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1. Introduction

The overlap operator [1] is the only known lattice Dirac operator with an exact lattice chiral
symmetry [2]. Since chiral symmetry is important for many low energy observables, it is desirable
to use overlap fermions. However, using a full QCD simulation with overlap fermions presents
a number of algorithmic challenges. In this paper, we address, and present solutions for, two
outstanding algorithmic issues.

The problem of the Diracδ -function in the fermionic force when changing topologicalcharge
has been resolved by using a transmission/reflection algorithm, similar to the case of a classical
mechanics particle approaching a potential wall. The original formulation [3, 4] has subsequently
been improved in [5] to maximise the rate of topological charge change for a given action jump.
Our method is described in these references.

To differentiate the overlap operator in the Hybrid Monte Carlo (HMC) molecular dynamics
(MD), it is necessary to differentiate the eigenvectors andeigenvalues of a sparse matrix. Previous
methods have led to instabilities when there are degenerateeigenvalues. In section 2 we discuss a
new method which avoids these instabilities [6].

The topological auto-correlation depends on the rate of topological activity. To have high rate
of topological index change, it is necessary to reduce the discontinuity in the action at this point.
In section 3, we outline a new method for reducing this actionjump [7].

Our overlap operator is defined as

D = (1+ µ)+ γ5(1−µ)sign(Q). (1.1)

In our tests,Q is the standard Wilson operator,

Q = γ5
[

δxy−κ
(

(1− γµ)Uµ(x)δy,x+µ +(1+ γµ)U†
µ(x−µ)δy,x−µ

)]

, (1.2)

with κ = 0.2 and, in section 3, two levels of stout smearing [8] at parameter 0.1. Our numerical
tests are performed on 8316 lattices at a lattice spacing of about 0.15fm (measured usingr0), with
quark massesµ = 0.03,0.04,0.05, corresponding to pion masses in the range 500−1000MeV.

2. Eigenvector mixing

2.1 Differentiating Eigenvectors

The eigenvaluesλi and eigenvectors|ψi〉 of a matrixQ are defined by

Q|ψi〉 = λi|ψi〉. (2.1)

After a small change to the matrix,δQ, the new eigenvalue equation is

(Q+ δQ)|ψ ′
i 〉 = λ ′

i |ψ ′
i 〉. (2.2)

We can expand the new eigenvectors in terms of the old basis

|ψ ′
i 〉 = |ψi〉+∑

j

(cosθi j −1)|ψi〉+eiφi j sinθi j |ψ j〉. (2.3)

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
0
3
0

Dynamical overlap fermions with increased topological tunnelling Nigel Cundy

We assume that only one of the mixing anglesθi j is large, so it is unimportant that|ψ ′
i 〉 is not

normalised1. The mixing anglesθi j andφi j are

tan2θi j =
2
√

〈ψi |δQ|ψ j〉
〈

ψ j

∣

∣δQ|ψi〉

λ j −λi + 〈ψ j |δQ|ψ j〉− 〈ψi|δQ|ψi〉

eiφi j =

√

〈

ψ j
∣

∣δQ|ψi〉

〈ψi |δQ
∣

∣ψ j
〉 . (2.4)

Expandingθ andφ in τ/(λi −λ j) gives to lowest order

δ |ψi〉 =∑
j 6=i

|ψ j〉

〈

ψ j
∣

∣δQ|ψi〉

λ j −λi
=

1
Q−λi

(1−|ψi〉〈ψi |)δQ|ψi〉, (2.5)

which agrees with other methods (see, for example, [5]). Equation (2.5) breaks down whenλi −λ j

is small. In this situation, it is necessary to use the exact expressions for the mixing angles (2.4).
DefiningTn

µ (x) as the eight SU(3) generators on one link, we can write

δQi j = 〈ψi |δQ|ψ j〉 = τπn
µ(x)αn,x,µ

i j , (2.6)

whereπ represents the MD momentum, and the vectorsαi j are given by

αn,x,µ
i j = −iκ〈ψi |γ5

[

(1− γµ)Tn
µ (x)Uµ(x)δy,x+µ − (1+ γµ)U†

µ(x)T i
µ(x)

]

δy,x−µ |ψ j〉. (2.7)

The generalisation to the smeared operator is trivial [6]. The NAC force,FNAC, constructed for the
overlap operator in [6], is proportional toαi j , and a function of onlyπα and the gauge field,U .
We can construct a reversible algorithm by combining forward and backward half-steps (using a
quick and reversible iterative procedure for the backward step). The force is not area conserving,
but it is possible to use a non-area conserving force by calculating the Jacobian,J, and including
logJ in the HMC accept/reject step (see [5] for an example).J can be written as

J =

∣

∣

∣

∣

1+ αn,x,µ
i j

∂Fi j

∂πm,y,ν

∣

∣

∣

∣

=
∣

∣1+Ai j ,klαi j αkl
∣

∣ . (2.8)

It is now a simple task to rewriteαi j in terms of an orthonormal complete basisα ′, and use

det
[

1+A′α ′α ′†
]

= det
[

1+A′
]

(2.9)

to calculateJ. logJ scales withτ3, and does not affect the HMC acceptance rate.

2.2 Numerical results

In figure 1, we compare the fermionic forces for the old algorithm and the NAC algorithm
across a typical HMC trajectory (using overlap fermions with no smearing). It is clear that the old
method gives an unstable force, which cannot be used, while the NAC force is stable. In all our test
trajectories, we have not observed a logJ larger than 0.3.

1A more general expression can easily be constructed should this assumption break down.
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Figure 1: Comparison of the trace of the square of the fermionic forcesfor the proposed and old algorithms
with τ = 0.016 on one of theµ = 0.05 trajectories.

3. Determinant factorisation

3.1 Introduction

The topological auto-correlation is related to the rate of topological activity. We need to be
able to measure this rate, from which we can estimate the auto-correlation. Since instanton anti-
instanton pairs are difficult to observe, our best way of measuring the auto-correlation is from
topological charge changes. The probability of transmission scales as min(1,e∆S) [5], where∆S,
the action discontinuity at the topological sector boundary, scales asµ−2. Therefore it is necessary
to reduce∆S.

However, the determinant of the actual Dirac operator, logdet(DD†), scales as logµ rather than
µ−2 [9]. The difference is caused the different functional forms of the pseudo-fermion estimate and
the actual determinant. It has already been shown that adding additional pseudo-fermions reduces
∆Sconsiderably [10, 11], and this (with one additional pseudo-fermion) is our algorithm A, which
we test against our new methods. We propose [7] factorising the determinant into a large continuous
part, which can be treated with pseudo-fermions, and a discontinuous determinant small enough to
be calculated exactly.

3.2 Algorithm C

Algorithm C factorises the determinant using

det

[

γ5
1+ µ
1−µ

+ ε(Q)

]

=det

[

γ5
1+ µ
1−µ

+ ε̃(Q)

]

det

[

δi j + 〈ψi |
1

γ5
1+µ
1−µ + ε̃(Q)

|ψ j〉(ε(λ j)− ε̃(λ j)

]

=det[D1]det[D2]. (3.1)
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ε̃ is a continuous approximation of the sign function, only differing for the smallestn eigenvalues
below a cutoffΛ. In our tests, we used a Zolotarev rational approximation. We simulate det[D1] us-
ing pseudo-fermions; det[D2] is calculated by standard methods. We add− logdet[D2] to the HMC
action. To maintain a high HMC acceptance we calculate logdet[D2]’s force (unlike the proposal
in [12]). Differentiating logdet[D2] is straight-forward using the methods of section 2. Algorithm
C requires an inversion ofD1 for each eigenvalue projected. While deflation methods [13]reduce
this cost, it could lead to difficulties on larger volumes.2

3.3 Algorithm F

To avoid this additional cost, algorithm F projects out justone vector,|a〉, which is equal to
the smallest eigenvector at the moment of crossing. Thus, wewrite

det[1+ γ5ε(Q)] =det[1+ γ5ε(Q)(1−|a〉 〈a|)]det

[

1+
1

1+ γ5ε(Q)(1−|a〉 〈a|])
γ5ε(Q) |a〉 〈a|

]

=det[D3]det[D4] (3.2)

To ensureD3 is both continuous and practical,|a〉 must satisfy|a〉 = |ψi〉 at λi = 0 and〈ψi |a〉 = 0
for λ 2

i > Λ2 (whereΛ2 is some suitable eigenvalue cut-off). For the algorithm to remain stable
at larger lattice volumes|a〉 and its differential must be continuous,d/dλi |a〉 must be sufficiently
small, the eigenvalues and eigenvectors must be differentiated using the results of section 2 and the
approximate overlap operatorD3 must not have any exceptional configurations. We construct|a〉
from n eigenvectors using

|a〉 = β0 |ψ0〉
〈ψ0|Γ〉
|〈ψ0|Γ〉|

+ β1 |ψ1〉
〈ψ1|Γ〉
|〈ψ1|Γ〉|

+ . . . , (3.3)

whereΓ is a constant vector used to fix the relative phase of the eigenvectors, and currently we use

tan
π
2

βi = λ 4
i Λ4(n−1)/(Λ2−λ 2

i )2∏
j 6=i

λ 4
j , (3.4)

although we are still searching for the best function to use for β . Algorithm C has shown stable
MD with high HMC acceptance and good reversibility on our test 8316 ensembles.3 Algorithm F
has encountered large differentials ofβ with respect to the eigenvalues, which may cause problems
on larger volumes, although the HMC acceptance rate is stillacceptable on our lattices. We do not
expect any scaling of the action jump with the lattice volume.

3.4 Numerical results

Figure 2 and table 1 give preliminary results for the action jump on our 8316 test configu-
rations. ∆S is much smaller for algorithms C and F than for algorithm A, and the distribution is

2We cannot decreaseΛ without increasing the force; therefore the number of projected eigenvalues will increase as
the volume increases.

3A variant of algorithm C, not using our method of differentiating the eigenvectors and not treating the small matrix
in the molecular dynamics, has encountered problems on 12324 volumes [14]. We suspect that this was because the
range of the approximate sign function was set to small, and aless efficient method was used when differentiating
eigenvectors.
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Figure 2: The distribution of the action discontinuity∆S for algorithms C and F (left), and A, C and F
(right), at massesµ = 0.03,0.04 and 0.05.

µ A C F A C F

0.03 14.0(7) 0.28(8) 0.70(21) 21.9 0.78 1.13
0.04 13.8(10) 0.48(32) -0.06(11) 19.5 2.4 0.86
0.05 7.8(4) 0.23(7) 0.22(22) 13.6 0.72 1.3

Table 1: The mean values of∆S for algorithms A,C and F at three quark massesµ (left) and the standard
deviations (right).

much narrower. The results for both algorithms C and F give a high transmission rate for allµ .
We see little variation with the quark mass with these methods, unlike algorithm A. This suggests
transmission may be possible with much smallerµ .

4. Conclusion

We have developed two additions to the overlap HMC algorithmdesigned to significantly
improve simulations at large volume and small fermion mass.By employing a non area conserving
algorithm to differentiate the eigenvectors and eigenvalues of the Dirac operator, we remove various
instabilities that otherwise are encountered in the fermionic force. By factorising the fermion
determinant, we decrease the action jump at the topologicalsector boundary considerably (we have
observed transmission rates of up to 80%), reducing the auto-correlation by an order of magnitude.
Thus, with dynamical overlap fermions, it is possible to accurately sample all topological sectors
efficiently. It remains an open question whether other lattice formulations will, at small lattice
spacing, suffer from the large auto-correlations which we have now avoided.
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