case of eqn. (3.1), source) position which will be
integrated over with an exponential weighting.

2This is true within the quenched truncation, neglecting disconnected diagrams. Relaxing these approximations
allows production of light vector mesons, multi-pion states or vector glueballs - phenomenologically we expect these
states to have small coupling to the charmonium meson

7
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Calculations were performed on243× 48 isotropic quenched lattices with a lattice spacing
a≈ 0.047fm (determined from the static quark potential in [16]). The charm quarks were described
by a non-perturbatively improved Clover action [17] with Dirichlet boundaries in the temporal
direction. Given the small “charge radii” found for ground-state charmonia in the previous study,
we did not expect significant finite volume effects in this study. We adopted the conserved (“point-
split”) vector current at the insertion.

We applied two different methods to calculate the two-photon matrix element. The first (using
174 configurations) was to place the meson state at a fixed sink positiont f = 37. As in [4] the sink
was used as a sequential source for a backward propagator inversion, meaning that its properties
were fixed for each computation while we were able, without further cost, to vary the direction
and momentum of the insertion and the direction of the source field. We then computed with all
possible source positions,ti , which, while costly in computing time, allowed us to freely vary the
value of ω1 and henceQ2

1 and in addition to view the subsequent integrand. In figure4(a) we
display the integrand for “insertion” positionst = 4,16,32, ~pf = (000) and~q1 = (100) with anηc

at the sink.
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2

Figure 4: (a) Integrand at three values of vector current insertion time (t = 4,16,32) with pseudoscalar
sequential source at sink positiont f = 37. (b) Pseudoscalar two-photon form-factor as a function of time
slice,t. First six time slices ghosted out due to the Dirichlet wall truncating the integral. Constant plus single
exponential fits shown in orange.

In principle there can be a contact term when the two vector currents are on the same timeslice
- while there is not a clear signal of this in the data, this point requires further study.

It is clear that provided the insertion is not placed too close to the Dirichlet wall (i.e.t & 7)
we will be able to capture the full integral by summing time slices,ti . The integral as a func-
tion of insertion positiont is shown in figure4(b) for a selection ofQ2

2 with Q2
1 = 0 (ω1 = |~q1|)

where we observe plateaus with the deviation from plateau behavior at largert coming from ex-
cited ηc contributions, both of which are fitted simultaneously. Extracting the plateau values for
a range ofQ2

1 (which we are free to choose continuously) andQ2
2 (which is fixed for a given set

of ω1,~q2,~p), we find the dependence displayed in figure5. We plot dimensionlessF defined by
〈ηc|γ(q1,λ1)γ(q2,λ2)〉= 2(2

3e)2m−1
ηc

F(Q2
1,Q

2
2)εµνρσ εµ

1 εν
2 qρ

1qσ
2 , where the on-shell decay width is

Γ(ηc→ γγ) = πα2
em

16
81mηc|F(0,0)|2.
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2). Points are lattice QCD data, fits are monopole forms as

described in [5] .

The method of computing three-point functions with all possible source positions (ti = 0. . . t f )
is extremely costly in computing resources. With the penalty of losing the ability to freely varyQ2

1

we can reduce the computing time by a factor ofO(Lt) by putting the meson interpolating field at
the (fixed) source position and using

∫
dteω1t

∫
d3~zei~q1.~zψ̄(~z, t)γµψ(~z, t)

in the sequential source for the backward propagator inversion. It is then necessary to fixω1 and~q1

in advance and one cannot view the integrand since the integration is being performed “on-the-fly”
within the sequential source. We computed300 configurations withQ2

1 = 0 in this way and the
results forηc andχc0 are displayed in figure6, where we define theχc0 two-photon form-factor by

〈χc0|γ(q1,λ1)γ(q2,λ2)〉= 2(2
3e)2m−1

χc0
G(Q2

1,Q
2
2)

(
ε1 · ε2q1 ·q2− ε2 ·q1ε1 ·q1

)
.
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Figure 6: (a) ηc→ γγ∗ form-factor (b)χc0→ γγ∗ form-factor. Experimental numbers extracted from the
PDG and a recent Belle preprint[18]
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Of course here the errors displayed on the lattice data are statistical only and must be aug-
mented by an uncertainty due to scaling from our fixed lattice spacing to the continuum and one
related to the lack of light-quark loops within the quenched truncation. This is the first demon-
stration of this method, such controlled studies will doubtless follow now that efficacy has been
demonstrated.

4. Higher Excitations

In the previous two section I reported on radiative results involving charmonia that are the
lightest state in a givenJPC. There is also good data on radiative processes involving excited states.
The techniques outlined above extend well to excited states if one has a method to determine
the energies and overlap factors for the excited states with some degree of reliability. A method
that is not particularly reliable is to consider the sub-leading exponential behaviour of two-point
correlators, especially in a case like charmonium where for example the vector channel has two
near-degenerate first excited states (ψ(3686), ψ(3770)).

In [6], the possibility of using a matrix of two-point correlators with a broad range of interpo-
lating fields was investigated. As well as the mass spectrum (for which this method is often used)
we also required the overlap factors for later use in converting three-point functions into radiative
transition matrix elements.

4.1 Operators, their continuum limits and lattice irreps

A operator basis was constructed based upon operators that in the continuum would have the
structure of fermion bilinears with a number of symmetric covariant derivatives

Oµνρ··· = ψ̄(x)Γµ
←→
D ν
←→
D ρ · · ·ψ(x).

In the continuum, the overlap of these fields on to states of definite spin can be constructed by
insisting upon Lorentz covariance (and imposing the discreteP andC symmetries), e.g.

〈0|ψ̄(x)γµ
←→
D νψ(x)|2++(~p, r)〉= Z ∈µν (~p, r),

where∈µν (~p, r) is the polarisation tensor for a spin-2 particle withJz = r. The utility of having
these decompositions will become clear later.

On a cubic lattice at zero three-momentum, the appropriate symmetry group is notO(3), but
rather the cubic group whose irreps are not labelled by an infinite tower of spins, but the finite set
A1,A2,E,T1,T2. As is well known, in the continuum these irreps contain multiple spins (see table
1) and this makes the spin-assignment of lattice eigenstates a non-trivial business.

We construct operators that transform irreducibly by projecting out certain linear combinations
of the spatial components of our derivative-based operators3. For example theT2 andE components
of the operatorψ̄(x)γµ

←→
D νψ(x) shown above are

O i
T2

= |ε i jk |ψ̄(x)γ j
←→
D kψ(x); O i

E =Qi jkψ̄(x)γ j
←→
D kψ(x)

3the operators are a corrected extension of those presented in [19]
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Λ dΛ J

A1 1 0,4,6, . . .

A2 1 3,6,7, . . .

E 2 2,4,5, . . .

T1 3 1,3,4, . . .

T2 3 2,3,4, . . .

Table 1: The table shows the single-valued irreducible representationsΛ of the cubic groupO, together with
their dimensionsdΛ and continuum spin contentJ. Additional superscripts are employed to denote charge
conjugationC and parityP.

where the covariant derivative is approximated by a gauge-covariant finite difference on the lattice
and where theE = T1⊗T1 Clebsch-Gordan coefficients are zero except for the elements

Q111 = 1√
2
; Q122 =− 1√

2
; Q211 =− 1√

6
; Q222 =− 1√

6
; Q233 = 2√

6
.

If we performed these projections in the continuum theory we would have

〈0|O i
T2
|2++(~p, r)〉= Z|ε i jk | ∈ jk (~p, r); 〈0|O i

E|2++(~p, r)〉= ZQi jk ∈ jk (~p, r)

so that, at zero three-momentum, if we average over the spatial directions in the correlation function
Ci j = 〈0|O iO j |0〉, we’d have that theZ’s extracted from theT2,E correlators would be related to
the common spin-2 particleZ asZT2 =

√
2ZE =

√
2Z. In a lattice simulation at finitea we might

hope that we are “sufficiently” close to the continuum that this relation still holds approximately.
If it does, we can associate with increased confidence particular states in independent irrepsT2,E
with components of the same spin-2 particle4. This is particularly important in charmonium where
there are true “dynamical” degeneracies that are not lifted as one moves to the continuum limit.

4.2 The spectrum extraction method

We basically solve the now familiar generalised eigenvalue problem

C(t)vα = λα(t)C(t0)vα ,

for the eigenvalues (from which we obtain state masses) and the eigenvectors (from which we
obtain theZ’s). A novel feature we have implemented is setting the value of the reference timet0
in a systematic way.

Since in practice we work with a finite space of operators, the parametert0 plays an important
role. The eigenvectors are forced by the solution procedure to be orthogonal on the metricC(t0) -
this will only be a good approximation to the true orthogonality (which in the continuum is defined
with an infinite number of states and operators) if the correlator att0 is dominated by the lightest
dim(C) states. As such one should chooset0 large enough that you believe the above statement to
be true.

4The possible effects of divergent operator mixing for higher derivative operators has not yet been fully investigated.
In this work we included operators with a maximum of two derivatives.
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In choosing at0 value for a givenC(t) there are two factors to take into account - the above
discussion suggests we should pusht0 out to larger values, where the contributions of higher excited
states have decayed exponentially; however, as we do so we get into a region where the correlator
data are typically noisier. The noise onC(t0) will enter into the solution of the eigenvalue problem
at all timeslices and as such we do not want to maket0 too large. We need a criterion to decide
upon an optimum value oft0 - our choice was to define a chi-squared-like quantity gauging how
well the generalized eigenvalue solution (with time-independentZ values) describes the correlators.
At a givent0 we solve the eigenvalue problem to yield masses andZ’s. With these in hand we can
reconstruct any correlator matrix element using the spectral decomposition. A suitable chi-squared-
like quantity can be defined as

χ2 =
1

1
2N(N+1)(tmax− t0)− 1

2N(N+3) ∑
i, j≥i

tmax

∑
t,t ′=t0+1

(Ci j (t)−Crec.
i j (t))C−1

i j (t, t ′)(Ci j (t ′)−Crec.
i j (t ′)),

whereN = dim(C) and whereC is the data correlation matrix for the correlatorCi j computed with
jackknife statistics.

The optimum value oft0 is chosen to be that which minimizes the chi-squared-like quantity.
In fact, since we solve the eigenvalue problem on each timeslice we actually getZ(t); we choose
to take theZ values (for a givent0) from a fixed timeslicetZ > t0 such that the chi-squared-like
quantity is minimized at thist0. Since we find that theZ(t) are reasonably flat the chi-squared
variation withtZ is fairly mild. Insisting that theZ’s are time independent fort > t0 is a reflection
of the fact that the only time-dependence in the spectral representation is in the exponentials.

As a concrete example of our solution scheme, consider theA−+
1 channel in which we use an

eight-dimensional operator basis. We solve the generalized eigenvalue problem for allt0 between
1 and10 - the χ2-like parameter so determined is shown in figure7, with a clear minimum being
observed att0 = 7. We show in figure8(a) a typical reconstructed diagonal correlator obtained
using the solution att0 = 7 (andtZ = 11). For comparison in figure8(b) we show a reconstructed
diagonal correlator from the solution witht0 = 2. In thet0 = 2 caseC(t0) is not saturated by the
eight states available, and we subsequently force the eigenvectors ofC(t) to be orthogonal on the
“wrong” metric, a truncated metric belonging to a larger Hilbert space - this shows up at larger
times as a poor description of the data.

2 4 6 8 10
t0

0

1

2

3

4

lo
g

 χ
2

Figure 7: Chi-squared-like parameter as a function oft0 for theA−+
1 channel.
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Nmax = 5
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Figure 8: (a) Typical reconstructed correlator with optimumt0 = 7. (b) Typical reconstructed correlator
with t0 = 2.

Returning to the example reconstructed correlator witht0 = 7, we can see the power of this
variational method over more conventional multi-exponential fits. We see that even at timeslice 7
there are at least 6 states contributing considerably to the correlator. It is unlikely that a simple
multi-exponential fitter would converge to a solution with a sum of 6 exponentials fitting over the
range 7-32. There are approximate degeneracies in the extracted spectrum and in this case the only
distinguishing feature of the states are theZ’s or equivalently the eigenvectors. Without enforcing
orthogonality (as is done in the correlation matrix method) it is hard to see how one would extract
meaningful information on these degenerate states.

4.3 Spectrum results

Computations were performed using the same quenched anisotropic lattice as where used in
the radiative transitions study. In this case an anisotropic clover action was used for the charm
quarks, see [6] for details.

4.3.1 J++

In figure9(a) we display the states extracted. The lowest band of states, at around 3500 MeV,
can be identified with the near-degenerateχc0,1,2 states. Support beyond simply mass degeneracy5

for the common2++ assignment of the lightest state inT2 and E comes from the extractedZ-
values. Consider for example the operatorρ×∇; this is exactly the operator we presented earlier:
ψ̄(x)γµ

←→
D νψ(x). For the lightest state inT2,E we find that

ZT2√
2ZE

= 1.00(1). We take this as

evidence that these states are rather close to being components of the same2++ state. Equivalent
analyses can be performed on other operators support this hypothesis.

4.3.2 J−−

This is a very interesting channel in charmonium owing the expected near degeneracy of the
ψ(3686),ψ(3770) and an expectedψ3 state which will all appear in theT1 representation. Our

5this band could belong to a single spin-4 meson

13



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
1
0

Radiative & Excited State Charmonium Physics Jozef J. Dudek

3000

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

A1 T1 T2 E A2

1sm, us

γjγ5 sm, us

ρ×∇ sm, us

a1×Dsm

ρ×∇ sm, us

a1×Dsm, us

a0×Dsm, us

ρ×∇ sm, us

a1×Dsm, us
a1×Dsm, us

0, 4 ... 1, 3, 4 ... 2, 3, 4 ... 2, 4 ... 3 ...

3000

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

A1 T1 T2 E A2
0, 4 ... 1, 3, 4 ... 2, 3, 4 ... 2, 4 ... 3 ...

a1×∇ sm

γj sm, us
γ0γj sm

ρ×Dsm, us
a1×∇ sm, us

ρ×Dsm, us
ρ×Dsm

a1×∇ sm, us

ρ×Dsm, us

a1×∇ sm

a0×∇ sm, us
π×Bus
π(2)×Bus

Figure 9: (a)J++. (b) J−−. Extracted state masses by zero-momentum lattice irrep. Color coding indicates
continuum spin assignment (black=0, red=1, green=2, blue=3, grey=undetermined).

results are presented in figure9(b). We see precisely the expected behaviour below4GeV in the
T1 channel, something we believe has not been hitherto observed in a lattice simulation, and which
was only possible because of the state orthogonality implicit in the variational solution method.

4.3.3 J+−

TheJ+− sector has the interesting property that all states withJ-even are exotic in the sense
of being inaccessible to a fermion-antifermion bound state. Such states can be constructed from
higher Fock states and as such are often described as being “multiquarks” (extra quark degrees of
freedom) or “hybrids” (extra gluonic degrees of freedom). Adding an extra pair of charm quarks
would take the state mass up to around 6 GeV, which is at the scale of our cutoff and where our
quenched non-unitarity might be felt. In the physical spectrum it may be possible for light-quarks
to play a non-trivial role, in this quenched study we can say nothing about this possibility. If a non-
trivial gluonic field produces exotic quantum numbered states we have hope of seeing it here. We
appear to identify an exotic0+− state near4.5GeVand an exotic2+− state near4.7GeV. Detailed
analysis can be found in [6].

4.3.4 J−+

TheT1 channel here is particularly interesting as it can house a hypothetical1−+ exotic meson.
Several previous lattice simulations have reported mass results for such a state. However, as is clear
from the current data which considers all lattice irreps, it is quite possible that the lightest state inT1

is in fact part of a non-exotic spin-4 meson spread across theT1,T2,E,A1 irreps. Indeed the potential
models in [20] predict a state in this mass region. Application of theZ-comparison method outlined
earlier to this case gave inconclusive results. We conclude that it is not possible at this stage to say
whether the lightest state in theT1 irrep corresponds to spin 1 or 4 in the continuum.
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Figure 10: (a)J+−. (b)J−+. Extracted state masses by zero-momentum lattice irrep. Color coding indicates
continuum spin assignment (black=0, red=1, green=2, blue=3, grey=undetermined).
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