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1. Introduction

Inverting the Wilson-Dirac operator is one of the dominant costs in simulating lattice QCD
with dynamical fermions. A possibility to avoid the explicit inversion is to replace it by a polyno-
mial approximation of the inverse Wilson-Dirac operator.[1, 2] This allows moreover for a deviation
from importance sampling with the Boltzmann factor to be compensated by reweighting, which can
be useful. In addition simulations with odd numbers of flavors become possible. Our focus here
is the approximate inversion of the non-hermitian Wilson-Dirac operator. According to reference
[3] the approximation of the non-hermitian operator is supposed to be superior to the hermitian
version. Each approximation depends on the typical spectrum of the operator to be approximated.
Therefore, we here report about some spectral properties of the Wilson-Dirac operator with respect
to Schrödinger Functional(SF)[4] boundary conditions (BC) and investigate how they affect the
polynomial approximation.

2. Computing the spectrum semianalytically

In the hopping parameter representation Wilson’s fermion action [5] reads

S f = ∑
xy

ψ̄(x) [δxy−κHxy]ψ(y), (2.1)

and the Wilson-Dirac operator is defined by Mxy = δxy−κHxy, where the nearest neighbor interac-
tion is carried by the hopping operator

Hxy =
3

∑
µ=0

(
Uµ(x)(1− γµ)δx+µ̂,y +U†

µ(y)(1+ γµ)δx−µ̂,y

)
. (2.2)

Important spectral features of H depend on the boundary conditions. In general H is not normal
i.e. [H,H†] 6= 0.

In order to get a first idea of the spectrum and to develop methods for the general case we start
by computing the eigenvalues of H in the free case i.e. Uµ ≡ 1 in the SF with vanishing background
field. Since translation invariance in the spatial directions still holds we set

ψ(x) = ψ(x0) · ei~p~x . (2.3)

using plain waves for the space dependence. This ansatz leads to a reduced 1-dimensional operator
of the form

E =
1− γ0

2
h0 +

1+ γ0

2
h†

0 +iγ1α, α
2 =

3

∑
k=1

sin2(pk) (2.4)

acting on ψ0. In (2.4) h0 is the 1-dimensional hopping operator given for the SF by the nilpotent
matrix

h0 =

 0 1 0 ··· 0
0 0

. . .
......

. . . 1 0
0 ··· 0 1
0 ··· 0 0

 . (2.5)
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By itself it has only one (T −1) fold degenerate zero eigenvalue. The matrix E is related to H by

spec(H) = 2spec(E)+2
3

∑
k=1

cos(pk). (2.6)

Finding the eigenvalues of E is equivalent to locating the zeros of a smaller determinant

0 = det
[
λ

2
0 +λ0 (h0 +h†

0)+h†
0 h0 +α

2
]
. (2.7)

We could not obtain them in closed form, but approximations are possible. Here we simply com-
pute the eigenvalues of E numerically for some range of α .

These eigenvalues are shown in Fig. 1 together with the corresponding ones for (anti)periodic
boundary conditions that follow trivially from Fourier expansion. For small α the latter approach
the value 1 leading to zeromodes in 1−κcH (up to lattice artefacts for antiperiodic BC), where κc

equals 1/8. In the SF we see that the eigenvalues are ‘deflected’ away from unity. For very small
α one can show the behavior

|λ0| ∝ α
1/T as α → 0. (2.8)

This is how a gap of order 1/T is maintained in the SF (even in the continuum limit).

−1 −0.5 0 0.5 1
0

0.5

1.0

1.5

2.0

Re λ
0

Im
 λ

0

 

 

SF

periodic

antiperiodic

Figure 1: Numerical spectrum of E for T = 16
and α2 = tiny . . .3.
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Figure 2: Spectrum of the hopping operator H on a 164

lattice with Uµ ≡ 1I and SF boundary conditions.

We conclude this subsection by showing in Fig. 2 a complete spectrum of H computed nu-
merically. An ellipse with major half axis a = 7.971, minor half axis b = 3.932 and eccentricity
e =
√

a2−b2 = 6.933 is drawn that obviously describes the spectral boundary very well. In the
centers of the void areas there are (degenerate) eigenvalues for which α vanishes due to the zero
mode of h0. Roundoff errors in the eigenvalue routine in combination with the behavior (2.8)
‘inflate’ three of these dots to small circles.
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3. Approximation of the inverse Wilson-Dirac operator

To start simple we first approximate the inverse Wilson-Dirac operator by a geometric series

M−1 ≈ PG
n (M) =

n

∑
j=0

(κH) j =
1− (κH)n+1

1− (κH)
, for ‖κH‖< 1, (3.1)

and define the remainder

Rn+1 = 1I−MPG
n (M) = (κH)n+1. (3.2)

By construction Rn+1 is a small quantity and vanishes in the limit of n→∞. Moreover, it allows for
a recursive implementation and its convergence can be easily monitored by computing ‖Rn+1η‖,
where η is a Gaussian random vector normalized to 1. Approximating M−1 by a geometric series
requires a circular bound on the spectrum of radius r = κ|λmax(H)|< 1.1 From the spectral radius
r follows the rate of convergence

µ
G(κ) =− ln(κ|λmax(H)|). (3.3)

As we have seen in the previous section the shape of the spectrum is elliptical. This fact can
be exploited to improve our approximation. Expressing the remainder Rn+1 in terms of scaled and
translated Chebyshev polynomials Tn[6] we can derive an improved, recursive description, where
only the eccentricity e as elliptical parameter enters

Rn+1(M) =
Tn+1((κH)/e)

Tn+1(1/e)
= anκHRn(M)+(1−an)Rn−1(M) (3.4)

with R1(M) = κH; R0(M) = 1; an =
(
1−an−1 e2/4

)−1 and a1 =
(
1− e2/2

)−1. The second
equality in (3.4) follows from the recurrence relation of the Chebyshev Polynomials, Tn+1(z) =
2zTn(z)−Tn−1(z). By virtue of the defining relation for the remainder we obtain also a recursive
expression for the Chebyshev approximation of M−1

PC
n (M) = an(1+κHPn−1(M))+(1−an)Pn−2(M) (3.5)

with P1(M) = a1(1 + κH) and P0(M) = 1. The rate of convergence in the limit of n→ ∞ follows
using the identity Tn(z) = cosh(narcosh(z)) and by replacing κH by its eigenvalues (cf. footnote
1) [7]. The rate µC depends on the elliptical parameters a and e which themselves are proportional
to κ

µ
C(a,e) = ln

(
1+
√

1− e2

a+
√

a2− e2

)
. (3.6)

For periodic BC the extent of the ellipse is known in the free case (a = 8κ , e =
√

48κ) and thus µC

becomes a function of κ only, µC(κ) = ln
(
(1+
√

1−48κ2)/(12κ)
)

, and vanishes like (3.3) for
κ → κc.

1For non-diagonalizable matrices the same behavior is true asymptotically. This can be shown with the help of the
Schur-decomposition.
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4. Numerical results

To test our approximations numerically we monitor the norm of the remainder as a function of
n and determine the convergence rate from the exponential decay. We perform this test choosing
n = 400 and varying e to obtain a scan over the eccentricity. In Fig. 3 the results are presented for
various lattice sizes.
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Figure 3: Rate of convergence µ as function of the
eccentricity e. Uµ ≡ 1I, κ = 0.115 and each point is
determined after n = 400 iterations.
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Figure 4: Sketch how to get a good guess on the
eccentricity starting from the largest eigenvalues.

Obviously, there is a dependence on the lattice size in the case of the Schrödinger functional
and for larger lattices the rate of convergence approaches the value corresponding to periodic BC
which is independent of L (red dots in Fig. 3). Since the rate of convergence increases roughly by
a factor 2 from a circular bound (e = 0, geometric series) to the optimal eccentricity, it is important
to find this optimal value. Therefore we look again at the spectrum of the Wilson-Dirac operator
and focus our attention especially on the eigenvalue λ1 with largest real part and λ2 with largest
imaginary part of H as indicated in Fig. 4 (multiplied by κ = 0.115).

One way to obtain a guess on the eccentricity e is to use the norm of λ2 as value for the minor
half axis b. We are then seeking the ellipse which also passes through λ1. By the parameter form
of an ellipse, x = a cosρ; y = b sinρ , and using x+ iy = λ1 we find the major half axis

a = Re{λ1}/cos(ρ) with ρ = arcsin(Im{λ1}/b). (4.1)

Thus we can determine e =
√

a2−b2. Beside yielding a guess on e we can moreover obtain an
estimate on µC by eq. (3.6) in this way.

There exist different methods to determine e. In practice we are seeking a good guess on e
such that the convergence rate is high and its determination is easy. These properties hopefully
carry over when including a non-trivial gauge field. There we hope to find an eccentricity that
changes only weakly between different gauge fields at fixed β and κ .

For a first experiment with a non-trivial gauge field we start by generating 50 pure-gauge
configurations on an 84 lattice at β = 6.0 employing a Cabbibo-Marinari update [8]. Reading these
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configuration with MATLAB (version 7.3) and using its implementation of the Arnoldi algorithm we
try to compute λ1 and λ2 on each configuration. Unfortunately, the algorithm converged only on a
subset of the configurations. Hence the mean values presented in Tab. 1 are just a rough estimation
and within the quoted errors no dependence on the configuration is seen.

Uµ κ r µG a b e µC

SF 1I 0.115 0.8489 0.1638 0.9060 0.4444 0.7895 0.1781

SF β = 6.0 0.135 0.838(4) 0.1770(7) 0.843(5) 0.47(1) 0.701(7) 0.268(3)

P 1I 0.115 0.9200 0.0834 0.9200 0.4600 0.7967 0.1506

P β = 6.0 0.135 0.865(5) 0.1456(8) 0.869(6) 0.48(1) 0.725(2) 0.226(9)

Table 1: Expected values for µ and e derived from measured maximal eigenvalues. SF Schrödinger
functional, P periodic boundary conditions.

The results indicate that the spectrum of H for non-trivial gauge fields is expected to be
“rounder” and enclosed in an elliptical disc of smaller area than the one of the trivial gauge field.
We check our expectation by computing the polynomial remainder using the above determined e in
case of the Chebyshev approximation. While for the trivial gauge field we find perfect agreement
of both methods, the differences in the rate of convergence are larger for non-trivial gauge fields
when using Chebyshev polynomials

µG e µC

SF 0.1776(3) 0.701 0.2127(2)

P 0.1482(4) 0.725 0.1914(2)

Table 2: Computing the convergence from the remain-
der test as a measure on the “integrated spectrum”.

To get a better understanding of this situation we computed for one SF configuration 800
eigenvalues with largest/smallest real part and 400 eigenvalues with largest/smallest imaginary
part again using MATLAB. Figure 5 shows these data points in blue and the solid red line is the
ellipse (e = 0.701, a = 0.843) derived from the eigenvalue computation. The predicted value for
µC disagrees because the shape of the spectral boundary is not elliptical. The circular bound is
still estimated correctly as can be seen by the dotted black circle with radius r = 0.838. Hence
µG is in agreement. To illustrate our approximation using Chebyshev polynomials we note that by
specifying e a family of confocal ellipses is determined. From this family the ellipse of smallest
extent which encloses all eigenvalues specifies a and b, which enter into (3.6). Hence the dashed
red ellipse in Fig. 5 represents better the one corresponding to the Chebyshev approximation. Here
a = 0.872 and we compute µC = 0.208.

Increasing a to 0.857 and b to 0.547 we yield a different ellipse (e = 0.660) shown with dash-
dotted green line. This one encloses the computed spectrum even better and leads to the prediction
µC(e = 0.660) ≈ 0.221. Taking this smaller value of e as input for the Chebyshev approximation
we find for the rate of convergence µC = 0.2207(2) confirming the predicted value.
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Figure 5: Computing 2400 eigenvalues of κH on one gauge config-
uration at β = 6.0 and κ = 0.135 with SF boundary conditions.

5. Conclusion and outlook

These preliminary studies show that a good understanding of the structure of the spectrum
seems to be important to implement an algorithm approximating the inverse Wilson-Dirac oper-
ator with good performance. Moreover, useful information on how to tune such an algorithm is
obtained.

Probably, the deviation of the spectrum in the SF from an elliptic disk is an artefact of small
lattice sizes. A check with e.g. a 124 lattice would be desirable but seems to be numerically chal-
lenging. Moreover we like to study the effect of O(a) improvement (Sheikholeslami-Wohlert term)
and the effects of preconditioning.
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