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1. Introduction

The overlap operator [1] is the only known lattice Dirac @ter with an exact lattice chiral
symmetry [2]. Since chiral symmetry is important for mamy lenergy observables, it is desirable
to use overlap fermions. However, using a full QCD simulatwith overlap fermions presents
a number of algorithmic challenges. In this paper, we addraad present solutions for, two
outstanding algorithmic issues.

The problem of the Dirad-function in the fermionic force when changing topologichbrge
has been resolved by using a transmission/reflection #hgorisimilar to the case of a classical
mechanics particle approaching a potential wall. The palgiormulation [3, 4] has subsequently
been improved in [5] to maximise the rate of topological geachange for a given action jump.
Our method is described in these references.

To differentiate the overlap operator in the Hybrid Montal@dHMC) molecular dynamics
(MD), it is necessary to differentiate the eigenvectors @igénvalues of a sparse matrix. Previous
methods have led to instabilities when there are degeneigg@avalues. In section 2 we discuss a
new method which avoids these instabilities [6].

The topological auto-correlation depends on the rate aflagjcal activity. To have high rate
of topological index change, it is necessary to reduce theodiinuity in the action at this point.
In section 3, we outline a new method for reducing this adtimmp [7].

Our overlap operator is defined as

D= (1+p)+ys5(1— p)signQ). (1.1)
In our testsQ is the standard Wilson operator,
Q=¥ [5xy— K ((1— Yu)Up (X) Sy + (14 Vu)UJ(X— U)@.xfu)] ) (1.2)

with kK = 0.2 and, in section 3, two levels of stout smearing [8] at patam@l1. Our numerical
tests are performed o 86 lattices at a lattice spacing of about m (measured using), with
quark masseg = 0.03,0.04,0.05, corresponding to pion masses in the range-50000MeV.

2. Eigenvector mixing

2.1 Differentiating Eigenvectors

The eigenvalueg; and eigenvectorg;) of a matrixQ are defined by

Q) = Ailh). (2.1)
After a small change to the matrizQ, the new eigenvalue equation is
(Q+0Q)|¢r) = N[ ). (2.2)
We can expand the new eigenvectors in terms of the old basis
W) = un) + z(cose.,- —1)|¢gr) + €% sinG; |y;). (2.3)
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We assume that only one of the mixing anglsis large, so it is unimportant thaty') is not
normalised. The mixing angle®i; andq; are

2/ wsQle) (w] 5QIw)
T = A+ (@ 13QIg5) — (¢dQI )

(Wi 5Q|w)
@a —, /A - <17/ 2.4
(Y| 3Q| ;) @4)

Expandingb and@in 1/(A; — A;) gives to lowest order

ol =;w;><wﬂj R 1 1 ) 5Qu) @5
Z [ [

tan aj

which agrees with other methods (see, for example, [5]).align (2.5) breaks down when —A;
is small. In this situation, it is necessary to use the exggtessions for the mixing angles (2.4).
Defining T} (x) as the eight SU(3) generators on one link, we can write

3Qij = (6QlY;) = T () ayi™", (2.6)

wherer represents the MD momentum, and the vectgysare given by

ol = —ik (hlys [(1— y) TR 00U (0 By — (14 ViU L ()T} (X)] Sy e 0))- (2.7)

The generalisation to the smeared operator is trivial [6f TNAC force,FNAC, constructed for the
overlap operator in [6], is proportional m;, and a function of onlyta and the gauge field).
We can construct a reversible algorithm by combining fodvand backward half-steps (using a
quick and reversible iterative procedure for the backwaeg)s The force is not area conserving,
but it is possible to use a non-area conserving force by lding the Jacobian], and including
logJ in the HMC accept/reject step (see [5] for an exampledan be written as

J:'1+a”’x‘“ aFlj :|l—|—Aij.k|C{ijC{k||. (2.8)

o gmmyy

It is now a simple task to rewrite;j; in terms of an orthonormal complete baais and use
det[1+Aa'a’| = det[1+A] (2.9)
to calculatel. logJ scales withr, and does not affect the HMC acceptance rate.

2.2 Numerical results

In figure 1, we compare the fermionic forces for the old alipni and the NAC algorithm
across a typical HMC trajectory (using overlap fermiongwib smearing). It is clear that the old
method gives an unstable force, which cannot be used, WiaIBIAC force is stable. In all our test
trajectories, we have not observed aJdgrger than 0.3.

LA more general expression can easily be constructed shuisldgssumption break down.
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Figure 1: Comparison of the trace of the square of the fermionic fofoethe proposed and old algorithms
with T = 0.016 on one of the: = 0.05 trajectories.

3. Determinant factorisation

3.1 Introduction

The topological auto-correlation is related to the rateopitogical activity. We need to be
able to measure this rate, from which we can estimate theautelation. Since instanton anti-
instanton pairs are difficult to observe, our best way of meag the auto-correlation is from
topological charge changes. The probability of transroissicales as mid, e*S) [5], whereAS,
the action discontinuity at the topological sector bougdscales agi—2. Therefore it is necessary
to reduceAS

However, the determinant of the actual Dirac operator, &@D"), scales as log rather than
u~2[9]. The difference is caused the different functional ferofithe pseudo-fermion estimate and
the actual determinant. It has already been shown that gddiditional pseudo-fermions reduces
ASconsiderably [10, 11], and this (with one additional psetetmion) is our algorithm A, which
we test against our new methods. We propose [7] factoribiagiéterminant into a large continuous
part, which can be treated with pseudo-fermions, and adisemus determinant small enough to
be calculated exactly.

3.2 Algorithm C

Algorithm C factorises the determinant using

det[%i—ﬁ +5(Q)} :det{%i—ﬁ +5(Q)} det|d;j + <wi|y5pr_“;_i_§(®|wj>(5()‘j) —&(A))
1-p
:det[Dl] det[Dg]. (3.1)
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£ is a continuous approximation of the sign function, onlyeatihg for the smallesh eigenvalues
below a cutoffA. In our tests, we used a Zolotarev rational approximatioa.situlate déD;| us-
ing pseudo-fermions; di@] is calculated by standard methods. We addg de{D;] to the HMC
action. To maintain a high HMC acceptance we calculate |g@dgs force (unlike the proposal
in [12]). Differentiating logdeD>] is straight-forward using the methods of section 2. Aldomit
C requires an inversion @, for each eigenvalue projected. While deflation methods fé8lice
this cost, it could lead to difficulties on larger voluntfes.

3.3 Algorithm F

To avoid this additional cost, algorithm F projects out jose vector,a), which is equal to
the smallest eigenvector at the moment of crossing. Thusynte

AL+ yo£(Q)] =de1-+ () (L~ a) (a) | det | L+ 1o hse(Q) ) a

=defD3|detDy] (3.2)

To ensureD3 is both continuous and practicéd) must satisfyla) = |¢;) atA; =0 and(s]a) =0

for A2 > A? (where/A? is some suitable eigenvalue cut-off). For the algorithmeimain stable
at larger lattice volumefa) and its differential must be continuous/dA; |a) must be sufficiently
small, the eigenvalues and eigenvectors must be diffatexdtiusing the results of section 2 and the
approximate overlap operatbr; must not have any exceptional configurations. We constayct
from n eigenvectors using

(Wo|") (g|)

a) = PolYo + B1|Yn +.. (3.3)
= Pol¥o) Ty P g
whererl is a constant vector used to fix the relative phase of the e@gtors, and currently we use
tan_ B = A*A4TY /(A2 222 AT (3.4)
2 J#I

although we are still searching for the best function to wsg3f Algorithm C has shown stable
MD with high HMC acceptance and good reversibility on out 846 ensemble$.Algorithm F

has encountered large differentialsfivith respect to the eigenvalues, which may cause problems
on larger volumes, although the HMC acceptance rate issstiéptable on our lattices. We do not
expect any scaling of the action jump with the lattice volume

3.4 Numerical results

Figure 2 and table 1 give preliminary results for the actiomp on our 816 test configu-
rations. ASis much smaller for algorithms C and F than for algorithm Ad dlne distribution is

2\We cannot decreagewithout increasing the force; therefore the number of mteie eigenvalues will increase as
the volume increases.

3A variant of algorithm C, not using our method of differenitig the eigenvectors and not treating the small matrix
in the molecular dynamics, has encountered problems 8a412olumes [14]. We suspect that this was because the
range of the approximate sign function was set to small, afeba efficient method was used when differentiating
eigenvectors.
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Figure 2: The distribution of the action discontinuiyS for algorithms C and F (left), and A, C and F
(right), at masseg = 0.03,0.04 and 005.

uo|A C F A C F

0.03]14.0(7) 0.28(8) 0.70(21)] 21.9 0.78 1.13
0.04| 13.8(10) 0.48(32) -0.06(11)19.5 2.4 0.86
0.05| 7.8(4)  0.23(7) 0.22(22)| 13.6 0.72 1.3

Table 1. The mean values @S for algorithms A,C and F at three quark masgefeft) and the standard
deviations (right).

much narrower. The results for both algorithms C and F givegh transmission rate for ajk.
We see little variation with the quark mass with these methadlike algorithm A. This suggests
transmission may be possible with much smaller

4. Conclusion

We have developed two additions to the overlap HMC algoritihesigned to significantly
improve simulations at large volume and small fermion mBgsemploying a non area conserving
algorithm to differentiate the eigenvectors and eigereshf the Dirac operator, we remove various
instabilities that otherwise are encountered in the femmidorce. By factorising the fermion
determinant, we decrease the action jump at the topologgzaibr boundary considerably (we have
observed transmission rates of up to 80%), reducing theartelation by an order of magnitude.
Thus, with dynamical overlap fermions, it is possible towaately sample all topological sectors
efficiently. It remains an open question whether otherdatfiormulations will, at small lattice
spacing, suffer from the large auto-correlations which wesnow avoided.
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