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Nf = 2+ 1 dynamical Wilson quark simulation toward the physical point

1. Introduction

The first lattice QCD calculation of hadron masses in 1981 revealed its potential ability to non-
perturbatively evaluate the physical quantities in the strong interaction from first principles. Since
then, the history of lattice QCD has been a succession of enduring efforts to control the major
systematic errors due to finite lattice size, finite lattice spacing, quenching and chiral extrapolation.
Thanks to recent progress of simulation algorithms and increasing availability of computational
resources, we are about to bring all the above systematic errors under control. This will allow us
to establish whether or not QCD is the fundamental theory of the strong interaction by investi-
gating the hadron spectrum, and further proceed to elucidate the fundamental issues of the strong
interactions and the Standard Model.

The previous CP-PACS/JLQCD projetitP] aimed at a full removal of the quenching effects
by performingNs = 2+ 1 lattice QCD simulations with the nonperturbativélya)-improved Wil-
son quark actioi] and the Iwasaki gauge acti@f[on a (2 fm)? lattice at three lattice spacings.

While we have succeeded in incorporating the dynamical strange quark effects by the Polyno-
mial Hybrid Monte Carlo (PHMC) algorithrg], the lightest up-down quark mass reached with
the HMC algorithm was 64 MeV corresponding rig;/m, ~ 0.6, which required a long chiral
extrapolation to the physical point ai;/m, ~ 0.18.

The PACS-CS(Parallel Array Computer System for Computational Science) 6j&@8[ is
the successor to the CP-PACS/JLQCD project, which takes up the task that the latter has left off,
namely simulation at the physical point to remove the ambiguity of chiral extrapolation. It employs
the same quark and gauge actions as the CP-PACS/JLQCD project, but uses the PACS-CS computer
with a total peak speed of 14.3 TFLOPS developed and installed at University of Tsukuba on 1
July 2006. The up-down quark masses are reduced by employing the domain-decomposed HMC
(DDHMC) algorithm with the replay trick proposed by Liscl®:r10]. So far, we have reached
the up-down quark mass of 6 MeV which yields the pion mass of about 210 MeV. We also improve
the simulation of the strange quark part with the UV-filtered PHMC (UV-PHMC) algoritdjn[

In this report we present simulation details and preliminary results which include the chiral
analysis on the pseudoscalar meson masses and the decay constants with chiral perturbation theory,
the light hadron spectrum and tpertrr mixing effects. Some algorithmic issues are also discussed.
Selected topics on the light hadron spectrum and the ChPT analysis on the pseudoscalar meson
masses and the decay constants are also reported inlReis).

2. Simulation details

2.1 Simulation parameters

We employ theD(a)-improved Wilson quark action with a nonperturbative improvement co-
efficientcsw = 1.7193] and the Iwasaki gauge action t= 1.90 on a32® x 64 lattice which is
enlarged fron20® x 40in the CP-PACS/JLQCD project to investigate the baryon masses. Simula-
tion parameters are summarized in Tahl&V/e choose six combinations of the hopping parameters
(Kud, Ks) based on the previous CP-PACS/JLQCD results. Among them the heaviest combination
(Kud, Ks) = (0.1370Q00.13640 in this work is the lightest one in the previous CP-PACS/JLQCD
simulations, which enable us to make a direct comparison of the two results with different lattice
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sizes. As for the strange quark, the hopping parameter 0.13640corresponds to the physi-
cal pointks = 0.13641250) as estimated in the CP-PACS/JLQCD wdik2]. This is the reason
why all our simulations are carried out witly = 0.1364Q the one exception being the run at
Ks = 0.13660andkq = 0.13754to investigate the strange quark mass dependence.

In order to simulate the degenerate up-down quarks we employ the DDHMC algorithm, whose
effectiveness for small quark mass region has already been shown g the& case9, 14, [15].
The characteristic feature of this algorithm is a geometric separation of the up-down quark de-
terminant into the UV and the IR parts as a preconditioner of HMC, which is implemented by
domain-decomposing the full lattices with small blocks. We ch@der the block size being less
than (1 fm}¥ in physical units and small enough to reside within a computing node of the PACS-CS
computer. There are two prominent points in the DDHMC algorithm. Firstly, communication be-
tween the computing nodes is not required in calculating the UV part, which is a preferable feature
for alleviating the problem of a widening gap between the processor floating point performance and
the network communication bandwidth with parallel computers. Secondly, we can incorporate the
multiple time scale integration scheri€] to reduce the simulation cost efficiently. The relative
magnitudes of the force terms are found to be

[IFgll - [IFuvl| - [[Frl[ ~ 16 :4: 1 (2.1)

where we adopt the conventidiM||?2 = —2tr(M?) for the norm of an elemeri¥! of the SU(3)
Lie algebra.Fy denotes the gauge part aRgy ir are for the UV and the IR parts of the up-down
quarks. The associated step sizes for the forces are controlled by three iNggersoty =
T/NoNiN2, Otyy = 1/NiNp, O1r = T/N2 with T the trajectory length. The integel ;> are
chosen such that

O1g||Ryl| = Stuv||Fuv|| = OTiRr||FR|]- (2.2)

Taking account of the relative magnitudes of the forces iret).(ve find a larger value is allowed

for dtir compared tad1g and dtyy, which means that we need to calcul&g less frequently

in the molecular dynamics trajectories. Since the calculatioRgfcontains the quark matrix
inversion on the full lattice, which is the most time consuming part, this integration scheme saves
the simulation cost remarkably. The valuesNgr » are listed in Tabld, whereNg andN; are fixed

Kud Ks T (No,N1,Nz) Nooly MD time Tint[P]
0.13700 0.13640 0.5 (4,4,10) 180 2000 38.2(17.3)
0.13727 0.13640 0.5 (4,4,14) 180 2000 20.9(10.2)
0.13754  0.13640 0.5 (4,4,20) 180 2500 19.2(8.6)

0.13660 0.5 (4,4,28) 220 900 10.3(2.9)
0.13770 0.13640 0.25 (4,4,16) 180 2000 38.4(25.2)
0.13781 0.13640 0.25 (4,4,48) 180 350 9.1(6.1)

Table 1: Simulation parameters. MD time is the number of trajectories multiplied by the trajectory length
T. Tint[P] denotes the integrated autocorrelation time for the plaquette.
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Figure 1: Plaquette history (left) and normalized autocorrelation function (right) (faf, ks) =
(0.137270.13640. Horizontal lines in the left denote the average value of the plaquette with an error
band.

at 4 for all the hopping parameters, while the valudgis adjusted taking account of acceptance
rate and simulation stability.

For the UV-PHMC algorithm for the strange quark, the domain-decomposition is not imple-
mented. Since we have fouliés|| ~ ||Fr||, the step size is chosen as = d1r. The polynomial
order for UV-PHMC, which is denoted kYo in Tablel, is adjusted to yield high acceptance rate
for the global Metropolis test at the end of each trajectory.

The inversion of the Wilson-Dirac operatdr on the full lattice is carried out by the SAP
(Schwarz alternating procedure) preconditioned GCR solver, where the preconditioning can be ac-
celerated with the single-precision arithmetic whereas the GCR solver is implemented with the
double precisiorl7]. We employ the stopping conditigix — b| /|b| < 10~° for the force calcula-
tion and10~ 14 for the Hamiltonian, which guarantees the reversibility of the molecular dynamics
trajectories to high precisionAU | < 10~*2 for the link variables antA\H| < 10~8 for the Hamil-
tonian at(Kyg, Kks) = (0.137810.13640.

2.2 Plaquette history and autocorrelation time

In Fig. /2 we show the plaquette history and the normalized autocorrelation funetion
at (Kug, Ks) = (0.137270.13640 as a representative case. The integrated autocorrelation time is
estimated asi[P] = 20.9(10.2) following the definition in Ref./9]

1

Tint(T) = = T 2.3

|nt( ) 2 +O<TZ§WP( )7 ( )
where the summation windoW is set to the first time lag that p(7) becomes consistent with
zero within the error bar. In this case we fildl= 1195. The choice oW is not critical for
estimate oft,; in spite of the long tail observed in Fi@. Extending the summation window, we
find thatti,:[P] saturates atin:[P] ~ 25beyondr = 200, which is within the error bar of the original
estimate. For other hopping parameters we have found similar behaviors for the plaquette history
and the normalized autocorrelation function. We hardly observe the quark mass dependence for
Tint[P] listed in Tablel. The statistics may not be sufficiently large to derive a definite conclusion,
however.
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Figure 2: Cost estimate oNs = 2+ 1 QCD simulations with the HMC (solid line) and the DDHMC (red
circle) algorithms at = 0.1 fm with L = 3 fm for 100 independent configurations. Vertical dotted line
denotes the physical point.

3. Algorithmic issues

3.1 Efficiency of DDHMC algorithm

In order to discuss the efficiency of the DDHMC algorithm, it is instructive to compare with
that of the HMC algorithm. We first recall an empirical cost formulaNpr= 2 QCD simulations
with the HMC algorithm based on the CP-PACS resaB[

#con 06 1° 7 L 1° [o1fm]”’
cos{Tflops-years = C[loocﬂ . [mn/mp] . [Sfm] . [ 3 ]

with C ~ 2.8. A strong quark mass dependence is found in the above formy(an;/m, )® behaves
as 1/r7ﬁJd in the leading term for the small quark mass region. This quark mass dependence is
owing to the following three factors: The number of the quark matrix inversion is governed by
the condition number which should be proportional fon,q; to keep the acceptance rate fixed we
should takedt [0 myq for the step size in the molecular dynamics trajectories; The autocorrelation
time of the HMC evolution show/m,q dependences in the CP-PACS L]

To estimate the computational cost fér = 2+ 1 QCD simulations with the HMC algorithm,
we assume that the strange quark contribution is given by half @.&pat m,/m, = 0.67 which
is a phenomenologically estimated ratio of the strange pseudoscalar nmggbarid my:

J2mg —m2
Mhs m " ~067. (3.1)

My My
Since the strange quark is relatively heavy, its computational cost occupies only a small fraction
as the up-down quark masses decrease. InZige draw the cost formula for thf =2+ 1
case as a function afi;/m,, where we take #conf=100, a=0.1 fm abd-= 3 fm in eq.B3.1) as a
representative case. We observe a steep increase of the computational costhetpw 0.5. At
the physical point the expected cosi§100) Tflopsyears.
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T (No,N1,N2)  Npoyy  trajs.  MDtime  Tin[P] Tint[#mult]
0.5 (4,4,6) 130 6000 3000 23.7(9.2) 92(56)
0.5/3 (4,4,2) 130 18000 3000 18.6(5.9) 42(21)

Table 2: Parameters for-dependence study. #mult denotes the number of multiplications of the Wilson-
Dirac quark matrix on the full lattice.

Now let us turn to the case of the DDHMC algorithm. The red symbol denotes the measured
cost atk,q=0.13781, 0.13770 witlks = 0.1364Q which are the lightest two points in our simula-
tion. The DDHMC algorithm show a remarkable improvement reducing the ca3®by60 times
in magnitude. The majority of this reduction arises from the multiple time scale integration scheme
and the GCR solver accelerated by the SAP preconditioning with the single-precision arithmetic.
Roughly speaking, the improvement factoiQ¢10) for the former and — 4 for the latter. Note
that the quark mass dependence is also tamed: Since we find tfRlt is independent of the
guark masses, the cost is proportionalmﬁd. Our results show a feasibility of simulations at the
physical point with théd(10) Tflops computer which is available at present.

3.2 1 dependence of DDHMC algorithm

In the DDHMC algorithm a subset of of all link variables, which are referred to as the active
link variables, are updated during the molecular dynamics evolution, while keeping other field
variables fixed®]. The fraction of the active link variables depends on the block size we choose. In
our case oB* it is only 37%. To ensure that all the link variables on the lattice should be updated
equally on average we implement random gauge field translations at the end of every molecular
dynamics trajectories following Ref].

Our concern is that the DDHMC algorithm might have a long autocorrelation time due to
the existence of fixed link variables during the molecular dynamics evolution. A possible way
to reduce the effects of the fixed link variables is more frequent random gauge field translations.
This is easily realized by makingshorter withdt fixed. We investigate the dependence of the
DDHMC algorithm employing a smaller lattice size 18 x 32 at (Kyq, ks) = (0.137000.13640.

Other parameters are summarized in Téble

0.8 plaquette B

_'0‘ P ‘]00‘ ‘-‘ ‘200‘ R ‘300

Figure 3: Normalized autocorrelation functions for the plaguette (left) and the #mult (righig,atks) =
(0.1370Q0.13640. Black (red) symbols denote thre= 0.5 (1 = 0.5/3) case.



Nf = 2+ 1 dynamical Wilson quark simulation toward the physical point

In Fig..3 we show the normalized autocorrelation functions for the plaquette and the number
of multiplications of the Wilson-Dirac quark matrix on the full lattice during a molecular dynamics
trajectory. Black symbols denote thie= 0.5 case, while red ones are for the= 0.5/3 case. We
observe that the normalized autocorrelation functiong fer0.5 have longer tails than = 0.5/3
before becoming consistent with zero: This is quantitatively checked by the integrated autocorrela-
tion timestiy[P] and 1in¢[#mulf in Table2: The t = 0.5/3 case has shorter autocorrelation times.
Since the computational cost is the same forttke 0.5 and thetr = 0.5/3 cases in terms of MD
time, we can conclude that the= 0.5/3 case shows a better efficiency than the- 0.5 case.
Based on this study, albeit conducted at a relatively heavy quark (magsn, ~ 0.6), we employ
T = 0.25 for the production run atkyq, Ks) = (0.13781,0.13640 and(0.137700.13640, which
is half of the trajectory length at other hopping parameters.

3.3 Simulation stability

In Refs. [14, [15] simulation stability was discussed based on the spectral gap distribution of
the Wilson-Dirac operator for two-flavor lattice QCD simulations. The spectral gap is defined as

¢ =min{|A|| A is an eigenvalue d®}, (3.2)

whereQ is the hermitian Wilson-Dirac operat® = ysDw with Dw = (1/2){yu (0}, + Oy) —

ally, Ou} + mo. Important indices to characterize the distribution are its megdiamd widtho.

The latter is defined a& — u)/2, where|u,V] is the smallest range @f which contains more than
68.3% of the data. This is to avoid potentially large statistical uncertainties which might occur
when data are not sufficiently sampled. Their chief findings are two points: The first one is that
the medianu shows a good linear dependence on the current up-down quarkmfisand the
magnitude of the slope is well described By empirically. The second one is that the widih
scales as

vV
J? ~1 (3.3)

with V the four-dimensional volume in physical units. They also observe that the widtroughly
independent of the quark mass for the unimproved Wilson quark action, while it shows a trend to
decrease with the mass for the improved one.

This study was also applied to tidy = 2+ 1 case in Ref.|8] where we reported on our
preliminary run on a6° x 32 lattice preparing for the PACS-CS project. We obserued nt}}\!
and found0.5<0(v/V/a)<0.76 for 15 MeV < m{i"! < 64 MeV, whereo diminishes as the up-
down quark mass decreases.

The existence of a gap in the spectrum of the Wilson-Dirac operator allows us to simulate the
light quarks efficiently. The authors in RefL4] propose a stability condition requiring > 30 to
assure the existence of the gap. Let us apply this condition to our case. Assmfwikga) = 1
we estimates = 2.26 MeV usinga = 0.09 fm andV = (2.8 fm)* which will be obtained later.

By using the empirical relatiop ~ Zan(}¥"' we findZam{}{' >6.8 MeV for the stability condition,
which is heavier than the physical point. On the other hand, we fa(rdV/ /a) < 1 in Ref. [g],
indicating that the actual bound will be lower. Our runs toward the physical point should shed light
on the actual bound of stability for our lattice parameters.
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prec. blocksize p  (No,Ni,N2) 17 MDtime Pacc
DD 8 - (4,8,12) 1 3000 0.857(8)
mass - 0.09 (4,8,12) 1 3000 0.794(8)

Table 3: Simulation parameters for the DDHMC and the mass-preconditioned HMC algorilygadenote
the acceptance rate.

3.4 Comparison of DDHMC and mass-preconditioned HMC

As discussed in SeB.], it is essential for the efficiency of the DDHMC algorithm to incorpo-
rate the multiple time scale integration scheme. It is well known that this scheme is also applicable
to the mass-preconditioned HMC algoritt28[21]. We have made a direct comparison of the
two algorithms inNy = 2 QCD on al6® x 32 lattice employing théD(a)-improved Wilson quark
action with the nonperturbative improvement coefficiefyy = 2.017122] and the plaquette gauge
action at = 5.2. The lattice spacing is 0.1 fm and the physical pseudoscalar meson mass is about
600 MeV atk,q = 0.1355 For the mass-preconditioned HMC algorithm we employ two set of the
pseudofermion fields which decompose the fermion determinant as

2 t Q
detQ” = detW'W) det<WTW> , (3.4)
where Q is the hermitian Wilson-Dirac operator and the preconditioning operator is given by
W = Q+ p. For convenience we refer tetW'W) as the UV part and thdet Q?/(W'W)) as
the IR part in an analogy with the DDHMC algorithm. The step sizes are chosen with the three
integersNy 12 in exactly the same way as the DDHMC algorithm. Simulation parameters are
summarized in Tabl8. The block size for the DDHMC algorithm and tlgeparameter for the
mass-preconditioned HMC algorithm are chosen such|{Ra1 »|| are roughly the same between
these two algorithms. This condition yields comparable acceptance ratiolyvithin common.
We employ the BiCGStab algorithm for the quark matrix inversion in both the UV and the IR parts.
In Fig./4 we plot the normalized autocorrelation function for the plaquette as a function of MD
time. The results of both algorithms show quite similar behaviors and the integrated autocorrelation
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Figure 4. Normalized autocorrelation functions for the plaquette (left) and the number of multiplications of
the Wilson-Dirac quark matrix on the full lattice (right). Black (red) symbols denote the DDHMC (mass-
preconditioned HMC) case.
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prec. Tin[P] Tint[#mulf #mult costP] cost[#mult]
DD 27(10) 22(7) 45530(280) 1.2(5) 1.0(3)
mass 28(12) 35(16) 67160(380) 1.9(8) 2.4(1.0)

Table 4: Integrated autocorrelation time and cost estimate for the DDHMC and the mass-preconditioned
HMC algorithms.

time Ti¢[P] in Table4 are consistent within the errors. Figlishows the MD-time history of the
number of multiplications of the Wilson-Dirac quark matrix on the full lattice. The total number of
multiplications is the sum of those required to calculate the UV and the IR forces and the Hamil-
tonian. Their contributions are denoted by black, red, green, blue lines in order. Comparing the
results of the DDHMC and the mass-preconditioned HMC, we observe a clear difference in the UV
part contribution: the mass-preconditioned HMC needs more than twice of the multiplication num-
ber for the DDHMC. This ends up in a 50% difference in the total number of multiplications. In
Fig./4 we also plot the normalized autocorrelation function for the total number of multiplications.
Although the DDHMC result seems to show a slightly steeper fall-off, both results are consistent
within the error bars. This is confirmed by the integrated autocorrelationttifémult] in Table4.

Now let us compare the efficiencies of both algorithms. We define the machine-independent
cost formula by

cos{o] = #mult(total) /MD time x Tine[0] /1P, (3.5)

where the observabl€ is the plaquette or the total number of multiplications. In Tal¥ee sum-
marize the results of cogt]]. For both observables the DDHMC algorithm shows better efficiency
than the mass-preconditioned HMC algorithm albeit the errors are rather large.

There remains a couple of concerns in this study. The first one is the quark mass depen-
dence, because our results are obtained at only one hopping parameter. The second one is the
optimization. While we choos8* block size for the DDHMC algorithm angd = 0.09 for the
mass-preconditioned HMC algorithm sinBp 1 »|| are roughly the same, these parameters may
not be the optimal values for each of the algorithms. We leave these issues to future studies.
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Figure 5: History for number of multiplications of the Wilson-Dirac quark matrix on the full lattice for the
DDHMC algorithm (left) and the mass-preconditioned HMC algorithm (right).
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0.13781 (right). Horizontal lines represent the fitting results with an error band.
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Figure 7: Binsize dependence of magnitude of error for mesons (left) and baryons (right)qats) =
(0.13727,0.13640.

4. Physical results

4.1 Measurement of hadron masses, quark masses, decay constants

We measure both the meson and the baryon correlators at every 10 trajectories at the unitary
points where the valence quark masses are equal to the sea quark masses. Light hadron masses are
extracted from a single exponentjed fit to the correlators with an exponentially smeared source
and a local sink. Figuré shows the hadron effective massexat= 0.13727and0.13781as

10
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representative cases. We observe clear plateau for the mesons exceptdands®n and also
good signal for the baryons thanks to a large volume. Especiallf th@yon has a stable signal,
which we use as a physical input to determine the cutoff scale later. The horizontal lines denote the
fitting results with an error band of one standard deviation. Their widths represent the fitting ranges.
Statistical errors are estimated by the jackknife method. In[Fige plot binsize dependence of
magnitude of error for the mesons and the baryongad, ks) = (0.137270.13640. For the
pseudoscalar mesons we observe that the magnitude of error gradually increases as the bin size is
enlarged up to about 40 MD time, beyond which it stabilizes. For other hadrons we do not find any
clear binsize dependence. The data at other hopping parameters show similar behaviors. Based on
this observation we choose 50 molecular dynamics time for the jackknife analysis at all the hopping
parameters.

We extract the bare quark mass through the axial vector Ward-Takahashi identity (AWI) by

(DA (1)P(0))
ant!" = jim 2POP(0)

(4.1)

with P the pseudoscalar density aAiﬁ‘p the nonperturbativel®(a)-improved axial vector currerfB].
The renormalized quark mass and the pseudoscalar meson decay constant in the caihuum
scheme are defined as follows:

- ZA ( rw’-\WI )
MS \WI
(4.2)
()
Wi 2c}k
fps = 2KUpZa <1+ bArrﬁo ) CS mps. (4.3)

HereC3 p are the amplitudes extracted from the correla(@t‘;g‘p(t)P(O» and(P(t)P(0)) with an
exponentially smeared source and a local sink, wlilés from (P(t)P(0)) with a local source and
alocal sink. The renormalization factafs p and the improvement coefficiertta p are evaluated
perturbatively up to one-loop lev@l, [25]with the tadpole improvement.

4.2 Comparison with the previous CP-PACS/JLQCD results

lattice size  amy am amy
PACS-CS 32 x64 0.3220(6) 0.506(2) 0.726(3)
[tmin, tmax] [13,30] [10,20] [10,20]
CP-PACS/JLQCD 20°x40 0.3218(8) 0.516(3) 0.733(4)
[tmin, tmax] [8,20] [9,15] [11,17]

Table 5: PACS-CS and CP-PACS/JLQCD results far, p and nucleon masses dkyg,Ks) =
(0.1370Q0.13640. [tmin.tmax denotes the fitting range.

We first compare the PACS-CS results3#i x 64 with the previous CP-PACS/JLQCD results
on 20 x 40[1, 2] at (kud, Ks) = (0.137000.13640. In Fig..8 we plot the effective masses for the
and thep mesons. The PACS-CS and the CP-PACS/JLQCD results are consistent/fontson,

11
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Figure 8: Effective masses for the (left) and thep (right) at (kyg, Ks) = (0.137000.13640. Black and
red symbols denote the PACS-CS and the CP-PACS/JLQCD results, respectively.

while a slight deviation is observed for tikemeson. This is numerically confirmed by the fitting
results listed in Tabl®, where we employ a single exponentjd fit. The nucleon mass is also
given in Table5. We find 1-2% deviation for thgo meson and nucleon masses, which could be
due to possible finite size effects.

Figured shows the up-down quark mass dependencéaof;)? andam, with ks fixed at
0.13640. For the pion mass we observe that the PACS-CS and the CP-PACS/JLQCD results are
smoothly connected as a functionbfk,q. On the other hand, the quark mass dependence is not
so smooth for thgp meson. Although this may be attributed to finite size effects, further studies
are needed in the channel.

4.3 Chiral analysis on pseudoscalar meson masses and decay constants

We examine the chiral behaviors of the pseudoscalar meson masses and decay constants in
comparison with the prediction of chiral perturbation theory (ChPT). Our interest exist in the fol-
lowing points: (i) signals for chiral logarithms, (ii) determination of low energy constants in the
chiral lagrangian, (iii) determination of the physical point with the ChPT fit, (iv) estimate of the

0.30 ‘ ‘ ‘ ‘ — 0.8

L A
0.25- 2 . L m i

L (amn) A i 07 p A

r A

0‘205 A 7 0.6 A i
0.15- — [ A

L A 0.5 é 4
0.10{~ . T L °

[ o ° 3 ] a4l L] ° 3 B
0.051- PACS-CS 327x64 ; B 0. ¢ PACS-CS 327x64 s

L L A CP-PACS/JLQCD 207x40 | L + A CP-PACS/JLQCD 207x40 |
0.00 2. . I . I . I . I . I 0.3 I . I . I . I . I . I

’ 7.26 7.28 7.3 7.32 7.34 7.36 ’ 7.26 7.28 7.3 7.32 7.34 7.36
I/Ku J 1/1<u d

Figure 9: (amy)? (left) andarmy, (right) as a function o /k,q. Red and black symbols denote the PACS-CS
and the CP-PACS/JLQCD results, respectively.
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magnitude of finite size effects based on one-loop calculations of ChPT.

We first recall the one-loop expressions of ChPT for the pseudoscalar meson masses and the
decay constanfgp]*:

my, = 2By {1+ prr— un + Bz (16m(2Lg — Ls) + 16(2r+ ms) (2Le — L4))} (4.4)

3 fs

. = (B { L+ 51 + 03 (80114 M) (2La—Ls) + 16210+ ) (2La—La)) [(45)

fr=f { — 2§l — uﬁ? (8mL5+8(2m+ms)L4)} (4.6)
0

fk = { un+ '?2 (4(m+ms)Ls + 8(2+ ms)L4)}, (4.7)

wherem = (my,+ ms)/2 andL4 568 are the low energy constants, augk is the chiral logarithm
defined by

1 rnzipsln rnzips
32m? 12 u?

with u the renormalization scale. There are six unknown low energy con&arfis Las 68 in the
expressions above. The low energy constants are scale-dependent so as to cancel that of the chiral
logarithm @.8). We determine these parameters by making a simultaneous figfang, f, and
fk.

We also consider the contributions of the finite size effects based on ChPT. At the one-loop
level the finite size effects defined By = (X (L) — X())/X(e) for X = my, mk, f, fx are given
by [27):

Ups= (4.8)

1, . 1, .
Rm, = ZEngl(/\n) — Efngl()\n)a (4.9)
R = g&ndi(An), (4.10)
Ri, = —&na(hn) — &) @.11)
3 3 3
Ry = — 2 &xit(An) — J&GLK) — 2 &nda(An) (4.12)
with
Eps= MBs e mesk, G Ki(vnx), (4.13)
PS= Gmi)z MRS , Galx z f :

whereK; is the Bessel function of the second kind am¢h) denotes the multiplicities in the
expression of = n2 4 nf, +n2. With the use of these formulae we estimate the possible finite size
effects in our results.

Before presenting our fitting results, it is instructive to compare the PACS-CS and the CP-
PACS/JILQCD results fofamy)?/(am\") and fx / fz. In Fig.10 we plot them as a function of

1t is normalized as 92.4 MeV in these expressions, while our results are presente}ir-th80.7 MeV normal-
ization.
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Figure 10: Comparison of the PACS-CS (red) and the CP-PACS/JLQCD (black) resuftfay?/(anfy'")
(left) and fx / f;; (right) as a function o&l ‘d’\". Ks is fixed at 0.13640. Vertical lines denote the physical
point and star symbol represents the experimental value.

am\! with ks fixed at 0.13640. The PACS-CS and the CP-PACS/JLQCD results are denoted by
the red and the black symbols, respectively. The two sets of data together show a smooth behavior
as a function oainf}{!, and atkyq = 0.13700(an}}"' = 0.028) they show good consistency. It is
important to observe that an almost linear quark mass dependence of the CP-PACS/JLQCD results
for heavier up-down quark masses changes into a convex behavior, bégmfgr /(anf') and
f / fr, @as the quark mass is lowered in the PACS-CS runs. This is a characteristic feature expected
from the ChPT prediction in the small quark mass region due to the chiral logarithm. This curvature
drives up the ratid / f; toward the experimental value as the physical point is approached.

Let us apply the ChPT formulad.@)—(4.7) to our results at four poin{sq, Ks) = (0.137810.13640,
(0.13770,0.13640), (0.13754,0.13640), (0.13754,0.13660). For these poimtsndson mass sat-
isfies the condition thah, > 2m;,. The measured bare AWI quark masses are uset fordms in
eqs.4.4)—(4.7). The heaviest pion mass @4, ks) = (0.137540.13640 is about 430 MeV with
the use of the cutoff determined below. We summarize the pion masses and the unrenormalized
AWI quark masses in Tabl6. The fit results are shown in Fidl, where the black solid lines
are drawn withks fixed at 0.13640 and the black dotted lines arekior= 0.13660 The red solid
symbols represent the extrapolated values at the physical point whose determination is explained in

Kud Ks amy amfV! amtW!
0.13700 0.13640 0.32196(62) 0.02800(20) 0.04295(30)
0.13727 0.13640 0.26190(66) 0.01895(13) 0.04061(18)
0.13754 0.13640 0.18998(56) 0.01020(11) 0.03876(18)

0.13660 0.17934(78) 0.00908(7) 0.03257(17)
0.13770 0.13640 0.13591(88) 0.00521(9) 0.03767(10)
0.13781 0.13640 0.08989(291) 0.00227(16) 0.03716(20)

Table 6: Pion masses and unrenormalized AWI quark masses.
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Figure 11: Fitting results for(amy)2/(am{\"") (left) and fx / f (right). Red solid (open) symbols denote
the extrapolated values at the physical point by the ChPT formulae without (with) the finite size effects.

Secld.4below. The heawest point ékyq, Ks) = (0.137540.13640 is not well described by ChPT
both for (amy)?/(anf\!) and f / f, andx?/d.o.f. is rather large (see Talilg

Li(u=m,) PACS-CS PACS-CSwith FSE exp.vald€] MILC[29]

La 0.25(11) 0.23(12) 0.27+0.8 0.1(2)(2)

Ls 2.28(13) 2.29(14) 2.28+0.1 2.0(3)(2)
2lg— Ly 0.16(4) 0.16(4) 0+1.0 0.5(1)(2)
2Lg—L5  —0.59(5) —0.60(5) 0.18+0.5 —0.1(1)(1)
x2/d.o.f. 2.1(1.4) 2.1(1.4)

Table 7: Results for the low energy constants together with the phenomenological esizfiptex] the
MILC resultsP9].

The results for the low energy constants are presented in Tabere the phenomenological
values with the experimental inpu2§] and the MILC result29] are also given for comparison.
The renormalization scale is chosen tage= 0.547GeV. ForlL4 andLs governing the behavior of
fr, fk, our results show good agreement with both the phenomenological estimates and the MILC
results. On the other hand, some discrepancies are observed between three reduts ffgrand
2Lg — Ls which enter into the ChPT formulae fo, andng.

In Fig. 11 we also draw the ChPT fit results including the finite size effects. The green solid
lines are drawn folks = 0.13640and the green dotted ones feg = 0.1366Q The fit curves
with and without the finite size effects are almost degeneratarf@}/! > 0.003 but deviations
appear closer to the physical point, for which the extrapolated values are plotted by the open and
solid red symbols. This feature is understood by E@Zjwhere we plot the magnitude & for
X =My, mk, frr, fk with L = 2.8 fm as a function ofm;; ( we note thaRy,; > 0 andRs,; < 0). The
finite size effects are less than 2% fops and fps at our simulation points. Famps this is true
even at the physical point, while fdy; the finite size effects cause the value to decrease by 4%.
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Figure 12: |Rx| (Rmps > 0 andRy,¢ < 0) for X = my, mk, frr, fk with L = 2.8 fm as a function omy. Solid
vertical line denotes the physical point and the dotted ones are for our simulation points.

4.4 Physical point and light hadron spectrum

In order to determine the up-down and the strange quark masses and the lattice cutoff we need
three physical inputs. We try the following two cases;, mk, Mg andmy, mg,m,. The choice of
Mg has theoretical and practical advantagesQHmaryon is stable in the strong interactions and its
mass, being composed of three strange quarks, is determined with good precision with small finite
size effects. We also choosg, for comparison. We employ the NLO ChPT formulae for the chiral
extrapolations ofny, mk, f; and fx. A simple linear formulamhag = co+ ¢1 - MY + ¢ - mEW!
is used for the other hadron masses, employing data in the samexange.13754as for the
pseudoscalar mesons. In Fid we show the linear chiral extrapolations foy, andmg. The solid
lines are drawn withks fixed at 0.13640 and the dotted ones aredge= 0.13660 We observe
that the quark mass dependencesnfigrandmg at k,q > 0.13754are well described by the linear
function.

The results for the quark masses and the lattice cutoff are listed inGalteere the errors are
statistical. The two sets of results are consistent within the error. The quark masses are smaller than
the recent estimates in the literature. We note, however, that we employed the perturbative renor-

o K=0.13640 ] n o x=0.13640

o Kk=0.13660 L o Kk=0.13660
075 o o0 physical point - 045 @ o physical point
. | . I . I . . | . I . | .
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02
AWI AWI
m am

ud ud

Figure 13: Linear chiral extrapolation foamy, (left) andamy, (right). Solid (dotted) lines are drawn with
Ks = 0.13640(0.13660). Red open symbols denote the extrapolated values at the physical point with a linear
form.
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input a1 [Gev] mS[Mev] mS[Mev] @ fy fx f/fr
mo 2.256(81)  2.37(11) 69.1(25) 144(6) 175(6) 1.219(22)
m, 2.248(76)  2.38(11) 69.4(25)  143(6) 175(5) 1.219(21)

Table 8: Cutoff, renormalized quark masses, pseudoscalar meson decay constants determimgdanih
my, inputs.
o

mass[GeV] ]
1.5 a4 QA

L ad ﬂ ; =

“ - b
L 4 = |
1= oo H Y A |
A
| - ]
| . o

L -H- K N e Q-input

L op e 0 -input
0.5 B

Figure 14: Light hadron spectrum extrapolated at the physical point Qiimput (red) andp-input (blue).
Horizontal bars denote the experimental values.

malization factors to one-loop level which may contain a sizable uncertainty. A nonperutrbative
calculation of the renormalization factor is in progress using the Schrédinger functional scheme.

In Table8 we also present predictions for the pseudoscalar meson decay constants at the phys-
ical point using the physical quark masses and the cutoff determined above, which should be com-
pared with the experimental valuég = 1307 MeV, fx = 1598 MeV, fx/f; = 1.223 A 10%
discrepancy in the magnitude 6f and fx might be due to use of one-loop perturbat&gesince
the ratio shows a good agreement. A nonperturbative calculatigg isfalso in progress.

In Fig./14 we compare the light hadron spectrum extrapolated to the physical point with the
experiment. The results for the-input and thep-input are consistent with each other, and both
are in agreement with the experiment albeit errors are still not small for some of the hadrons. This
is an encouraging result. However, further work is needed since cutoff err@gahqcp)?) are
present in our results.

5. p-rtmrmixing

Since our simulations are carried out at sufficiently small up-down quark masses, it would be
interesting to investigate the-rr7r mixing effects. We find that the rest masg is always smaller
than the two-pion energ®,/me + (2r1/L)? for all the hopping parameters, and henceghmeson
at rest cannot decay into two pions. However, as illustrated inlBigor a movingp with a unit of
momentumj.e.,, its energy, /mg + (2m/L)2 becomes larger than the energy of a moving pion and
a pion at rest given by/mé + (217/L)? + m; when the up-down quark mass is sufficiently reduced.
Let us consider two types of the meson propagator with the moment@m/L: py(2r7/L)
with polarization parallel to the spatial momentum gnd2rt/L) with polarization perpendicular
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Figure 15: Energy levels of thep meson and the two pion states without the total momernum0 (left)
and withp = pmin = 217/L (right) as a function of the up-down quark massis fixed at 0.13640.
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Figure 16: Schematic view op and it energy levels due to mixing effects (left) and time dependence of
theR function (right).

to the spatial momentum. Phenomenologicallyghgrr coupling is described bgpmeabcpﬁ nbd“ m°
which favorsp (2rr/L) — mi(2m/L)1(0) to p, (211/L) — mi(27t/L) 11(0). We expect that thg (277/L)
propagator is more strongly affected by the mixing effects thaptt{@r/L) correlator. Since the
mixing effects push up the upper energy level further and push down the lower energy level as
shown in Fig/16, they could be detected by measuring Bhieinction defined by

(1(BP(B,0) targe
(pL(B,)P! (B,0))

In Fig.[16 we plotlog|R(t)| as a function of. The dotted horizontal lines dend®gt) = (E/my)?

, which is determined kinematically in the mixing-free case. The solid lines represent the fitting
results with a single exponential form oveK t < 11. The data show clear positive slopes which
indicateE,, < Ep, . We also observe that the magnitude of the energy difference is rather small for
Kud < 0.13754 while it grows rapidly as the up-down quark mass is reducedkfgr- 0.13754

This feature may suggest that tmﬂ(ri,t)p‘f(ri, 0)) correlator is getting dominated by timet state

toward the smaller up-down quark masses. In order to obtain a definite conclusion, we need more

R(t) = ze BBt (5.1)
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detailed investigations with increased statistics.

6. Summary

We have presented a status report of the PACS-CS project which aims at a 2+1 flavor lattice
QCD simulation toward the physical point. With the aid of the DDHMC algorithm for the up-
down quarks we have reachet, = 210MeV, which roughly corresponds "Tds(u =2GeV) =
5.6 MeV, on a32® x 64 lattice using theD(a)-improved Wilson quarks. Thanks to the enlarged
volume compared to the previous CP-PACS/JLQCD work, we obtain good signals not only for the
meson masses but also for the baryon masses. Our results for the hadron spectrum at the physical
point show a good agreement with the experimental values.

At present we have just started the simulation at the physical point. We are also calculating the
nonperturbative renormalization factors for the quark masses and the pseudoscalar meson decay
constants in order to remove perturbative uncertainties in these important quantities. Once these
calculations are accomplished, the next step is to investigate the finite size effects at the physi-
cal point, and then to reduce the discretization errors by carrying out calculations at finer lattice
spacings.
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