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Stout Smearing for Twisted Mass Fermions Karl Jansen

The phase structure of Wilson fermions with twisted magshas been investigated ifj [, 2].
As it is explained there, the observed first order phase transition limits the nhipioramass
which can be reached in simulations at a given lattice spacifif ~ ¢(a). The phase structure
is schematically depicted in the left panel of Fig. 1. The phase transition €abgerved in
simulations with twisted mass fermions, for instance, as a “jump” or even metastahititibe
average plaquette value as a function of the hopping parameter(The right panel of Fig[]1
shows thermal cycles to demonstrate this phenomenon.)

One possibility to weaken the phase transition and therefore allow for ligltempasses at
a given lattice spacing is to use an improved gauge action like the DBW2, livasdkee-level
Symanzik (tISym) improved gauge action instead of the simple Wilson gauge aEttisrhas been
successfully demonstrated i [3,[#, 5].

Here we report on our attempts to use a smeared gauge field in the fermion LRitace
operator to further reduce the strength of the phase transition. Thisvaméia simulations with
Nf = 2+1+1 (u,d,s,c) quark flavours[J6] where the first order phase transition becomesggtro
compared tdN; = 2 simulations. The main impact of the above mentioned improved gauge actions
on the gauge fields occuring in simulations is to suppress short range floptugidislocations”)
and the associtated “exceptionally small” eigenvalues of the fermion matrix.sdime effect is
expected from smearing the gauge field links in the fermion action. The cumi@test of the
improved gauge action and smeared links should allow for a smaller pion masgiven lattice
spacing and volume. Our choice is the Stout smearing procedure as geob@u[7], since it
can easily be implemented in the Hybrid Monte Carlo (HMC) based updatingithigsrwe are
currently using.

One should keep in mind that a possible caveat of this procedure is hogarsg’, i.e., re-
moving too many small eigenvalues by applying too many smearing steps andipauso high
value for the smearing parameter—because not every small eigenvaluapisysical”. In addi-
tion, after many smearing steps the fermion action can become too delocalisddoah lead to
an unwanted slowing down of the approach to the continuum limit. In ordedid &vis caveat we
choose to work with only one step of very mild Stout smearing. Moreoverage khese smearing
parameters fixed as we change the lattice spacing.

In Section[JL we will shortly review the smearing procedure and the twisted fiorasslation,
as well as some details concerning the used updating algorithms. Sfction Wisdleo the
presentation of the results of our numerical simulations uking 2 andN; = 2+ 1+ 1 flavours
of twisted mass quarks.

1. Stout smearing and twisted mass fermions

1.1 Analytic smearing for SU(3) link variables

To have a smearing procedure which is analytic in the unsmeared link varialsle essential
feature, if one is to use the smeared variables in an updating scheme like H84@ hlgorithms
requiring the calculation of the derivative (or force) with respect to themeared link variables.
The Stout smearing procedure as introduced by Morningstar anddpeiar(fj] was designed to
meet this requirement. We will briefly describe it in the following but will limit ouves to the
case of SW3). For more details we refer to the cited work.



Stout Smearing for Twisted Mass Fermions Karl Jansen

A: ap=0.10

0.54 | @@@997

052 | v
fod

v

[ Aoki phase 048 o ¥ v

I 1% order phase transition plane I/a o8, . . . .
0.160 0.165 0.170 0175 0.180

Figure 1: Left panel:The phase diagram with Wilson fermiorRight panel:Thermal cycles wittap = 0.1,
0.01, and without a twisted mass term oh>816 lattices a3 = 5.2 (Wilson gauge action), seE [1].

The (n+ 1) level of Stout smeared gauge links is obtained iteratively frornthievel by

UMY (x) = dA MU (x). (1.1)
In the following we will refer to the unsmeared (“thin”) gauge fields= U,SO), while the maxi-
mally smeared (“thick”) gauge field fa¥-level Stout smearing will be denotedﬁ,s = U,SN). The
SU(3) matricesQ, are defined via the stapl€s:

QL”><> S[u oot o0 e — oo 00 - he]. 1.2)
= 3 o (WU o DU )

A~

U - U (x— DU (x— 0+ m) (1.3)

where in generap,,, is the smearing matrix. In our numerical simulations we used exclusively
isotropic 4-dimensional smearing, i.puy = p.

The thick gauge field will only be used in the fermion operator, cf. Eq] (ITherefore the
usage of smeared links is nothing else but a different discretization ofoberiant derivative
operator on the lattice. For the gauge part of the action the thin gauge field gi#l relevant one.

1.2 Twisted mass fermion action

The notations in this subsection follow Ref] [6]. (For details we refer to thiskyy We
performed simulations with one light doublet d) of twisted mass Wilson fermions (only using
the fermion matrixQI(X)). Later on we shall add a second doublet for the heavier quarks,
where the masses are non-degenerate due to the addition of an extramme&s.t¢g, [3]). The
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fermion action then reads

germion _ (X| X Q|(7)>(()yXI y T+ Yh,x Qt(1),(x)th,Y> ) (1.4)
Xy
QY = p +ivsTzap + (N+ Ry, (1.5)
QX = Wy, + isTials + Tsaps + (N + R)xy, (1.6)
1 +4 .
(NFRay = =5 5 Soyrauly) (va+1). (L.7)
u==+1

wherep, = 1/(2kx) is the untwisted mass aragly, aun, andaps are the twisted mass terms in
the light and heavy doublet and the split mass term, respectively.

1.3 Algorithms

We used two different algorithms with independent implementations of the Stoedreng
routines to be able to cross-check our results. The first algorithm is th€ igorithm with
multiple time scale integration and mass preconditioning as describ¢d]in [10]atlicdke, the
smearing routines were taken from thei@MA-code packagd [11] and a chronological inverter
was included, too.

Since this algorithm only allows to simulate an even number of fermion flavolss éaclud-
ing the case of a split doublet as described in $e¢. 2.2), as a prepdoatitie Ny =2+ 1+ 1
simulations, we also added Stout smearing routines to our existing Polynomi@l (fiMC)
[L3, @3] update code, where we perform one stochastic correctiprastbe end of a trajectory.
For details on the implementation of the PHMC, Ef] [14, 15]. We used trajetengths of 2< 0.35
to 3x 0.35 and determinant breakupf = 2.

2. Numerical simulations

21 Ns=2

In all of the simulations presented here, we used the tree-level Symanzikvetpgauge
action on either 12x 24, 16 x 32, or 24 x 48 lattices. We compare results obtained using one
level of Stout smearing\ = 1) with p = 0.1 or p = 0.125 to simulations without smearing of the
link variables in the Wilson twisted mass fermion action. Our choice of mild smeaingdring
only once with a small parameter) should guarantee that the fermion actiomsanll localized
on physical scales even on relatively coarse lattice spacings.

Figures[R and]3 show the average value of the (thin) plaquette without andmvithring,
respectively. In the case without smearing a jump in the average plaquietteivalearly visible.
Here we also observed metastabilities, which show up as differencesdoetwes starting from a
random (hot) or ordered (cold) configuration (red circles and bluegtés, respectively, in Fif] 2).
In the case of Stout smearing it is unclear whether there is still a phasditmasg all, since the
left panel of Fig[B shows a rather smooth dependence of the avdeapeefie value on the inverse
hopping parameter. To examine if metastabilities may still arise with Stout smearngtavied
runs from either a random (hot) or ordered (cold) configuration aséimee parameters where the
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Figure 2: Average plaquette value without Stout smearing with (retl circles)and cold startgblue
triangles)at two different values for the gauge couplifigand twisted masay.
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Figure 3: Simulations with Stout smearind.eft panel: Average plaquette value on two different lattice
sizes.Right panel:Monte Carlo history of the plaquette value for tfetd) and cold(blue)starts.

hopping parameter was chosen to lie in the region of fastest increase avehege plaquette:
Kk = 0.1513 or ¥/ (2k) ~ 3.305; the Monte Carlo histories of the two runs are displayed in the right
panel of Fig[B. One can see that after roughly 500 trajectories boghthenmalized at the same
average value for the plaquette giving no evidence to the existence oftafdlities. Figurg ¥
shows the (untwisted) PCAC quark mass (left panel) and the squaredngiss (right panel) as
a function of . The former also shows no clear evidence for the presence of a phasgion,
since both branches (positive and negative PCAC quark mass) datepo roughly the same
critical value ofpu,. From the latter one can read off that on the volumiey ~ 4 a minimal pion
mass ofm,ro ~ 0.7 is easily achieved faa~ ro/4. (We use here for setting the scale the Sommer
parameterg.)

On the 24 x 48 lattice in a previous simulation At= 3.8 [[L§] without smearing we observed
a problematic behaviour in time histories implying very long autocorrelations. ré/grasently
repeating this run with one level of Stout smearipg= 0.125) to see the effect of smearing for
such a situation. Although our first results indicate that smearing helps, ib isady to give a
definite conclusion at this point. It will also be interesting to compare physizsd¢rvables, e.g.,
fps andmps, between the Stout smeared and unsmeared simulations.
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Figure 4: Left panel:PCAC quark masgjght panel: squared pion mass using Stout smearing.
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Figure 5. Average plaquette withl; = 2+ 1+ 1 flavours on 12 x 24, B = 3.25 (left panel)and 16 x 32,
B = 3.35(right panel)lattices, se€[[6].

22 Ny =2+1+1

Recently, the possibility of adding the strange quark in dynamical twisted nmastations
has been tried following the lines df [9] by introducing a mass splitting term in¢lagibr doublet,
see Eq.[(1]6). In that way not only a strange quark will be added buttzdsmuch heavier charm
quark is taken into account. For first numerical results Bee [6], whemnportant conclusion is
that the extra dynamical quarks strengthen the first order phase transii@n example, in Fi§] 5
we show the jump in the average plaquette for two different lattice spacingdgivetd physical
volume. On the coarser lattice spacing (left panel) again metastabilities shéwtlne finer lattice
spacing (right panel) there are no more metastabilities but there is still a ecaisliel “jump” in
the average plaquette. The findings from our Stout smeared ruk fer2 suggest that smearing
could substantially help in the casedf =2+ 1+ 1.

Conclusions & Outlook

The conclusion of testing Stout smearing with twisted mass Wilson quarks is éfastrorder
phase transition at non-zero lattice spacing becomes weaker as a fesukaring. Therefore
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moderate Stout smearing can be an option—in particular for future numemalations in the
twisted mass formalism with dynamiaa, d-, s- andc-quarks.
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