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1. Introduction

Formation of a flux-tube between a quark and an antiquark in the QCD vacuum plays an
important role in the description of the still unsolved phenomenon of quark confinement. At a large
distanceR between the quarks, it is believed that the QCD flux tube has quite a similar behavior to
an oscillating bosonic string, largely independent of the internal gluonic degrees of freedom which
make up the flux tube.

This led to the formulation of effective string theories for the flux tutjeahd a lot of studies
have dealt with the groundstate of the strip [The simplest model describing the excited states of
the string is that of the free bosonic string. A more realistic model is provided by the Nambu string
theory. An important development #rvis [3] was the writing down of ajq potential assuming
the flux tube to be described by a Nambu string.

Nevertheless the Nambu theory still has the conformal anomaly in anything other than 26
dimensions. This has led to several other proposals for effective string thediiissherand
WeisZ4] imposed an open- closed duality on the string partition function and obtained the Nambu
string spectrum up to ordel/R3. Another effective string theory introduced Bylchinskiand
Strominger]5] consists of the most general terms at every orddr/R, which does not introduce
the conformal anomaly. In this theory too the string spectrum agrees with Arvis up to corrections
of order1/R® [6]. For a recent review se@||

In this article we look at the excitation spectrum of the flux tube formed between a static quark
and an antiquark in 3 dimensional SU(2) lattice gauge theory and compare our results with the
predictions for open bosonic string spectra. For a similar study in the closed string secfjr see [

2. Sources and excited states

In 2+1 dimensions, the energy states of the oscillating string can be classified by parity and
charge-conjugation properti€€s, P), and one can identify the ground states in these channels with
the lowest four energy states of the string:

Eo<— (+,+) Ei1<(+,—) Exe(—,—) Eze(—,4) (2.1)

Our goal is now to measure these energy states on the lattice.

The groundstate of the potential can be measured well with Polyakov loop correlators, which
have the spectral representatidR, T) P(0,T)) = 3 ,_obn exp[—En(R) T]. In this case the co-
efficientsby, are integers an&,(R) are the energy states at quark separalRorEffective string
prediction for ground staté(R) = Eo(R) is

1
V(R)=—lim = In(P(RT)P(0,T)) =Vo+0 R~ 2%

whereVj is an unphysical constant amdis the string tension. Th&/R term is the well known
Lischer-term9)], reproduced by all effective string theories. Different models however give differ-
ent predictions for the excitation spectrum and therefore one way to distinguish between different
string-models is to measure the energy-differences between the excited states.

The Polyakov loop correlators used to calculate the groundstate of the potential are bad esti-
mators for the excited states. A better way of measuring the excited states is provided by Wilson

(d—Z)F%Jr... (2.2)
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Figure 1: Left: Spatial lines that correspond to the sources on the latftight: A Wilson loop with
sources at the ends, that lie in the middle of the time slices. The slices with the solid lines are the time slices
with fixed lines during the sublattice updates.

T R=4-9 R=10-12
channel superposition | state sources timetr] sources time tr.
(+.+) S+S$+S+S | Bo 4 12000 1000 24000 1000
(+,-) S+S$S-S-% | B 6 12000 1500 24000 2000
(=-) S-9-S+S | B 8| 12000 2000 | 24000 6000
(—,+) -S+S-S+S Es 12 12000 2500 24000 12000

Table 1: Left: Combination of the sources in{G, P) eigenstatesRight : Run parameters for the multilevel
algorithm we used.

loops. However normal Wilson loops, with straight spatial lines at the ends, will again project
strongly on the ground state, but weakly on the excited states. In order to get a preferential cou-
pling to the excited states, we use a set of wavefunctions at the ends of the loops, called sources.
These sources correspond to spatial lines on the lattice, that replace the straight spatial lines of the
Wilson loops. The set of sources we use is shown in figijre (

If one creates superpositions of these sources with well defined parity and charge conjugation,
these ‘channels’ couple directly to the excited states according to eq2atiorhe superpositions
are shown in tablel).

There have been other attempts to measure the excited shaged<uti andMorningstar[10]
used asymmetric lattices with small physical temporal extent and a large number of basis states to
measure the excited states in different field theories. In that respect our approach is complementary
to theirs, as we use relatively few basis states, but use much larger physical temporal extents to
exponentially suppress the contamination due to excited states.

We can now calculate the expectation values of Wilson IaBP$R, T) with channeK at the
ends, which has the representation:

WK(RT) = aXe E“RT (1+BKe-AEK<R>T+...) (2.3)

Thus we are able to measure the different energy states with the formula:

EX(R) = 1 [WK(R, T2)

— n corrections 2.4
- WK(R,TI)}+ @4
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The “corrections in this expression are due to the higher states in the channel and, as can be seen
from equation2.3) are exponentially damped withh andT,. This is why one would like to go to
Wilson loops with large time extends.

The problem with large Wilson loops is of course the very small signal to noise ratio.

Even for the numerical che&J(2) LGT in d=2+1, conventional methods do not work. One
way of reducing the error is provided by the Lischer-Weisz algorithfh, jwhich leads to an
exponential error reduction for the time transporters of the Wilson loops. Putting the sources on
fixed time-slices of the lattice and using the sublattice updates to reduce the fluctuations of the
time transporters produces good results and is practicable for loops with time extends up to about
a Fermi, seel?)].

However this is not the best way to use the algorithm because the fluctuations of the sources
are not reduced with this method.

3. The new method

To achieve further error reduction we now move the sources from the fixed lines to the middle
of the time slices. Such a Wilson loop with sources at the ends is also shown in fiure (
Main advantages of such a procedure are:

e The fluctuations of the sources are reduced by the sublattice updates as well.
e One can use multihit on single links of the sources that leads to a further error reduction.

Itis also beneficial to use different numbers of sublattice updates for the time slices that contain
the sources and the time slices that contain only time-transporters. In this way it is possible to
choose parameters for the algorithm to optimize the noise to speed ratio for the single parts of the
Wilson loops.

Several tests show, that it is good to use more sublattice updates for the sources than for the
time transporters for excited states. If one chooses the right parameters for the sources and the time
slices, one is able to achieve an error reductiory (f0) for the same computation time.

A related algorithm was used l§ratochvilaandde Forcrandto look at string breaking with
Wilson loops|L3].

4. First results

In our first run we worked on a43-lattice forR = 4 — 9 and on a48%-lattice forR= 10— 12,
with B =5 (ro = 3.9536(3)), made 2000 total measurements using the scheme of sublattice updates
shown in tablelI). Compared to12] we were able to increase the time extent of the loops from
T=2468t0T =4,6,812

The naive energies are calculated with the formula:

1 Wy (R T2) ,
Eq(R) =— In with T, andT, =4and8 4.1
«R =55 [WG(R,Tl) e *1
To get rid of the contamination due to the higher states in the channels, we use a fit to the form

! [W“(R’TZ) [ae‘le (1—e‘b(T2‘T1>)} : (4.2)

- _E
T,—T1 WG(R>T1)] al )+T2—T1

4
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Figure 2: Measured energy values and predictions of the Arvis potential: The grey crosses are the naive
energy values and the blue points are the corrected ones. The red lines are predictions of the Arvis potential.

R Eo Eo ) =) E, E, Es Es
4 | 05725(3) 0571(1) | 1.143(2) 1.126(3) 1.541(9) 1.46(3)| 1.90(8) 1.72(4)
5 | 0.6776(4) 0.674(2) | 1.184(2) 1.161(3) 1.540(8) 1.48(2)| 1.90(7) 1.72(3)
6 | 0.7801(6) 0.775(2) | 1.230(2) 1.206(4) 1.557(8) 1.50(2)| 1.94(9) 1.76(8)
7 | 0.8826(9) 0.8781(6)| 1.300(3) 1.252(8) 1.589(9) 1.51(2)| 1.91(6) 1.77(3)
8 | 0983(2) 0.9779(8)| 1.362(3) 1.31(2)| 1.635(10) 1.56(2)| 1.94(7) 1.80(3)
9 | 1.085(2) 1.0772(10) 1.446(4) 1.38(2)| 1.69(1) 1.62(2) | 2.01(8) 1.87(3)
10 | 1.1847(4) 1.170(5) | 1.5146(8) 1.459(3) 1.745(3) 1.688(6) 2.06(2) 1.923(7)
11 | 1.2862(4)  1.268(4) | 1.6070(9) 1.537(4) 1.809(3) 1.747(5) 2.13(2) 1.989(7)
12 | 1.3858(5)  1.364(6) | 1.6841(10) 1.618(4) 1.877(4) 1.809(5) 2.19(2) 2.047(6)

Table 2: Naive and corrected energies for the four lowest states in the diffé€eR) channels.

with the fit parameterE_a, b, c to calculate the corrected enerﬁ_y. For the corrected energiE_ﬁ

andEz we were only able to use Wilson loops with the time extefids 4,6,8. For the first two

states we used Wilson loops with all time extents. The values we obtained are given i2)table(
Even more interesting than the total energy values are the energy differences. Again to take

the corrections into account, we use a three-parameter fit

1 WhH(R, T2)Wo(R, Ty)
To,—Th Wh(R, T1) Wo(R, T2)

with the parameterAE_no, b,c. The corresponding values are shown in taBle (
Finally in figure ), we plot the total energies and in figui® (he energy difference against
the predictions of the Arvis potentig?], which gives the energy states

<n_

In be ™ (1-e W), (43)

= AE,
} LT

21

1

54 —2)>. (4.4)
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Figure 3: The energy differenceAE;o, AE»y and AEsp and the prediction of the Arvis potential: The
grey crosses are again the naive differences and the blue points the measured values. The red lines are the
predictions of the Arvis potential and the green lines are the predictions of the free bosonic string.

R 4 5 6 7 8 9 10 11 12
AEj | 0.551(4) 0.478(5) 0.426(4) 0.378(7) 0.341(10) 0.31(2) 0.287(3) 0.267(3) 0.250(3)
AEy | 0.92(2) 0.83(2) 0.75(1) 0.66(2) 0.61(2) 057(2) 0.294(2) 0.273(3) 0.256(3)
AEg | 1.15(3) 1.04(3) 0.99(8) 0.89(3) 0.82(2) 0.79(3) 0.753(9) 0.721(8) 0.683(9)

Table 3: Corrected energy differences of the excited states with the ground state.

5. Conclusions

We have discussed an algorithm that allows us to use the advantage of the Luscher-Weisz
algorithm for the time transporters as well as for the sources and we presented our first results
using the algorithm. We were able to go to much bigger Wilson loops than was possible previously.
We see from figure3) that at the samgq separatiorR the energy differencAE;o is much closer
to the predictions fromArvis than the energy differencésE,y and AEzp, which agrees with the
expactations in4]. Also the magnitude of the corrections seems to be larger for the higher states.
Unfortunately the error reduction obtained with the naive states is not sufficient to get a signal for
the third excited state beyorid= 8. At the moment it is not clear whether this is due to lack of
statistics or poor choice of parameters in the multilevel algorithm. Investigation into this issue is
ongoing.
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