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1. Introduction

The most demanding computational task in lattice QCD simulations consists of the calculation
of quark propagators, which are needed both for generating gauge field configurations with the
appropriate measure and for the evaluation of most observables. This calculation consists of solving
a very large system of linear equations,

D(U)ψ = χ, (1.1)

where ψ is the quark propagator, χ is the source term and D(U) is the discretized the Dirac operator
matrix, with elements dependent on the gauge field background U .

In the language of applied mathematics, Eq. (1.1) is a discretized elliptic partial differential
equation (PDE). For definiteness,

Dx,y =−1
2

d

∑
µ=1

(
(1− γµ)U µ

x δx+µ̂,y +(1+ γµ)U µ†
x−µ̂

δx−µ̂,y
)
+(2d +m)δx,y

is the discretized Dirac operator describing a fermion in d dimensions with mass m in the Wilson
discretization of the Dirac equation. In the full 4 dimensional QCD problem (in volume V ) the
matrices γµ are the 4×4 Dirac spin matrices and U is the SU(3) gauge field. It is this formulation
that we concentrate upon, however, we point out that many of the problems encountered in solving
this equation extend to other formulations.

For any realistic QCD calculation the size of the matrix in Eq. (1.1) is too large for a direct
solver and iterative Krylov-space methods must be used. As the quark mass is brought towards
zero, the condition number of the matrix diverges and hence so does the number of iterations until
the desired convergence. This scaling with the mass is commonly referred to as critical slowing
down.

It has been known for some time that the multigrid (MG) approach is optimal when solving
systems of the form Ax = b, where A is the sparse matrix that arises from the discretization of
continuum differential equations, b is a source vector and x is the desired solution vector. Here
discretizations on successively coarser (blocked) grids are used to accelerate the solver and this
approach is known to remove critical slowing down [1].

One exception to the above statement is in solving the Dirac operator in lattice QCD: here the
nature of the underlying gauge field in the Dirac operator has proven to be especially resistant to
MG. Previous attempts at MG solvers have relied on renormalization group arguments to define
the coarse grids without realizing why the MG approach succeeds, and this has invariably led to
failure as the physically interesting regime is approached [2, 3] 1. In this work we demonstrate an
MG algorithm for the Dirac operator normal equations, i.e., the positive definite operator given by

A = D†D,

that is shown to work in all regimes and vastly reduces the notorious critical slowing of the solver
as the renormalized fermion mass is brought to zero. We do so in the context of a 2-dimensional

1We note, however, that recent progress has been made in the use of renormalization group to define a coarse Dirac
operator, which may render this statement erroneous [4].
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system with U(1) gauge field (Schwinger model). This system captures many of the physical
properties (confinement, chiral symmetry breaking, existence of non-trivial topological sectors) of
the more complex 4-dimensional QCD.

2. Multigrid

The original formulation of MG is best viewed with the example of the free Dirac operator.
Multigrid solvers are based on the observation that stationary iterative solvers (e.g., Jacobi, Gauss-
Seidel) are only effective at reducing local error components leaving slow to converge, low wave-
number components in the error. For the free Dirac operator these slow modes will be geometrically
smooth and can be accurately represented on a coarser grid using simple linear averaging. However,
on the coarse grid these low wave-number error components become modes of shorter range and so
relaxation should be effective at removing them. This process can continue, moving to coarser and
coarser grids until the degrees of freedom have been thinned enough to solve the system exactly.
The solution is then promoted back to the finest grid using linear interpolation, where at each level
relaxation is applied to the correction vector to remove any high wave-number error components
that were introduced. This process is known as a V-cycle [1] and can be used as a solver in its own
right, or more effectively as a preconditioner for a Krylov method e.g., conjugate gradients (CG).

Before continuing we introduce the notation where the degree of coarseness is represented by
the integer l, where l = 1 represents the finest grid (i.e., where our actual problem is defined) and
l = L is the coarsest grid in an L-level MG algorithm. The operator used to promote a coarse grid
vector on grid l +1 to the adjacent fine grid l is known as the prolongator P(l,l+1), and the converse
operator is the restriction operator Q(l+1,l) which projects a fine grid vector onto the adjacent coarse
grid. Typically the Galerkin definition is used to define the coarse grid operator [1],

A(l+1) = Q(l+1,l)A(l)P(l,l+1) = P(l,l+1)†A(l)P(l,l+1), (2.1)

where we have defined the restriction operator as Q = P†. This guarantees the coarse grid operator
is Hermitian positive definite. That the Galerkin definition is the optimum definition for A can be
found by minimizing the error of the coarse grid corrected solution vector in the A-norm. Apart
from the coarsest level which is an exact solve, each level of the V-cycle is the following

1. Relax on the input vector, x(l) = R(l)†b(l), where R(l)† is a suitable relaxation operator.2

2. Restrict the resulting residual to the next coarsest grid, r(l+1) = P(l,l+1)†(b(l)−A(l)x(l)).

3. Apply the L = l +1 V-cycle on the coarse residual, e(l+1) = V (l+1)r(l+1).

4. Correct the current solution with coarse grid correction, x(l) = x(l) +P(l,l+1)e(l+1).

5. Relax on the final residual, x(l) = R(l)(b(l)−A(l)x(l)).

Written explicitly in terms of operators the lth level of the V-cycle thus takes the following form

V (l) = R(l) +R(l)† +R(l)A(l)R(l)† +
[
(1−R(l)A(l))P(l,l+1)V (l+1)P(l,l+1)†(1−A(l)R(l)†)

]
. (2.2)

2The relaxation operator need not be Hermitian for the entire V-cycle to be Hermitian: the post-relaxation operator
need only be the Hermitian conjugate to pre-relaxation.
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In this form the Hermiticity of the V-cycle is obvious (a necessary condition if we are to use the
V-cycle as a CG preconditioner). The cost of applying the MG V-cycle becomes apparent from
this explicit form: on each level we must apply the operator A(l) a total of 2ν +2 times for each l,
where ν is the number of steps within the relaxation operator.

The problem in the application of the above procedure in the presence of a non-trivial gauge
field is that the eigenvectors responsible for slow convergence are no longer low wave-number
modes with geometrically smooth variation. They are instead modes that exhibit localized lumps,
typically extending over several lattice spacings. An approach that was followed in [2] was to
impose Dirichlet boundary conditions along the block boundaries, and to use the low modes of
resulting blocked operator to define the prolongator. This approach is bound to produce only a
limited advantage since the lumps of the low modes can span between several such blocks, so the
blocked operator will not possess this property. Indeed in [2] some acceleration was obtained but
critical slowing down was found to return after the correlation length of the pion µ−1 exceeded the
correlation length lσ of the underlying gauge field.

3. Adaptive Multigrid

A breakthrough in the application of multiscale methods to more complex problems occurred
with the discovery of adaptive MG techniques [5, 6]. In the adaptive algorithm the MG process it-
self defines the appropriate prolongator by an iterative procedure which we now concisely describe.

In the first pass, one uses relaxation alone to solve the homogenous problem Ae = 0 with a
randomly chosen initial error vector. After a certain number, ν , of relaxation steps, the relaxation
procedure, which we symbolically represent by

e→ e′ = (I−ωA)νe≡ (I−ωD†D)νe, (3.1)

produces an e′ that essentially belongs to the space spanned by the slow modes, so e′ is now used
to define a first approximation to the prolongator P. One blocks the variables of the original lattice
into subsets, which we denote by S j. From e′ we construct the vectors e′j, which are identical to
e′ within S j and 0 outside S j, and the vectors of unit norm v1 j = e′j/|e′j|. The extra “1” index in

v1 j has been introduced for a discussion that follows. The prolongator P(1,2) ≡ P(1,2)
i, j which maps

a vector ψ
(2)
j in the coarse lattice, indexed by j, to the original lattice, where i denotes collectively

the site, spin and possible internal symmetry indices, is then defined by

P(1,2)
i, j = v1 j,i, (3.2)

where we have made explicit the fine lattice indices of v1 j.
There are variations on how to block the fine lattice, i.e., how to define the sets S j. In the

so called “algebraic adaptive MG” one partitions the fine lattice into subsets on the basis of the
magnitude of the matrix elements of A. Since such matrix elements in lattice gauge theories are
typically of uniform magnitude, differing rather in phase or, in a broader sense, in orientation within
the space of gauge transformations, we chose instead to partition the lattice geometrically into fixed
blocks of neighboring lattice sites, specifically 4×4 squares in our study of the Schwinger model.
Maintaining a regular lattice on coarse levels will allow more efficient parallel code with exact load
balancing.
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Another refinement of the technique consists of applying a simple Richardson iteration to the
vectors v1 j before defining the prolongator. The choice of damping parameter in this smoothing
procedure is chosen to minimize the condition number of the resulting coarse grid operator. The
term “smoothed aggregation” is used for this. Thus our overall technique can be referred to as
“geometric adaptive smoothly aggregated MG”.

We come now to the crux of the adaptive MG method. We use the prolongator defined above
(Eq. (3.2)) to implement a standard MG V-cycle and apply it, like relaxation before, to a randomly
chosen error vector. There are two possibilities. Either the V-cycle reduces the error with no sign
of critical slowing down or some large error, e′′, survives the cycle. In the first case, of course,
one need not proceed: the MG procedure works as is. In the second case, we define another set
of vectors v2 j over the coarse lattice by restricting e′′ to the subsets S j, making the new vectors
orthogonal to the vectors v1 j and normalizing them to 1. The smoothed aggregation procedure
is now applied to the set vs j ≡ (v1 j,v2 j). A new prolongator is defined by projecting over these
vectors

P(1,2)
i,s j = vs j,i,

where the index s (taking values 1,2) can be considered as an intrinsic index over the coarse lattice.
The procedure described in the above paragraph is repeated as necessary, until the repeated

application of a V-cycle reduces a random initial error sufficiently without critical slowing down.
The method works if critical slowing down is eliminated with a few iterations of the adaptive
procedure. If this occurs with M vector sets, then the coarse lattice will carry M degrees of freedom
per site. As with all MG methods, the procedure is recursive and it can be used to define further
coarsenings.

4. Results

In testing this algorithm for lattice QCD we generated quenched U(1) gauge field configura-
tions on a 128×128 lattice with the standard Wilson gauge field action

S = ∑
x,ν<µ

β ReU µν
x ≡ ∑

x,ν<µ

β ReU µ
x Uν

x+µ̂
U µ†

x+ν̂
Uν†

x

and periodic boundary conditions at β = 6 and β = 10. These two values of β define correlation
lengths for the gauge field to be lσ = 3.30 and lσ = 4.35 respectively, via the area law for the Wilson
loop: W ∼ exp[−A/l2

σ ]. For comparison on these lattices, a fermion mass gap m̂ = m−mcrit = 0.01
corresponds to the pseudoscalar meson correlation lengths µ−1 = 6.4 and µ−1 = 12.7 respec-
tively. 3 In the 2-dimensional U(1) gauge theory, one can identify a gauge invariant topological
charge Q̂, which in the continuum limit is proportional to the quantized magnetic flux flowing
through the system. A gauge field with nonzero Q̂ corresponds to a Dirac operator with exactly
real eigenvalues and, hence, as the mass gap is brought towards zero the condition number be-
comes infinite. Thus, it is important to test both trivial (Q̂ = 0) and non-trivial (Q̂ 6= 0) gauge field
topologies.

We blocked the lattice into 4× 4 blocks and implemented the adaptive MG procedure de-
scribed above. We used a degree 2 polynomial smoother for our relaxation procedure, where the

3All quantities are expressed in lattice units.
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Figure 1: Number of Dirac operator applications
of CG vs. MG-CG as function of the mass gap at
β = 6 (point source, relative residual |r|= 10−14).
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Figure 2: Number of Dirac operator applications
of CG vs. MG-CG as function of the mass gap at
β = 10 (point source, relative residual |r|= 10−14).

coefficients were chosen by running two iterations of an underrelaxed minimum residual solver
(ω = 0.8) and subsequently held fixed (hence, for our choice of smoother R = R†). The coarsening
procedure was repeated twice maintaining M = 8 vectors in all coarsenings, down to an 8×8 lat-
tice, over which the equations were solved exactly. For each gauge field we performed the set up
procedure for the MG preconditioner for the lightest mass parameter only, and reused the vectors
for each heavier mass. We used this constructed V-cycle as a preconditioner for CG where the
operator defined in Eq. (2.2) is applied at each iteration to the CG direction vector (here on referred
to as MG-CG).

If one compares the number of CG iterations needed to achieve convergence with or without
MG preconditioning, the gain obtained with the MG method is dramatic: for example, with β =
6, m̂ = 0.01 and Q̂ = 0, it takes 3808 iterations to achieve convergence with a straightforward
application of the CG technique, whereas it takes only 26 iterations using MG-CG. However this
comparison does not take into account the fact that many more operations per iterations must be
performed when applying the MG preconditioner. To achieve a more balanced comparison, in
Figs. 1, 2 we plot the total number of applications of D and D† done on the fine lattice. This reflects
better the actual cost of the calculations (at each iteration of MG-CG there are 6 applications of
D†D: 1 application in the outer CG, and 2 pre- and 2 post- coarsening smoothing applications and
1 further application required to form the residual). We do not include the additional cost arising
from the coarse lattices since this is expected to be a small overhead, and has not been optimized
for our model calculation. The advantage coming from the use of the adaptive MG technique is still
very dramatic: critical slowing down, if not totally eliminated, is very substantially reduced and
there is no slow down as as the pion correlation length exceeds the gauge field correlation length.
These results are for point sources, however, we tried a variety of different source vectors for this
analysis (e.g., Gaussian noise, Z4 noise) and found very little dependence of MG-CG performance
on the source vector.

From the point of view of computational complexity, one should also take into account the cost
of setting up the MG preconditioner, i.e., of constructing the prolongator P. This cost is however
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heavily amortized, to the point of being negligible, if, as is often the case, one must apply the solver
to systems with multiple given vectors (for example, solving for all color and spin components of
a quark propagator or, in the calculation of disconnected diagrams where, O(1000) inverses are
required to estimate the trace of the inverse Dirac operator).

5. Conclusion

Our results, albeit for now limited to a 2-dimensional example, provide a clear indication that
adaptive MG can be made to work with the lattice Dirac operator. What appears to be at the root
of its success is that, although the modes responsible for slow convergence of the Dirac solver
on a fine lattice are not low wavenumber excitations, like in the free case, their span can be well
approximated by a set of vectors of limited dimensionality on the blocks that define the coarse
lattice.4 Earlier attempts [2, 3] failed to eliminate critical slowing down when the pseudoscalar
length exceeded the disorder length of the gauge field: µ−1 > lσ . Adaptive MG finds the coarse
subspaces through the iterative application of the method itself. It is of course crucial that the
approximation to the space of slow modes can be achieved with a small number of vectors on
the individual blocks, otherwise the application of the method would not be cost effective. But
this appears to be the case in the examples we studied and, if the results hold true in general,
adaptive MG has the potential of substantially speeding up lattice QCD simulations as the increase
of available computational power leads one to consider ever larger lattices.

Current research is focussed on applying this adaptive MG algorithm to the Dirac operator
directly, as opposed to the normal equations. Here we are motivated to do so because of the reduced
condition number and the increased sparsity of the operator. There are added complications because
the Dirac operator isn’t Hermitian (this requires that the restriction and prolongation operators are
defined using left and right vectors respectively), however, initial progress is extremely promising.
The application of the method to large 4-dimensional systems is in progress,
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