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1. Large N QCD in the 't Hooft limit

LargeN gauge theorieg][1] are qualitatively similar to QCD with three colors and it ishedy
hope to solve it analytically foN = c. Only planar diagrams contribute in this limit and fermions
in the fundamental representation are naturally quenched as long astthemof flavors is finite.
Researchers in string theory and gravity also address the problengefNagauge theories but
they are a long way from solving it analytically [2].

We will discuss various physical properties of lalg&CD in the 't Hooft limit. We will start
with well known results ird = 2 and proceed to a discussion of relatively new results 1 3
andd = 4. The theory will be regulated using the lattice formalism and the lattice bapdicgu
b= gziN, will be held fixed asg — 0 andN — . We will assume that we only have a finite
number of fermion flavors and therefore fermions will be naturally quedas long as we are in
the confined phase and there is no chemical potential. The continuum lingsporrds td — co.

All our discussion will be on a periodic lattice at a finite physical volume. Bigady,

o d=2:lyy= 'i\/t_)y The physical sizek < |, are kept fixed akyy andb are taken teo.

L.
[ d — 3 Ix,y’Z — —Elyz,

We will use the tadpole improved couplind [3}, = be(b) wheree(b) is the average value
of the plaquette. The physical sizgs< |y < |, are kept fixed akyy, andb are taken too.
51
: 48y | 121 2 . .
o d=4!lyyzt =Lxyzt |"17-| € 1 .Thephysicalsizel <l, <I, <l are kept fixed as
Lxyzt andb are taken too.

2. U(1) symmetry and continuum reduction

The lattice gauge action f@&J (N) gauge theory on b3 x - --Lq4 periodic lattice is given by

S= bgn,%vﬂ[u“”(n)w;’”(n)] (2.1)
Upw (M) = Up (MU (n++ Ui (0 v)Uy (), (22)

In addition to the local gauge symmetry, the above action %@lobal symmetry under which
the Polyakov loop in the directions get rotated by &y phase factor:

Uy(n) — €2%u/Ny, (n) for ny =L, and 0<n, <L, for p#v 0<k, <N  (2.3)

EachzZy becomes & (1) in theN — oo limit.

If the U (1) symmetry is not broken in a given direction orLax ---Lq lattice at a fixed
couplingb, then no physical quantity depends on the size of that direction. Thé @irtite above
statement is a simple extension of the original Eguchi and Kaai [4] argutaeal; x ---Lg
lattice. The continuum limit of the above statement (namgly;» «, b — o, such that the physical
sizel,, is kept fixed) is referred to as continuum reductign [5].

If continuum reduction holds in a certain direction, the parallel transpiortbat direction can
be folded using periodic boundary conditions to construct a transparbitrary length. This
enables one to consider Wilson loops of arbitrary size on a finite box.
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Continuum reduction has interesting consequences for fermions. Résiaotes that the gauge
transformations can be extended fr&u(N) to U(N) and still get the same result for fermionic
gauge invariant quantities. One can then conyer} (2.3) to

21y

Uyu(n) — €™ Uy(n); 0<ky <N (2.4)

using a U(N) gauge transformation that obeys periodic boundary comslitibhe gauge field ac-
tion is invariant under the above transformation and therefore an @idemnade out of a single
fermion (like the quark condensate) cannot depend kp&ut a fermionic observable that is made
out of one quark and a different anti-quark (likera meson) will depend upotk — q) if one quark
sees a gauge field witty, and the other quark sees a gauge field wjth Therefore, one can have
continuous momenta in this direction where the discete momentum interval on thedadtidéd

by w This is called the quenched momentum prescriptipn [6] for mesons.

3. Large N QCD in two dimensions

The twoU (1) symmetries remain unbroken for all valuestoéndLyy [[f]. Therefore the
problem can be reduced to a single site on the lattice WitandU, being the twa8J (N) degrees
of freedom. There is no dependence on the boxlIgizel, for any 0< Iy <y < . LargeN QCD
in d = 2 is always in the confined phase and there is no dependence on theatmger

3.1 Gross-Witten transition

The plaquette operator B = U1U2U1TU2Jr and its eigenvalueejeé, j=1,---,N are gauge
invariant. Consider the eigenvalue distributipif; b), for —m < 8, < rmobtained upon averaging
overU ; using the Wilson action. Gross and Wittéh [8] showed that this observabikitsnon-
analytic behavior as a function bf

) 2b 6, /1 Y 1 .1 /1

p(Bp;b) = 2 (1+2bcosby), b< %; 16| < T (3.1)

The eigenvalue distribution has a gap bor % and it does not have a gap for< % The lattice
theory has a third order phase transitiorbat % and this transition is referred to as the Gross-
Witten transition. This transition is a lattice phenomenon since the location of thsitimardoes
not scale with the lattice size and the continuum theory is only in the phase theceggenvalue
distribution of the plaquette operator has a gap.

3.2 Wilson loops in largeN 2d QCD

The plaquette operator is a Wilson loop whose area goes to zero as @i® goe continuum
limit. For a physical loop, consider a rectangular Wilson loop of gizan. The Wilson loop oper-
ator can be obtained by folding on a single site lattice and is givet iy m) = UgU/" (U;“UQ)T.
Lett = 57 be the parameter that characterizes the dimensional area. Consideinaworiwil-
son loop of a fixed area by taking— o, nm — o while keepingt fixed. Since, TW(n,m) =
[Trw(1,1))"™ [B], it is easy to show that W(t) = e z.
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One can proceed further and get analytical expressions¥é? (Ty. In this context, it is useful

to consider the generating functibiiz t) = %+ S et m\zqﬂ wherezis a complex variable. Then,

F(zt) satisfies|[9]
_ PO+ e

T 2F(zt)-1 (3.2)
and the expectation value of powers of Wilson loops fre[[10, 11, 12, 13]
(TAWP(t)) = %L,ﬁljl(nt)e—% (3.3)
The expectation value of the distribution of the eigenvalédspf W is given by
p(G,t):—%ReF(eie,t) (3.4)

3.2.1 Critical behavior of Wilson loops

The above results imply a critical behavior of Wilson loops as a functioneaf.arhe expecta-
tion value of arbitrary powers of Wilson loop§rW"(t)), as given by[(3]3) are analytic functions
of t. Yet, the eigenvalue distributiop,6,t), exhibits a non-analytic behavior as a functiort .
One way to see this is to ask whatr, t) is as a function of. Settingz= —1 in (3.2) results in

2F(—1,t) = tanhL_zl’t)
F(—1,t) = 0 is always a solution but the non-zero solution Fq—1,t) whent > 4 is favored.
Therefore, the critical point is= 4 and the distribution has a gap tot: 4 and does not have a gap
fort > 4. Itis also clear from the above equation tRat-1,t) 0 v/t — 4 ast — 4 [L4].

A non-trivial critical behavior is observed if one stays at the critical paia- 4, and asks for
the behavior op(8,4) close tof = 1. If we setz= —€¥ andt = 4 in (B.2), one finds that(y,4) O
y% and therefore the number of eigenvalues in an arc of ledgtimeary = 0, is proportional to
Ny%. Therefore, the level spacing is proportional\to%i [L4].

This physical transition in Wilson loops as a function of area from wealpladoy t < 4) to
strong couplingt(> 4) is called the Durhuus-Olesen transition.

(3.5)

3.2.2 Double scaling limit of the Durhuus-Olesen transition

The critical behavior of the Wilson loops as a function of area results invensal function in
the double scaling limit where one takes> 4 and@ — 1. The double scaling limit can be studied

by considering
1 N
N\4 /2mmex y _y
On(y,b) = <I2> ,/m)Z—N<det(ez+e zw)> (3.6)

W = |‘|?:1Uj is a product ofn independently and identically distributé&l) (N) matrices,U; =
gty EachH; is traceless and its entries are independently distributed Gaussian randanhega
We lete — 0 andn — o such that the are%,: t = ne?, is kept fixed.

One can use an integral representation over Grassmann fields artidragt@n expansion in
€ to show that[[Tj5]

1
On(y,b) = <%> [ dplincoste-gize-y, (3.7)

4
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Figure 1: Summary of larg&N QCD ind =2

The double scaling limit amounts to takibg— 1 andy — 0. Using the appropriate scaling expo-
nents obtained in the previous section, we define scaled varidgbtesla by

_ (2 %E' b=1+ ! a (3.8)
y_ 3N3 ) - \/‘?N . .
An expansion iniN, results in the following Generalized Airy integral as the universal scaling
function:

im O (yb) = ¢(§.a) = [ due t*-a+év (3.9)

The above equation describes the universal behavior in the doubhegdiait. The conjecture
of dimensional reduction is that the universal funct(g , a) defined in the double scaling limit
for largeN QCD ind = 2 is also obeyed by large QCD ind = 3 andd = 4.

We end this section with a pictorial summary of lalg@d QCD in Fig.[1

4. Large N QCD in three dimensions

TheU3(1) symmetries are spontaneously broken on finite lattices and Eguchi-Kaluaiien
does not hold. The continuum theory can exist in several phasesda#®léc, 1c, 2c and 3c
corresponding to the numberldf 1) symmetries that are brokefj [5] £6] 17]. The theory is confined
in the Oc phase and deconfined in the 1c phase.
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4.1 Transition in the plaquette operator

Like in 2d, the eigenvalue distribution of the plaquette operator undergoes a trarfsition
having no gap for smab to having a gap for large [L§]. Numerical work indicates that this
transition is either second or third order and occutsa.43 for the Wilson gauge action. Despite
some similarities with the Gross-Witten transition, there is no evidence that théitmamsd = 3
is in the same universality class as Gross-Witten. LikedntRe location of the transition does not
scale with the lattice size and therefore it is a lattice transition. Likalint# continuum theory is
always in the phase where the eigenvalue distribution of the plaquetteapeaa a gap.

4.2 Setting the scale irBd large N QCD

Although there is some progress in obtaining analytical resultd @GD, much of the results
are obtained by numerical means. One example where numerical restittstamalytical results
is the case of string tension. Using the Hamiltonian formalism and a parameteriabtice spatial
gauge potential using a compl&k(N,C) matrix, one can analytically obtain a good approximation
to the vacuum wave-function and thereby obtain a result for the stringteffis§]. The result for
the string tension is

1
o= e 4.1

for all N.

Lattice computations wittN = 2,3,4,5,6,8 have been performdd]1P,]20] by computing the
correlation functions of Polyakov loops at zero spatial momentum. The Rolyaops themselves
are constructed using smeared gauge fields. The numerical resulteeagenall statistical errors
(typically less than 0.4%) and they deviate from the above analytical redudtnlimerical result
for the string tension is consistently smaller than the analytical result fdf afid the differences
are large for smalN. The extrapolation of the lattice resultsNio— o gives

v/ob = 0.19754 0.0002— 0.0005; 4.2)

and this has to be compared with the analytical res&%t;t = 0.19947114-- The first error in

the numerical estimate is statistical and the second error which is alwaysveegaines from

performing two different fits (either a single cosh or a double cosh, wiaikis into account the
presence of an excited state in the correlation function). The differeatveeen analytical and
lattice results although statistically significant is still quite small.

4.3 Deconfinement transition in3d large N QCD
Consider largél QCD on aL8 torus at a fixed lattice coupliny An order parameter suitable
for studying the phase transitions we are interested {1} is [7]

P_X7yaz = <PX~,y~,Z>
2

1 1
Poz = oL 2 ’NT“@ )
Lxy.z R
f@x,y,z(n) = |_| Ui(n+mi). (4.3)
m=1
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The quantityPyy,, takes values in the rang@, 0.5] on any gauge field background and one chooses
thex, y andz directions for each configuration such tiRat< R, < P,.

Fixing L andN, one finds thdy; (L) such that one of the thraéé(1) symmetries is broken for
b > by(L): Peyz= % for b < by(L) andP < 2, R,z =3 for b> by(L). One finds thaby (L) is
independent ol for large enougiN (N = 47 is usually sufficient). Then one finds that the tadpole
improved critical couplingbs; (L), scales withL andl; = L/by; (L) = 5.90(47). This shows that
there are two phases in the continuum limit dndefines a physical size such that

e All three U (1) symmetries are unbroken for> I; and there is no dependence loim this
phase (0c).

e One of the thre& (1) symmetries is broken fdr< |; and the theory depends on the size of
the broken direction in this phase (1c).

The critical sizé; does not depend di, since thdJ (1) symmetries are not broken in theor I,
directions and continuum reduction holds in those directions. Thergfmaystem is ity x co? if
Ix < l1. Itis natural to identify the finite direction with that of temperature in the deoedfphase.
Therefore, Oc to 1c is the deconfinement transition and the deconfinéengperature is

tc 1
NN 0.86(7) (4.4)

Since continuum reduction holds in the Oc phase in all three directions, ihhacetemperature
dependence in physical quantities in the Oc phase. A latent heat measti@meeded to directly
establish the order of the phase transition in the I&tdienit.

Conventional numerical studies 88 (N) in d = 3 onL? x L with Ly = 3,4,5 andL as high as
48 indicate the following. Both SU(2) and SU(3) gauge theories exhibitangkorder deconfine-
ment transition[[21]. The case of SU(4) is marginal and the transition isufftic establish[[22].
The Z4 spin model has continuously varying exponents. Srpalhdicate the transition is first
order but largeL; possibly indicate a second order transition. The transition is clearly fidstror
from SU(5) onwards[[33]. The large limit obtained from extrapolating the = 4, 5,6 results [24]
for the critical temperature is consistent with the critical size for the Oc to heitran.

4.4 Transition to large N QCD in a small box

Now consider largé\ QCD in the 1c phase by picking a box of silzgx Ly x L, with Ly <
Ly <L; andb > by(Ly). The box size has been chosen such thatfi) symmetry in the x-
direction is broken. A is increased, th&J (1) in the Ly direction will break at somé,(Ly, Ly).

For the special case &f, = L, one of the twdJ (1) will break and the broken direction will be
calledLy.

The theory is in the 2c phase for> b(Ly, Lx) and the 2c phase exists in the continuum theory
sinceby (Ly, Lx) scales witi_y. There is a characteristic size associated with the 1c to 2c transition,
namely,l>(lx), obtained by taking the limit ofy/b (Ly,Lx) asLy goes to infinity while keeping
Lx/Ly fixed. This critical size does not dependlgsincel, > I>(lx) and theU (1) symmetry in that
direction is not broken. Therefore, the system ik ir ly x o while in the 2c phase. Itis natural to
associate the two finite directions with a small periodic box and the infinite direasitime. One
cannot address confinement in the 2c phase since only one directian rdite extent.
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Figure 2: Phase diagram in th@y, ly) plane forly <1y <I,

The system goes into the 2c phase only i Iy <1, = 0.65(9)l1. For 0< Iy <5, the system
goes into the 2c phase at soipéy) with I>(I2) = 12. Numerical extrapolation di(ly) indicates
thatl,(0) > 0. The full picture is shown in Fid] 2. Note that the critical line connecting the 1
and 2c phase is such that one can start in the 2c phasé,with, < I, and go into the 1c phase
by keepingly fixed and reducindy. Finally, rotational symmetry is present in the two broken
directions ifly = ly < I5.

4.5 LargeN QCD in a small box at high temperature

Large N QCD on aly x Ly x L, box with b > by(Lx,Ly) undergoes a phase transition at
bs(Lx,Ly,Lz) beyond which all thre& (1) symmetries are broken. The system is in the 3c phase
for b > bs(Lx,Ly,L;) and corresponds to larg¢ QCD in a small box at high temperature.

It should be possible to do perturbation theory deep in the 3c phase éutasnto account
for the zero modes of the gauge fields on the torus. There are no zers noodeal with if one
considers the theory o# x S'. For a small radius of?, one can show using perturbation theory
that theU (1) symmetry associated witf' is broken when the radius & gets smaller than a
certain size[[25].

Numerical computations show thiag, (L,L,L) scales properly witt. and therefore the con-
tinuum theory can also exist in the 3c phakgly, ly) is the characteristic size associated with the
2c to 3c phase transition aihglls,l3) =13 = 0.36(5)!1.

4.6 Wilson loop operator ind = 3large N QCD

In order to test the proposed conjecture in sedfion]3.2.2 we need a defufittenWilson loop
operator that does not suffer from perimeter divergence. We knatvrilimerical computation
of the string tension are performed by using correlators of smearedleglyaops. Therefore,
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- . . 2
we define smeared rectangular Wilson lodp$ [26] of sizem by W(n,m; f;k = %;b). The

parameterf is the APE smearing factor arkdis the number of smearing iterationk.should be
proportional to the square of the perimeter for dimensional reasonsthi@cneared propagator
is of the form [2F]

Gutlo | Gud
(@)= £(@) (B - g )+ Sk (45)

f(q) =e41 (4.6)

4.6.1 Test of the critical behavior of Wilson loops

Wilson loops show critical behavior even without smear[ng [16]. The digioh of the eigen-
values of the Wilson loop operator show good agreement with the Du@lesen distribution as
given by (3:2) and[(3]4).

It is necessary to study the continuum limit of this critical behavior and forghipose one
has to show that the eigenvalue distributioMéfn, m; f;k = (”+4m)2 ;b;N) in the Oc phase at a fixed
n,mandf undergoes a transition from having no gap at simédlhaving a gap at largeasN — .

Furthermore, the criticdd:(n,m; f;N) should scale properly & — c, nm — oo such that

jim 20 M GN) 1 4.7)
N—co0 v/nm lw(f)
has a finite limit.l,,(f) is the critical size of the Wilson loop and it will depend upfin
We fix the lattice sizé. and size of the color grouN. We then pick one value df and pick
a square Wilson loop) = m. We study the eigenvalue distributicg®® of the Wilson loop operator
for a range ob such that distribution goes through the transition. This is illustrated if]Fig.3ewher
the eigenvalue closest mis plotted as a function df for a 6x 6 loop atN = 37 on a § lattice.
The non-zero gap is estimatgd][26] by matching the mean and variance taattyeWidom [2B]
distribution for the universal distribution of the largest eigenvalue in thes&ian ensemble. The
explicit equation for the gap is

g:1—7—1T[<6N>+1.9640048A‘/<6,5>—<6N>2} (4.8)

where®8y is the eigenvalue closest 1o

4.6.2 Extracting the critical coupling and related parameters

We perform a numerical calculation of the expectation value of
On(r,b) = <det(e% +e’5W)> (4.9)

whereW € SJ(N) is an x n Wilson loop at a lattice coupling. We expect this observable to
exhibit critical behavior ab = be(n) andr = 0 asN — co. If the double scaling limit is in the same
universality class as the one id then we expect

lim ¥ (b,N)O (r _ (%) ’ ajn),b: be(n) + m%m) = (&) (4.10)



A survey of large N continuum phase transitions Rajamani Narayanan

[

e b=0.9, g=0 1
L] b:l.O, g:0 ]
7| a b=1.1,g=0.02 $88, 4
< b=1.2,9=0.05 ¢ *s 1
v b=1.3,9=0.08 [ ¢4
6: yevy EEE xit ;iihi ]
L ¥ 3 iz ¥ s L] M 4
- ¥ i 'y 4
5¢ 57 2l i E
+ ¥ i ¥ a i ¢ [] B
= ¥ 3 i B
E F [] L -
S 4 i it ! L.
a [ ¥ i ¥z H s s ]
[ i 3 ]
3 ¥ ¥ . . 4 . 3 . ii
r % 3 e, ]
2 [ 2 a ' . 4 3 4
C ¥ 1 : -
o ¥ 1 * " 5o 4 & -
r ¢ a s . * a s ]
1+ « & n ® 4 a s —
[ v « & ] °® v ’ 44
L v a LI v « *
r <« at aun"oe0 Ty AP ]

P4 ;1- PIPPT BINPY ST 1 1 HOUA T A / CT TR :1: ETEY

8 0.85 0.9 0.95

e/m

Figure 3: Distribution of the eigenvalue closestip

where_#"(b,N) is a normalization factor andl(¢, o) is the Generalized Airy integral as given by

.9

A test of the above conjecture proceeds by first obtaining an estimat®(for, a;(n) and
az(n). Since detV = 1, it follows thatOn(r, b) is an even function of. Itis also evident from[(3]9)
that (¢, a) is an even function of . Let

On(r,b) = Co(b,N) +Cy(b,N)r2+Cy(b,N)ré .. (4.11)

be the Talyor’s series fdDy(r,b). Consider

Colb.NICo(B.N)

R YY)

(4.12)

It is clear that this quantity will be the same 1Ok (r,b) and.#"(b,N)On(r,b). Itis also clear that
1

this quantity remains the same if we repladay ( 4 )4 % and view the Taylor’s series as an

3N3 ay(Lw)
expansion ir. Therefore, the value of this quantity is well defined at the critical pbirt,bc(n)

and is given by

rra) _ r(3)
6r2(3) 4812

The first equality in[(4.13) is obtained by evaluating the same quantity starting(®.9). and we

have used . 1 okt
/ duue ' = ST [—+] (4.14)

Q(be(Lw,N),N) = — 0.364739936 (4.13)

4

Therefore, we obtain an estimate@fb,N); i = 0,1, 2, using Montecarlo simulations and thereby
obtain an estimate d®(b,N). We then use[(4.]3) to obtain an estimatdgth) at a fixedN and
extrapolate it td\N — oo.

10
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The parameteasiz(n) is defined via

a
b= be(n)+ N (4.15)

Therefore, we use the following relation

dQ(b,N)‘ 1 d_Q| TG (THE)
da "7 gy(n)y/N db " T g Hon | 167

- 1) —0.0464609668  (4.16)

to obtainay(n) at a fixedN. Since this is a sub-leading quantity, errors are larger in this quantity
than inbg(n).
Upon substitution of

4 \+ ¢
S 4.17
r <3N3> ay(n) 10
in (@.11), we conclude that

[4 1 Cloe(m),N) 1
BN () Colbe().N) — yarz() o0 (4.18)

and we use this relation to obtain an estimateagi). The results as a function & can be
extrapolated to get the valueMt= oo,

As an example of the above procedure, one fipgs- 0.80954), a, = 2.76(27) anda; =
0.8891(12) for a 4x 4 Wilson loop atN = 47 on a 8 lattice with f = 0.03. The resulting function
on the lattice as defined by (4/10) matches quite well with the Generalized AiryrateDue
to the arbitrary normalization that is involved in the matching, one possible walyemking the
agreement is to look at the ratié% for several values ofr as a function of. Fig.[4 shows
such a comparison. The approach to the Iatdenit of b, a; anda; are shown in Figq] b} 7. The
agreement with the Generalized Airy integral gets better as one gets claserddéogeN limit.

We end the discussion of largfe3d QCD with a pictorial summary shown in Fig. 8.

5. LargeN 4d QCD

LargeN 4d QCD was reviewed in Lattice 2005 ]29]. We begin by summarizing the current
status and focus on topics that were not covered in the previous review.

There is a transition in the plaquette operator. This occues=a60.36 for all L* > 4* and the
transition is first order[[30[ 31]. Both Oc phase and 1c phase havatmoom limit [32]. The
critical size scales according to

(5.1)

11 o] 24r2hy
— e 11
4812 b|

L¢(b) = (0.250+0.025) <
This transition is the deconfinement transition studied on the lattice by taking tieeNalimit

usingN = 2,3,4,6,8 [B3]. The deconfinement transition is first order and the latent heabéden
measured through the jump in the internal energy. The latent heat is folnebm~ 0.26Nesp

11
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Figure 8: Summary of largél QCD ind = 3 onL? lattice

whereesg is the blackbody energy density per massless vector paftidle [34]. Csties associ-
ated with the 1c-2c, 2¢-3c and 3c-4c transition have not been deternmehed y

Transitions in smeared Wilson loops were first studieddr{R8] before starting the careful
investigation of the double scaling limit ird3 The transition fits the Durhuus-Olesen behavior as
shown in Fig[P. A careful determination of the critical area still needs toebfopmed using the
double scaling limit.

It is interesting to look at the fermionic sector of lafyeld QCD. Chiral symmetry is broken
in the Oc phase and the chiral condensate is found tp be [35]

%(Lﬁw>m(2Ge\/) ~ (174MeV)® (5.2)
AssumingN = 3 is large enough, we géfiy)MS(2GeV) ~ (251MeV)? for SU(3). m2 0 my as
expected and [36]

fr
—— ~ 71MeV. 5.3
N (-3)

This translates td,; = 123 MeV for SU(3). This is the first instance we know of where Montiecar
simulations have indicated large¢/N corrections. Pseudoscalar masses as well as vector meson
masses were recently computéd] [39] for= 2,3,4,6 and extrapolated to the lardé limit. It
would be interesting to study current correlators and compute vector messses directly in the
large N limit using quenched momentum techniques. It would also be interesting to stedy th
correlations of Dirac eigenvalues as a function of force-fed momentudrttegir relation tof;;
using recent ideas from random matrix thedny [40].

Chiral symmetry is restored in the 1c phase and it is a first order tranditloB§3. The behav-
ior of the Dirac spectrum in the 3c and 4c phases would shed some usgditimto dimensionally
reduced theories.
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Figure 9: Fit of the lattice data to the Durhuus-Olesen distributifodour different sizes of wilson loops,
namely,lwtc = 0.740,0.660 0.560, 0.503. The associated areasrthe 2l notation) that describe the con-
tinuous curves are given ly= 8.06,4.60, 2.82 2.30 respectively.

5.1 Twisted Eguchi-Kawai formalism

Twisted Eguchi-Kawai was originally proposed as a way to preservd th) symmetries on
a 1% lattice all the way to the continuum limit [41]. The basic idea is to modify the gautieraan
the 1* lattice to

4 o
Srex = —bN ; Tr(1-e " Fmuu,uiu]). (5.4)
iTay,

The twist factorsn,, = —ny, are integers. If one chooses,, =L; p > v, andN = L2, then
the theory behaves as if it is orl4 lattice. This theory has & symmetry like the usual Eguchi-
Kawai model. But this symmetry is not broken in the strong coupling limit or wealpking limit
for the above choice of twists.

There has been a recent revival of the twisted Eguchi-Kawai formalisiargeN 4d QCD
with the aim of numerically studying the status of #fgsymmetry as a function dffromb=0to
b= . A surprising new result is that twisted Eguchi-Kawai models dlattice seem to break the
Z*(N) symmetries for large enough for a certain range of couplingg [42]. One sees a cascade of
transitions where one goes fratfl") — z8 — 72 — z3 — 2% — z2Y. ZX" andz" corresponds
to the fully symmetric phase &t= 0 andb = o respectively. The cascade of transitions do not
occur for smalN (N < 81) and begin to occur as bifurcations fér- 81. These transitions seem to
be strongly first order. For large enough coupling at a fiXedll thez*(N) are most likely restored.
Itis hard to see the restoration numerically starting from the fully brokesghad this is also the
reason why one cannot confirm if there is a reverse cascade thatitdkem z3 — Zﬁ(t). The
above result has been confirmed independently by Ishikawa [43] kad&{4#]. The dependence
on the critical coupling for these transitions as a functioh b&s not been studied. The possibility
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to define a continuum limit of larghl QCD using twisted Eguchi-Kawai model will depend on
how the critical coupling scales with Also, other twists, perhaps with prime numbersifomay
show a different picture.

6. Theta parameter in largeN 4d QCD

In the instanton dilute gas approximation, the free energy as a function 6fplaeameter is

given by [45]
f(8)=x(1—cosO) (6.1)

wherey is the topological susceptibility which is expected to go to zero exponentially lrarge
N arguments suggest th@yN is the parameter to keep fixed Bs— «. Sincef(6) should be a
periodic function in@, f(8) cannot be an analytical function 6f

£(6) = %mkin(eJank)z 6.2)
Instanton and largll make qualitatively different predictions for the moments of the topolog-
ical charge. Instanton arguments say that the topological susceptibilisydgwen exponentially
with N. LargeN arguments give a finite topological susceptibility in the lakblmit. The ratio of
the fourth moment to the second moment would be unity for instantons and weaketd by large

N argument. Larg®& predicts
lim < Q> |pre# lim <Q>p .
e—0 e—0

Lattice computations[[47] of the topological susceptibility for= 2, 3,4,6,8 show that the
largeN limit is finite and is given by% = 0.390(14). A high statistics computation of the topo-
logical charge for SU(3){[48] and a field theoretical approgch [#8jsthat the ratio of the fourth
moment to the second moment is significantly smaller than unity. Both results favar¢jeN ar-
gument. Gauge theories have also been studied on the lattice by an ex@aosiwi6 = 0 [60,[57].
These results also are in agreement with the I&krgeedications. A direct measurement of the non-
analyticity at@ = rris difficult.

7. Principal chiral modelsind =2

Two dimensional principal chiral models for largeare similar to four dimensional large
gauge theories. The principal chiral model is defined through the ag#in [

S=—NbY Tr[U(x) (UT(x+ ) +UT(x—f1))] (7.2)
X;H

This model has a glob&J (N)xSU (N) symmetry under which
U(X) — RU(X)L; RLeSUN) (7.2)

and it undergoes a second order phase transitibp-at0.30573). The theory is in the continuum
phase foib > b; and the continuum limit is reached by takibg- co.
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Define the operator
L(n,m;b) =U(X)UT(x+n+md); n<m. (7.3)
It can be used to define the correlation function
G(n,m;b) = % (TrL(n,m; b)) (7.4)

The correlation length is defined as

&(b)

1 [émpmy_q (7.5)

~ 4si?Z | G(0,L;b)

whereG(py, p2;b) is the lattice Fourier transform @(n, m;b). The correlation length diverges at
b= b and also ag — .

Like in the case of larghl gauge theories, it is useful to consider the eigenvaluésroim; b).
These eigenvalues are invariant under the global transformationg(8eh, m;b) define the dis-
tribution of eigenvaluesL (0, 1;b) appears in the action and is analogous to the plaquette operator
in largeN gauge theoriesp(6;0, 1;b) does not have a gap for< b, and has a gap fdy > b [E2].

The universal behavior has not yet been analyzed.

L(n,m;b) is analogous to a Wilson loop operator in larggauge theories with = W
being the physical length. We expexo;r) in the continuum limit to show critical behavior such
that it has a gap for < r; and it does not have a gap for> r.. An initial investigation [53]
of the gap as defined in sectipn 4]6.1 is plotted as a functianifFig. [L§ and it suggests the
expected picture. But, a closer look indicates a drift in the critical valueasfone gets closer to
the continuum limit. This might be an effect of not using smea&iéx). A proper investigation will
have to use smearedi(x) and the critical size will have be studied as a function of the smearing
factor.

8. Large N gauge theories with adjoint matter

LargeN gauge theories onchdimensional torus witlp adjoint matter fields can be viewed as a
(d+ p) dimensional larg®& gauge theory in thec phase where the length of the broken directions
are taken to be zero[p[,]55]. Let the masses ofptkealar fields be the same and let the lengths of
the periodic directions of thé dimensional torus be free parameters of the theory. The Polyakov
loops associated with the gauge fields ondrdimensional torus serve as order parameters. Such
theories ind = 1 andd = 2 can be analyzed pseudo-analytically (with a little bit of numerical help)
for some region of the parameter space.

The single Polyakov loop inl = 1 breaks ifp > 1. Pseudo-analytical analysis shows that
there is a line in the two dimensional coupling constant plane (mass and lenti cifcle) that
separates the broken phase from the unbroken phase. This is aunsittiehe existence of 2c to
3c phase transition id = 3 and a 3c to 4c transition id = 4 for largeN gauge theories on @
dimensional torus.

There are two Polyakov loops aqp> 1. It has only been possible to perform a large mass
(of the adjoint scalar field) analysis. The large mass analysis predicesgheesses: (i) Both loops
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Figure 10: Gap as a function af in the distribution ofp(8;r)

are not broken; (i) One of the loops is broken; (iii) Both loops are bnoKEhis result is again
consistent with the existence of 1e 2c — 3c cascading phase transitiondn= 3 and a 2¢c—
3c— 4c cascading transition ith= 4 for largeN gauge theories onddimensional torus.

9. Gregory-Laflamme transition

Consider a dimensional theory of gravity with no matter fields and consider the backgrou
spacetime to bez9 " x T". Assume the torus to be of the same lengthin all directions. A
p-brane solution is &chwarzschild black braribat is independent gf of the n directions on the
torus. p=0is a black hole. The entropy of the black brane defines a temper&tyr@ndt = TyL
defines the length of the torus in terms of the black brane temperature. &tisteat = tg| ()
such thatp-brane decays into @ — 1)-brane ag increases througty, ,) and this referred to as
the Gregory-Laflamme transitioﬂS&bL(p) <tgL(p-1) and there existsig,_1) such thatg ) <
tcp-1) <teLp-1)- The free energy for gp— 1) brane is favored to p brane as increases through
tc(p-1). This cascade of transitions is like the 8elc — --- — dc cascade observed in large
gauge theorie§ [p7]. There is a relation between these two transitionsnoRsrcan be discarded
in super Yang-Mills at high temperatures since they obey anti-periodicdasyrconditions and
the theory reduces to Yang-Mills with adjoint scalars.

10. Other related topics

There are several other recent developments in the area of aNaggage theories that were
not presented due to time constraints.

Several papers considered the case of fermionic matter in two-indessesgations, adding
orderN? degrees of freedom and consequently changing the Mrdgnamics of the pure gauge

18



A survey of large N continuum phase transitions Rajamani Narayanan

field [68,[59[6p]. In particular, the extra repulsion between the eigeesaf Polyakov loops the
matters fields perturbatively generate can delay or remove the bulk trassifighe pure gauge
system. In one case there is an argument for the absence of all bulititras)sndicating volume
independence down to zero size in the continufirh [59]. We do not knamyhumerical work
testing this prediction.

Another topic is the addition of chemical potential for the quark fields. Hgaénafermions
will play a dynamical part and we are not aware of numerical work pen@gito the largeN limit.
Some discussion of the physical implications of the chemical potential in Mr@&D can be

found in [61] and [6R].
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