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Nf = 2+1 dynamical Wilson quark simulation toward the physical point

1. Introduction

The first lattice QCD calculation of hadron masses in 1981 revealed its potential ability to non-
perturbatively evaluate the physical quantities in the strong interaction from first principles. Since
then, the history of lattice QCD has been a succession of enduring efforts to control the major
systematic errors due to finite lattice size, finite lattice spacing, quenching and chiral extrapolation.
Thanks to recent progress of simulation algorithms and increasing availability of computational
resources, we are about to bring all the above systematic errors under control. This will allow us
to establish whether or not QCD is the fundamental theory of the strong interaction by investi-
gating the hadron spectrum, and further proceed to elucidate the fundamental issues of the strong
interactions and the Standard Model.

The previous CP-PACS/JLQCD project[1, 2] aimed at a full removal of the quenching effects
by performingNf = 2+1 lattice QCD simulations with the nonperturbativelyO(a)-improved Wil-
son quark action[3] and the Iwasaki gauge action[4] on a (2 fm)3 lattice at three lattice spacings.
While we have succeeded in incorporating the dynamical strange quark effects by the Polyno-
mial Hybrid Monte Carlo (PHMC) algorithm[5], the lightest up-down quark mass reached with
the HMC algorithm was 64 MeV corresponding tomπ/mρ ≈ 0.6, which required a long chiral
extrapolation to the physical point atmπ/mρ ≈ 0.18.

The PACS-CS(Parallel Array Computer System for Computational Science) project[6, 7, 8] is
the successor to the CP-PACS/JLQCD project, which takes up the task that the latter has left off,
namely simulation at the physical point to remove the ambiguity of chiral extrapolation. It employs
the same quark and gauge actions as the CP-PACS/JLQCD project, but uses the PACS-CS computer
with a total peak speed of 14.3 TFLOPS developed and installed at University of Tsukuba on 1
July 2006. The up-down quark masses are reduced by employing the domain-decomposed HMC
(DDHMC) algorithm with the replay trick proposed by Lüscher[9, 10]. So far, we have reached
the up-down quark mass of 6 MeV which yields the pion mass of about 210 MeV. We also improve
the simulation of the strange quark part with the UV-filtered PHMC (UV-PHMC) algorithm[11].

In this report we present simulation details and preliminary results which include the chiral
analysis on the pseudoscalar meson masses and the decay constants with chiral perturbation theory,
the light hadron spectrum and theρ-ππ mixing effects. Some algorithmic issues are also discussed.
Selected topics on the light hadron spectrum and the ChPT analysis on the pseudoscalar meson
masses and the decay constants are also reported in Refs.[12, 13].

2. Simulation details

2.1 Simulation parameters

We employ theO(a)-improved Wilson quark action with a nonperturbative improvement co-
efficientcSW = 1.715[3] and the Iwasaki gauge action atβ = 1.90 on a323×64 lattice which is
enlarged from203×40 in the CP-PACS/JLQCD project to investigate the baryon masses. Simula-
tion parameters are summarized in Table1. We choose six combinations of the hopping parameters
(κud,κs) based on the previous CP-PACS/JLQCD results. Among them the heaviest combination
(κud,κs) = (0.13700,0.13640) in this work is the lightest one in the previous CP-PACS/JLQCD
simulations, which enable us to make a direct comparison of the two results with different lattice
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Nf = 2+1 dynamical Wilson quark simulation toward the physical point

sizes. As for the strange quark, the hopping parameterκs = 0.13640corresponds to the physi-
cal pointκs = 0.136412(50) as estimated in the CP-PACS/JLQCD work[1, 2]. This is the reason
why all our simulations are carried out withκs = 0.13640, the one exception being the run at
κs = 0.13660andκud = 0.13754to investigate the strange quark mass dependence.

In order to simulate the degenerate up-down quarks we employ the DDHMC algorithm, whose
effectiveness for small quark mass region has already been shown in theNf = 2 case[9, 14, 15].
The characteristic feature of this algorithm is a geometric separation of the up-down quark de-
terminant into the UV and the IR parts as a preconditioner of HMC, which is implemented by
domain-decomposing the full lattices with small blocks. We choose84 for the block size being less
than (1 fm)4 in physical units and small enough to reside within a computing node of the PACS-CS
computer. There are two prominent points in the DDHMC algorithm. Firstly, communication be-
tween the computing nodes is not required in calculating the UV part, which is a preferable feature
for alleviating the problem of a widening gap between the processor floating point performance and
the network communication bandwidth with parallel computers. Secondly, we can incorporate the
multiple time scale integration scheme[16] to reduce the simulation cost efficiently. The relative
magnitudes of the force terms are found to be

||Fg|| : ||FUV || : ||FIR|| ≈ 16 : 4 : 1, (2.1)

where we adopt the convention||M||2 = −2tr(M2) for the norm of an elementM of the SU(3)
Lie algebra.Fg denotes the gauge part andFUV,IR are for the UV and the IR parts of the up-down
quarks. The associated step sizes for the forces are controlled by three integersN0,1,2: δτg =
τ/N0N1N2, δτUV = τ/N1N2, δτIR = τ/N2 with τ the trajectory length. The integersN0,1,2 are
chosen such that

δτg||Fg|| ≈ δτUV ||FUV || ≈ δτIR||FIR||. (2.2)

Taking account of the relative magnitudes of the forces in eq.(2.1) we find a larger value is allowed
for δτIR compared toδτg andδτUV , which means that we need to calculateFIR less frequently
in the molecular dynamics trajectories. Since the calculation ofFIR contains the quark matrix
inversion on the full lattice, which is the most time consuming part, this integration scheme saves
the simulation cost remarkably. The values forN0,1,2 are listed in Table1, whereN0 andN1 are fixed

κud κs τ (N0,N1,N2) Npoly MD time τint[P]

0.13700 0.13640 0.5 (4,4,10) 180 2000 38.2(17.3)

0.13727 0.13640 0.5 (4,4,14) 180 2000 20.9(10.2)

0.13754 0.13640 0.5 (4,4,20) 180 2500 19.2(8.6)

0.13660 0.5 (4,4,28) 220 900 10.3(2.9)

0.13770 0.13640 0.25 (4,4,16) 180 2000 38.4(25.2)

0.13781 0.13640 0.25 (4,4,48) 180 350 9.1(6.1)

Table 1: Simulation parameters. MD time is the number of trajectories multiplied by the trajectory length
τ. τint[P] denotes the integrated autocorrelation time for the plaquette.
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Figure 1: Plaquette history (left) and normalized autocorrelation function (right) for(κud,κs) =
(0.13727,0.13640). Horizontal lines in the left denote the average value of the plaquette with an error
band.

at 4 for all the hopping parameters, while the value ofN2 is adjusted taking account of acceptance
rate and simulation stability.

For the UV-PHMC algorithm for the strange quark, the domain-decomposition is not imple-
mented. Since we have found||Fs|| ≈ ||FIR||, the step size is chosen asδτs = δτIR. The polynomial
order for UV-PHMC, which is denoted byNpoly in Table1, is adjusted to yield high acceptance rate
for the global Metropolis test at the end of each trajectory.

The inversion of the Wilson-Dirac operatorD on the full lattice is carried out by the SAP
(Schwarz alternating procedure) preconditioned GCR solver, where the preconditioning can be ac-
celerated with the single-precision arithmetic whereas the GCR solver is implemented with the
double precision[17]. We employ the stopping condition|Dx−b|/|b|< 10−9 for the force calcula-
tion and10−14 for the Hamiltonian, which guarantees the reversibility of the molecular dynamics
trajectories to high precision:|∆U | < 10−12 for the link variables and|∆H| < 10−8 for the Hamil-
tonian at(κud,κs) = (0.13781,0.13640).

2.2 Plaquette history and autocorrelation time

In Fig. 1 we show the plaquette history and the normalized autocorrelation functionρ(τ)
at (κud,κs) = (0.13727,0.13640) as a representative case. The integrated autocorrelation time is
estimated asτint[P] = 20.9(10.2) following the definition in Ref. [9]

τint(τ) =
1
2

+ ∑
0<τ≤W

ρ(τ), (2.3)

where the summation windowW is set to the first time lagτ that ρ(τ) becomes consistent with
zero within the error bar. In this case we findW = 119.5. The choice ofW is not critical for
estimate ofτint in spite of the long tail observed in Fig.1. Extending the summation window, we
find thatτint[P] saturates atτint[P]≈ 25beyondτ = 200, which is within the error bar of the original
estimate. For other hopping parameters we have found similar behaviors for the plaquette history
and the normalized autocorrelation function. We hardly observe the quark mass dependence for
τint[P] listed in Table1. The statistics may not be sufficiently large to derive a definite conclusion,
however.
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Figure 2: Cost estimate ofNf = 2+ 1 QCD simulations with the HMC (solid line) and the DDHMC (red
circle) algorithms ata = 0.1 fm with L = 3 fm for 100 independent configurations. Vertical dotted line
denotes the physical point.

3. Algorithmic issues

3.1 Efficiency of DDHMC algorithm

In order to discuss the efficiency of the DDHMC algorithm, it is instructive to compare with
that of the HMC algorithm. We first recall an empirical cost formula forNf = 2 QCD simulations
with the HMC algorithm based on the CP-PACS results[18]:

cost[Tflops·years] = C

[
#conf
1000

]
·
[

0.6
mπ/mρ

]6

·
[

L
3 fm

]5

·
[

0.1 fm
a

]7

with C≈ 2.8. A strong quark mass dependence is found in the above formula:1/(mπ/mρ)6 behaves
as 1/m3

ud in the leading term for the small quark mass region. This quark mass dependence is
owing to the following three factors: The number of the quark matrix inversion is governed by
the condition number which should be proportional to1/mud; to keep the acceptance rate fixed we
should takeδτ ∝ mud for the step size in the molecular dynamics trajectories; The autocorrelation
time of the HMC evolution shows1/mud dependences in the CP-PACS run[19].

To estimate the computational cost forNf = 2+1 QCD simulations with the HMC algorithm,
we assume that the strange quark contribution is given by half of eq.(3.1) at mπ/mρ = 0.67 which
is a phenomenologically estimated ratio of the strange pseudoscalar meson “mηs” andmφ :

mηs

mφ
=

√
2m2

K −m2
π

mφ
≈ 0.67. (3.1)

Since the strange quark is relatively heavy, its computational cost occupies only a small fraction
as the up-down quark masses decrease. In Fig.2 we draw the cost formula for theNf = 2+ 1
case as a function ofmπ/mρ , where we take #conf=100, a=0.1 fm andL = 3 fm in eq.(3.1) as a
representative case. We observe a steep increase of the computational cost belowmπ/mρ ' 0.5. At
the physical point the expected cost isO(100) Tflops·years.
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Nf = 2+1 dynamical Wilson quark simulation toward the physical point

τ (N0,N1,N2) Npoly trajs. MD time τint[P] τint[#mult]
0.5 (4,4,6) 130 6000 3000 23.7(9.2) 92(56)

0.5/3 (4,4,2) 130 18000 3000 18.6(5.9) 42(21)

Table 2: Parameters forτ-dependence study. #mult denotes the number of multiplications of the Wilson-
Dirac quark matrix on the full lattice.

Now let us turn to the case of the DDHMC algorithm. The red symbol denotes the measured
cost atκud=0.13781, 0.13770 withκs = 0.13640, which are the lightest two points in our simula-
tion. The DDHMC algorithm show a remarkable improvement reducing the cost by30−50 times
in magnitude. The majority of this reduction arises from the multiple time scale integration scheme
and the GCR solver accelerated by the SAP preconditioning with the single-precision arithmetic.
Roughly speaking, the improvement factor isO(10) for the former and3−4 for the latter. Note
that the quark mass dependence is also tamed: Since we find thatτint[P] is independent of the
quark masses, the cost is proportional to1/m2

ud. Our results show a feasibility of simulations at the
physical point with theO(10) Tflops computer which is available at present.

3.2 τ dependence of DDHMC algorithm

In the DDHMC algorithm a subset of of all link variables, which are referred to as the active
link variables, are updated during the molecular dynamics evolution, while keeping other field
variables fixed[9]. The fraction of the active link variables depends on the block size we choose. In
our case of84 it is only 37%. To ensure that all the link variables on the lattice should be updated
equally on average we implement random gauge field translations at the end of every molecular
dynamics trajectories following Ref. [9].

Our concern is that the DDHMC algorithm might have a long autocorrelation time due to
the existence of fixed link variables during the molecular dynamics evolution. A possible way
to reduce the effects of the fixed link variables is more frequent random gauge field translations.
This is easily realized by makingτ shorter withδτ fixed. We investigate theτ dependence of the
DDHMC algorithm employing a smaller lattice size of163×32at (κud,κs) = (0.13700,0.13640).
Other parameters are summarized in Table2.

0 100 200 300
MD time

-0.2

0

0.2

0.4

0.6

0.8

1

τ=0.5
τ=0.5/3

plaquette

0 100 200 300
MD time

-0.2

0

0.2

0.4

0.6

0.8

1

τ=0.5
τ=0.5/3

#mult

Figure 3: Normalized autocorrelation functions for the plaquette (left) and the #mult (right) at(κud,κs) =
(0.13700,0.13640). Black (red) symbols denote theτ = 0.5 (τ = 0.5/3) case.
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Nf = 2+1 dynamical Wilson quark simulation toward the physical point

In Fig. 3 we show the normalized autocorrelation functions for the plaquette and the number
of multiplications of the Wilson-Dirac quark matrix on the full lattice during a molecular dynamics
trajectory. Black symbols denote theτ = 0.5 case, while red ones are for theτ = 0.5/3 case. We
observe that the normalized autocorrelation functions forτ = 0.5 have longer tails thanτ = 0.5/3
before becoming consistent with zero: This is quantitatively checked by the integrated autocorrela-
tion timesτint[P] andτint[#mult] in Table2: Theτ = 0.5/3 case has shorter autocorrelation times.
Since the computational cost is the same for theτ = 0.5 and theτ = 0.5/3 cases in terms of MD
time, we can conclude that theτ = 0.5/3 case shows a better efficiency than theτ = 0.5 case.
Based on this study, albeit conducted at a relatively heavy quark mass(mπ/mρ ≈ 0.6), we employ
τ = 0.25 for the production run at(κud,κs) = (0.13781,0.13640) and(0.13770,0.13640), which
is half of the trajectory length at other hopping parameters.

3.3 Simulation stability

In Refs. [14, 15] simulation stability was discussed based on the spectral gap distribution of
the Wilson-Dirac operator for two-flavor lattice QCD simulations. The spectral gap is defined as

µ = min{|λ | | λ is an eigenvalue ofQ}, (3.2)

whereQ is the hermitian Wilson-Dirac operatorQ = γ5DW with DW = (1/2){γµ(∇∗
µ + ∇µ)−

a∇∗
µ∇µ}+ m0. Important indices to characterize the distribution are its medianµ̄ and widthσ .

The latter is defined as(v−u)/2, where[u,v] is the smallest range ofµ which contains more than
68.3% of the data. This is to avoid potentially large statistical uncertainties which might occur
when data are not sufficiently sampled. Their chief findings are two points: The first one is that
the medianµ̄ shows a good linear dependence on the current up-down quark massmAWI

ud and the
magnitude of the slope is well described byZA empirically. The second one is that the widthσ
scales as

σ
√

V
a

' 1 (3.3)

with V the four-dimensional volume in physical units. They also observe that the widthσ is roughly
independent of the quark mass for the unimproved Wilson quark action, while it shows a trend to
decrease with the mass for the improved one.

This study was also applied to theNf = 2+ 1 case in Ref. [8] where we reported on our
preliminary run on a163×32 lattice preparing for the PACS-CS project. We observedµ̄ ∝ mAWI

ud

and found0.5∼
<σ(

√
V/a)∼

<0.76 for 15 MeV< mAWI
ud < 64 MeV, whereσ diminishes as the up-

down quark mass decreases.
The existence of a gap in the spectrum of the Wilson-Dirac operator allows us to simulate the

light quarks efficiently. The authors in Ref. [14] propose a stability condition requirinḡµ ≥ 3σ to
assure the existence of the gap. Let us apply this condition to our case. Assumingσ(

√
V/a) = 1

we estimateσ = 2.26 MeV usinga = 0.09 fm andV = (2.8 fm)4 which will be obtained later.
By using the empirical relation̄µ ' ZAmAWI

ud we findZAmAWI
ud ∼

>6.8 MeV for the stability condition,

which is heavier than the physical point. On the other hand, we foundσ(
√

V/a) < 1 in Ref. [8],
indicating that the actual bound will be lower. Our runs toward the physical point should shed light
on the actual bound of stability for our lattice parameters.
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prec. block size ρ (N0,N1,N2) τ MD time Pacc

DD 84 − (4,8,12) 1 3000 0.857(8)
mass − 0.09 (4,8,12) 1 3000 0.794(8)

Table 3: Simulation parameters for the DDHMC and the mass-preconditioned HMC algorithms.Paccdenote
the acceptance rate.

3.4 Comparison of DDHMC and mass-preconditioned HMC

As discussed in Sec.3.1, it is essential for the efficiency of the DDHMC algorithm to incorpo-
rate the multiple time scale integration scheme. It is well known that this scheme is also applicable
to the mass-preconditioned HMC algorithm[20, 21]. We have made a direct comparison of the
two algorithms inNf = 2 QCD on a163×32 lattice employing theO(a)-improved Wilson quark
action with the nonperturbative improvement coefficientcSW = 2.0171[22] and the plaquette gauge
action atβ = 5.2. The lattice spacing is 0.1 fm and the physical pseudoscalar meson mass is about
600 MeV atκud = 0.1355. For the mass-preconditioned HMC algorithm we employ two set of the
pseudofermion fields which decompose the fermion determinant as

detQ2 = det(W†W)det

(
Q2

W†W

)
, (3.4)

where Q is the hermitian Wilson-Dirac operator and the preconditioning operator is given by
W = Q+ ρ . For convenience we refer todet(W†W) as the UV part and thedet(Q2/(W†W)) as
the IR part in an analogy with the DDHMC algorithm. The step sizes are chosen with the three
integersN0,1,2 in exactly the same way as the DDHMC algorithm. Simulation parameters are
summarized in Table3. The block size for the DDHMC algorithm and theρ parameter for the
mass-preconditioned HMC algorithm are chosen such that||F0,1,2|| are roughly the same between
these two algorithms. This condition yields comparable acceptance ratios withN0,1,2 in common.
We employ the BiCGStab algorithm for the quark matrix inversion in both the UV and the IR parts.

In Fig. 4 we plot the normalized autocorrelation function for the plaquette as a function of MD
time. The results of both algorithms show quite similar behaviors and the integrated autocorrelation
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Figure 4: Normalized autocorrelation functions for the plaquette (left) and the number of multiplications of
the Wilson-Dirac quark matrix on the full lattice (right). Black (red) symbols denote the DDHMC (mass-
preconditioned HMC) case.
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prec. τint[P] τint[#mult] #mult cost[P] cost[#mult]

DD 27(10) 22(7) 45530(280) 1.2(5) 1.0(3)
mass 28(12) 35(16) 67160(380) 1.9(8) 2.4(1.0)

Table 4: Integrated autocorrelation time and cost estimate for the DDHMC and the mass-preconditioned
HMC algorithms.

time τint[P] in Table4 are consistent within the errors. Figure5 shows the MD-time history of the
number of multiplications of the Wilson-Dirac quark matrix on the full lattice. The total number of
multiplications is the sum of those required to calculate the UV and the IR forces and the Hamil-
tonian. Their contributions are denoted by black, red, green, blue lines in order. Comparing the
results of the DDHMC and the mass-preconditioned HMC, we observe a clear difference in the UV
part contribution: the mass-preconditioned HMC needs more than twice of the multiplication num-
ber for the DDHMC. This ends up in a 50% difference in the total number of multiplications. In
Fig. 4 we also plot the normalized autocorrelation function for the total number of multiplications.
Although the DDHMC result seems to show a slightly steeper fall-off, both results are consistent
within the error bars. This is confirmed by the integrated autocorrelation timeτint[#mult] in Table4.

Now let us compare the efficiencies of both algorithms. We define the machine-independent
cost formula by

cost[O] = #mult(total)/MD time× τint[O]/106, (3.5)

where the observableO is the plaquette or the total number of multiplications. In Table4 we sum-
marize the results of cost[O]. For both observables the DDHMC algorithm shows better efficiency
than the mass-preconditioned HMC algorithm albeit the errors are rather large.

There remains a couple of concerns in this study. The first one is the quark mass depen-
dence, because our results are obtained at only one hopping parameter. The second one is the
optimization. While we choose84 block size for the DDHMC algorithm andρ = 0.09 for the
mass-preconditioned HMC algorithm since||F0,1,2|| are roughly the same, these parameters may
not be the optimal values for each of the algorithms. We leave these issues to future studies.
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Figure 5: History for number of multiplications of the Wilson-Dirac quark matrix on the full lattice for the
DDHMC algorithm (left) and the mass-preconditioned HMC algorithm (right).
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Figure 6: Effective masses for the mesons (top) and the baryons (bottom) atκud = 0.13727(left) and
0.13781 (right). Horizontal lines represent the fitting results with an error band.
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Figure 7: Binsize dependence of magnitude of error for mesons (left) and baryons (right) at(κud,κs) =
(0.13727,0.13640).

4. Physical results

4.1 Measurement of hadron masses, quark masses, decay constants

We measure both the meson and the baryon correlators at every 10 trajectories at the unitary
points where the valence quark masses are equal to the sea quark masses. Light hadron masses are
extracted from a single exponentialχ2 fit to the correlators with an exponentially smeared source
and a local sink. Figure6 shows the hadron effective masses atκud = 0.13727and0.13781as
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Nf = 2+1 dynamical Wilson quark simulation toward the physical point

representative cases. We observe clear plateau for the mesons except for theρ meson and also
good signal for the baryons thanks to a large volume. Especially, theΩ baryon has a stable signal,
which we use as a physical input to determine the cutoff scale later. The horizontal lines denote the
fitting results with an error band of one standard deviation. Their widths represent the fitting ranges.
Statistical errors are estimated by the jackknife method. In Fig.7 we plot binsize dependence of
magnitude of error for the mesons and the baryons at(κud,κs) = (0.13727,0.13640). For the
pseudoscalar mesons we observe that the magnitude of error gradually increases as the bin size is
enlarged up to about 40 MD time, beyond which it stabilizes. For other hadrons we do not find any
clear binsize dependence. The data at other hopping parameters show similar behaviors. Based on
this observation we choose 50 molecular dynamics time for the jackknife analysis at all the hopping
parameters.

We extract the bare quark mass through the axial vector Ward-Takahashi identity (AWI) by

amAWI
q = lim

t→∞

〈∇4Aimp
4 (t)P(0)〉

2〈P(t)P(0)〉
(4.1)

with P the pseudoscalar density andAimp
4 the nonperturbativelyO(a)-improved axial vector current[23].

The renormalized quark mass and the pseudoscalar meson decay constant in the continuumMS
scheme are defined as follows:

mMS
q =

ZA

(
1+bA

mAWI

u0

)

ZP

(
1+bP

mAWI

u0

)mAWI
q , (4.2)

fPS = 2κu0ZA

(
1+bA

mAWI
q

u0

)
Cs

A

Cs
P

√
2Cl

P

mPS
. (4.3)

HereCs
A,P are the amplitudes extracted from the correlators〈Aimp

4 (t)P(0)〉 and〈P(t)P(0)〉 with an
exponentially smeared source and a local sink, whileCl

P is from 〈P(t)P(0)〉 with a local source and
a local sink. The renormalization factorsZA,P and the improvement coefficientsbA,P are evaluated
perturbatively up to one-loop level[24, 25]with the tadpole improvement.

4.2 Comparison with the previous CP-PACS/JLQCD results

lattice size amπ amρ amN

PACS-CS 323×64 0.3220(6) 0.506(2) 0.726(3)
[tmin, tmax] [13,30] [10,20] [10,20]

CP-PACS/JLQCD 203×40 0.3218(8) 0.516(3) 0.733(4)
[tmin, tmax] [8,20] [9,15] [11,17]

Table 5: PACS-CS and CP-PACS/JLQCD results forπ, ρ and nucleon masses at(κud,κs) =
(0.13700,0.13640). [tmin,tmax] denotes the fitting range.

We first compare the PACS-CS results on323×64with the previous CP-PACS/JLQCD results
on203×40[1, 2] at (κud,κs) = (0.13700,0.13640). In Fig.8 we plot the effective masses for theπ
and theρ mesons. The PACS-CS and the CP-PACS/JLQCD results are consistent for theπ meson,
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1%

Figure 8: Effective masses for theπ (left) and theρ (right) at (κud,κs) = (0.13700,0.13640). Black and
red symbols denote the PACS-CS and the CP-PACS/JLQCD results, respectively.

while a slight deviation is observed for theρ meson. This is numerically confirmed by the fitting
results listed in Table5, where we employ a single exponentialχ2 fit. The nucleon mass is also
given in Table5. We find 1−2% deviation for theρ meson and nucleon masses, which could be
due to possible finite size effects.

Figure 9 shows the up-down quark mass dependence of(amπ)2 and amρ with κs fixed at
0.13640. For the pion mass we observe that the PACS-CS and the CP-PACS/JLQCD results are
smoothly connected as a function of1/κud. On the other hand, the quark mass dependence is not
so smooth for theρ meson. Although this may be attributed to finite size effects, further studies
are needed in theρ channel.

4.3 Chiral analysis on pseudoscalar meson masses and decay constants

We examine the chiral behaviors of the pseudoscalar meson masses and decay constants in
comparison with the prediction of chiral perturbation theory (ChPT). Our interest exist in the fol-
lowing points: (i) signals for chiral logarithms, (ii) determination of low energy constants in the
chiral lagrangian, (iii) determination of the physical point with the ChPT fit, (iv) estimate of the

7.26 7.28 7.3 7.32 7.34 7.36
1/κud

0.00

0.05

0.10

0.15

0.20

0.25

0.30

PACS-CS  323x64
CP-PACS/JLQCD  203x40

(amπ)2

7.26 7.28 7.3 7.32 7.34 7.36
1/κud

0.3

0.4

0.5

0.6

0.7

0.8

PACS-CS  323x64
CP-PACS/JLQCD  203x40

mρ

Figure 9: (amπ)2 (left) andamρ (right) as a function of1/κud. Red and black symbols denote the PACS-CS
and the CP-PACS/JLQCD results, respectively.
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Nf = 2+1 dynamical Wilson quark simulation toward the physical point

magnitude of finite size effects based on one-loop calculations of ChPT.
We first recall the one-loop expressions of ChPT for the pseudoscalar meson masses and the

decay constants[26]1:

m2
π = 2m̂B0

{
1+ µπ −

1
3

µη +
B0

f 2
0

(16m̂(2L8−L5)+16(2m̂+ms)(2L6−L4))
}

, (4.4)

m2
K = (m̂+ms)B0

{
1+

2
3

µη +
B0

f 2
0

(8(m̂+ms)(2L8−L5)+16(2m̂+ms)(2L6−L4))
}

,(4.5)

fπ = f0

{
1−2µπ −µK +

B0

f 2
0

(8m̂L5 +8(2m̂+ms)L4)
}

, (4.6)

fK = f0

{
1− 3

4
µπ −

3
2

µK − 3
4

µη +
B0

f 2
0

(4(m̂+ms)L5 +8(2m̂+ms)L4)
}

, (4.7)

wherem̂= (mu + ms)/2 andL4,5,6,8 are the low energy constants, andµPS is the chiral logarithm
defined by

µPS=
1

32π2

m2
PS

f 2
0

ln

(
m2

PS

µ2

)
(4.8)

with µ the renormalization scale. There are six unknown low energy constantsB0, f0,L4,5,6,8 in the
expressions above. The low energy constants are scale-dependent so as to cancel that of the chiral
logarithm (4.8). We determine these parameters by making a simultaneous fit form2

π , m2
K , fπ and

fK .
We also consider the contributions of the finite size effects based on ChPT. At the one-loop

level the finite size effects defined byRX = (X(L)−X(∞))/X(∞) for X = mπ ,mK , fπ , fK are given
by [27]:

Rmπ =
1
4

ξπ g̃1(λπ)− 1
12

ξη g̃1(λη), (4.9)

RmK =
1
6

ξη g̃1(λη), (4.10)

Rfπ = −ξπ g̃1(λπ)− 1
2

ξK g̃1(λK), (4.11)

RfK = −3
8

ξπ g̃1(λπ)− 3
4

ξK g̃1(λK)− 3
8

ξη g̃1(λη) (4.12)

with

ξPS≡
m2

PS

(4π fπ)2 , λPS≡ mPSL, g̃1(x) =
∞

∑
n=1

4m(n)√
nx

K1(
√

nx), (4.13)

whereK1 is the Bessel function of the second kind andm(n) denotes the multiplicities in the
expression ofn = n2

x +n2
y +n2

z. With the use of these formulae we estimate the possible finite size
effects in our results.

Before presenting our fitting results, it is instructive to compare the PACS-CS and the CP-
PACS/JLQCD results for(amπ)2/(amAWI

ud ) and fK/ fπ . In Fig. 10 we plot them as a function of

1 fπ is normalized as 92.4 MeV in these expressions, while our results are presented in thefπ = 130.7 MeV normal-
ization.
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Figure 10: Comparison of the PACS-CS (red) and the CP-PACS/JLQCD (black) results for(amπ)2/(amAWI
ud )

(left) and fK/ fπ (right) as a function ofamAWI
ud . κs is fixed at 0.13640. Vertical lines denote the physical

point and star symbol represents the experimental value.

amAWI
ud with κs fixed at 0.13640. The PACS-CS and the CP-PACS/JLQCD results are denoted by

the red and the black symbols, respectively. The two sets of data together show a smooth behavior
as a function ofamAWI

ud , and atκud = 0.13700(amAWI
ud = 0.028) they show good consistency. It is

important to observe that an almost linear quark mass dependence of the CP-PACS/JLQCD results
for heavier up-down quark masses changes into a convex behavior, both for(amπ)2/(amAWI

ud ) and
fK/ fπ , as the quark mass is lowered in the PACS-CS runs. This is a characteristic feature expected
from the ChPT prediction in the small quark mass region due to the chiral logarithm. This curvature
drives up the ratiofK/ fπ toward the experimental value as the physical point is approached.

Let us apply the ChPT formulae (4.4)−(4.7) to our results at four points(κud,κs)= (0.13781,0.13640),
(0.13770,0.13640), (0.13754,0.13640), (0.13754,0.13660). For these points, theρ meson mass sat-
isfies the condition thatmρ > 2mπ . The measured bare AWI quark masses are used form̂andms in
eqs.(4.4)−(4.7). The heaviest pion mass at(κud,κs) = (0.13754,0.13640) is about 430 MeV with
the use of the cutoff determined below. We summarize the pion masses and the unrenormalized
AWI quark masses in Table6. The fit results are shown in Fig.11, where the black solid lines
are drawn withκs fixed at 0.13640 and the black dotted lines are forκs = 0.13660. The red solid
symbols represent the extrapolated values at the physical point whose determination is explained in

κud κs amπ amAWI
ud amAWI

s

0.13700 0.13640 0.32196(62) 0.02800(20) 0.04295(30)
0.13727 0.13640 0.26190(66) 0.01895(13) 0.04061(18)
0.13754 0.13640 0.18998(56) 0.01020(11) 0.03876(18)

0.13660 0.17934(78) 0.00908(7) 0.03257(17)
0.13770 0.13640 0.13591(88) 0.00521(9) 0.03767(10)
0.13781 0.13640 0.08989(291) 0.00227(16) 0.03716(20)

Table 6: Pion masses and unrenormalized AWI quark masses.
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Figure 11: Fitting results for(amπ)2/(amAWI
ud ) (left) and fK/ fπ (right). Red solid (open) symbols denote

the extrapolated values at the physical point by the ChPT formulae without (with) the finite size effects.

Sec.4.4below. The heaviest point at(κud,κs) = (0.13754,0.13640) is not well described by ChPT
both for(amπ)2/(amAWI

ud ) and fK/ fπ , andχ2/d.o.f. is rather large (see Table7).

Li(µ = mη) PACS-CS PACS-CS with FSE exp. value[28] MILC[ 29]

L4 0.25(11) 0.23(12) 0.27± 0.8 0.1(2)(2)
L5 2.28(13) 2.29(14) 2.28± 0.1 2.0(3)(2)

2L6−L4 0.16(4) 0.16(4) 0± 1.0 0.5(1)(2)
2L8−L5 −0.59(5) −0.60(5) 0.18± 0.5 −0.1(1)(1)

χ2/d.o.f. 2.1(1.4) 2.1(1.4)

Table 7: Results for the low energy constants together with the phenomenological estimates[28] and the
MILC results[29].

The results for the low energy constants are presented in Table7 where the phenomenological
values with the experimental inputs[28] and the MILC results[29] are also given for comparison.
The renormalization scale is chosen to bemη = 0.547GeV. ForL4 andL5 governing the behavior of
fπ , fK , our results show good agreement with both the phenomenological estimates and the MILC
results. On the other hand, some discrepancies are observed between three results for2L6−L4 and
2L8−L5 which enter into the ChPT formulae form2

π andm2
K .

In Fig. 11 we also draw the ChPT fit results including the finite size effects. The green solid
lines are drawn forκs = 0.13640and the green dotted ones forκs = 0.13660. The fit curves
with and without the finite size effects are almost degenerate foramAWI

ud > 0.003, but deviations
appear closer to the physical point, for which the extrapolated values are plotted by the open and
solid red symbols. This feature is understood by Fig.12 where we plot the magnitude ofRX for
X = mπ ,mK , fπ , fK with L = 2.8 fm as a function ofmπ ( we note thatRmPS > 0 andRfPS < 0). The
finite size effects are less than 2% formPS and fPS at our simulation points. FormPS this is true
even at the physical point, while forfπ the finite size effects cause the value to decrease by 4%.
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Figure 12: |RX| (RmPS > 0 andRfPS < 0) for X = mπ ,mK , fπ , fK with L = 2.8 fm as a function ofmπ . Solid
vertical line denotes the physical point and the dotted ones are for our simulation points.

4.4 Physical point and light hadron spectrum

In order to determine the up-down and the strange quark masses and the lattice cutoff we need
three physical inputs. We try the following two cases:mπ ,mK ,mΩ andmπ ,mK ,mφ . The choice of
mΩ has theoretical and practical advantages: theΩ baryon is stable in the strong interactions and its
mass, being composed of three strange quarks, is determined with good precision with small finite
size effects. We also choosemφ for comparison. We employ the NLO ChPT formulae for the chiral
extrapolations ofmπ , mK , fπ and fK . A simple linear formulamhad = c0 + c1 ·mAWI

ud + c2 ·mAWI
s

is used for the other hadron masses, employing data in the same rangeκud ≥ 0.13754as for the
pseudoscalar mesons. In Fig.13we show the linear chiral extrapolations formφ andmΩ. The solid
lines are drawn withκs fixed at 0.13640 and the dotted ones are forκs = 0.13660. We observe
that the quark mass dependences formφ andmΩ at κud ≥ 0.13754are well described by the linear
function.

The results for the quark masses and the lattice cutoff are listed in Table8, where the errors are
statistical. The two sets of results are consistent within the error. The quark masses are smaller than
the recent estimates in the literature. We note, however, that we employed the perturbative renor-

0 0.005 0.01 0.015 0.02

a mAWI
ud

0.75

0.80

0.85

0.90

κs=0.13640
κs=0.13660
physical point

amΩ

0 0.005 0.01 0.015 0.02

amAWI
ud

0.45

0.50

0.55

κs=0.13640
κs=0.13660
physical point

amφ

Figure 13: Linear chiral extrapolation foramΩ (left) andamφ (right). Solid (dotted) lines are drawn with
κs = 0.13640(0.13660). Red open symbols denote the extrapolated values at the physical point with a linear
form.
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input a−1 [GeV] mMS
ud [MeV] mMS

s [MeV] fπ fK fK/ fπ

mΩ 2.256(81) 2.37(11) 69.1(25) 144(6) 175(6) 1.219(22)
mφ 2.248(76) 2.38(11) 69.4(25) 143(6) 175(5) 1.219(21)

Table 8: Cutoff, renormalized quark masses, pseudoscalar meson decay constants determined withmΩ and
mφ inputs.

0.5

1

1.5

ρ
K*

φ
N

Λ
Σ

Ξ
∆

Σ∗
Ξ∗

Ω
mass[GeV]

Ω - input
φ - input

Figure 14: Light hadron spectrum extrapolated at the physical point withΩ-input (red) andφ -input (blue).
Horizontal bars denote the experimental values.

malization factors to one-loop level which may contain a sizable uncertainty. A nonperutrbative
calculation of the renormalization factor is in progress using the Schrödinger functional scheme.

In Table8 we also present predictions for the pseudoscalar meson decay constants at the phys-
ical point using the physical quark masses and the cutoff determined above, which should be com-
pared with the experimental valuesfπ = 130.7 MeV, fK = 159.8 MeV, fK/ fπ = 1.223. A 10%
discrepancy in the magnitude offπ and fK might be due to use of one-loop perturbativeZA since
the ratio shows a good agreement. A nonperturbative calculation ofZA is also in progress.

In Fig. 14 we compare the light hadron spectrum extrapolated to the physical point with the
experiment. The results for theΩ-input and theφ -input are consistent with each other, and both
are in agreement with the experiment albeit errors are still not small for some of the hadrons. This
is an encouraging result. However, further work is needed since cutoff errors ofO((aΛQCD)2) are
present in our results.

5. ρ-ππ mixing

Since our simulations are carried out at sufficiently small up-down quark masses, it would be
interesting to investigate theρ-ππ mixing effects. We find that the rest massmρ is always smaller
than the two-pion energy2

√
m2

π +(2π/L)2 for all the hopping parameters, and hence theρ meson
at rest cannot decay into two pions. However, as illustrated in Fig.15, for a movingρ with a unit of

momentum,i.e.,, its energy
√

m2
ρ +(2π/L)2 becomes larger than the energy of a moving pion and

a pion at rest given by
√

m2
π +(2π/L)2+mπ when the up-down quark mass is sufficiently reduced.

Let us consider two types of theρ meson propagator with the momentum2π/L: ρ‖(2π/L)
with polarization parallel to the spatial momentum andρ⊥(2π/L) with polarization perpendicular
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Figure 15: Energy levels of theρ meson and the two pion states without the total momentump = 0 (left)
and withp = pmin ≡ 2π/L (right) as a function of the up-down quark mass.κs is fixed at 0.13640.
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Figure 16: Schematic view ofρ andππ energy levels due to mixing effects (left) and time dependence of
theR function (right).

to the spatial momentum. Phenomenologically theρ-ππ coupling is described bygρππεabcρa
µπb∂µπc,

which favorsρ‖(2π/L)→ π(2π/L)π(0) to ρ⊥(2π/L)→ π(2π/L)π(0). We expect that theρ‖(2π/L)
propagator is more strongly affected by the mixing effects than theρ⊥(2π/L) correlator. Since the
mixing effects push up the upper energy level further and push down the lower energy level as
shown in Fig.16, they could be detected by measuring theR function defined by

R(t) =
〈ρ‖(~p, t)ρ†

‖ (~p,0)〉

〈ρ⊥(~p, t)ρ†
⊥(~p,0)〉

large t−→ Ze
−(Eρ‖−Eρ⊥ )t

. (5.1)

In Fig. 16 we plot log|R(t)| as a function oft. The dotted horizontal lines denoteR(t) = (E/mρ)2

, which is determined kinematically in the mixing-free case. The solid lines represent the fitting
results with a single exponential form over5≤ t ≤ 11. The data show clear positive slopes which
indicateEρ‖ < Eρ⊥ . We also observe that the magnitude of the energy difference is rather small for
κud ≤ 0.13754, while it grows rapidly as the up-down quark mass is reduced forκud > 0.13754.
This feature may suggest that the〈ρ‖(~p, t)ρ†

‖ (~p,0)〉 correlator is getting dominated by theππ state
toward the smaller up-down quark masses. In order to obtain a definite conclusion, we need more
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detailed investigations with increased statistics.

6. Summary

We have presented a status report of the PACS-CS project which aims at a 2+1 flavor lattice
QCD simulation toward the physical point. With the aid of the DDHMC algorithm for the up-
down quarks we have reachedmπ = 210MeV, which roughly corresponds tomMS

ud (µ = 2 GeV) =
5.6 MeV, on a323×64 lattice using theO(a)-improved Wilson quarks. Thanks to the enlarged
volume compared to the previous CP-PACS/JLQCD work, we obtain good signals not only for the
meson masses but also for the baryon masses. Our results for the hadron spectrum at the physical
point show a good agreement with the experimental values.

At present we have just started the simulation at the physical point. We are also calculating the
nonperturbative renormalization factors for the quark masses and the pseudoscalar meson decay
constants in order to remove perturbative uncertainties in these important quantities. Once these
calculations are accomplished, the next step is to investigate the finite size effects at the physi-
cal point, and then to reduce the discretization errors by carrying out calculations at finer lattice
spacings.
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