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1. Introduction

The number of coloursNc is an implicit parameter of QCD. In the largeNc limit the theory
becomes simpler [1]; amongst other features, mesons and glueballs become exactly stable. The
finite–Nc corrections in the pure gauge theory are� �1�N2

c �. This is also the case in quenched
lattice field theory, since in that case fermion loops do not contribute. For full QCD the corrections
are� �1�Nc�. Clearly it would be very interesting to evaluate these corrections and establish how
large they are in the case of QCD (Nc � 3).

The corrections can be estimated by carrying out quenched calculations at finiteNc. The lead-
ing Nc dependence will then give the� �1�N2

c � quenched corrections, and anNc � ∞ extrapolation
will give the largeNc limit. Finally this can be compared to unquenchedSU�3� results (or indeed
directly to experiment) to estimate the� �1�Nc� unquenched corrections.

Calculation of quantities in the large–Nc limit is also important for attempts to extend the
AdS/CFT correspondence [2] to the case of QCD. This approach, known as AdS/QCD, attempts
to learn about QCD by studying a five–dimensional theory thatis dual to the large–Nc limit of
QCD [3, 4, 5, 6, 7, 8]. The form of this five–dimensional dual (if it exists) is unknown, and
additional information on the QCD side would help to constrain it. Since the duality occurs in the
large–Nc limit such information must also be calculated in that limit.

The masses of low–lying glueballs have been calculated on the lattice forNc up to 8 [9]. The
finite–Nc corrections were found to be small, reaching only about 10% in the case ofSU�2�. The
pion mass has been calculated forNc � 17 to 23, with noNc dependence observed [10]. Other
meson masses have not to our knowledege been calculated at largeNc.

In this work we present calculations of the pion and rho masses up toSU�6�. We describe our
methods in the next Section and our results in Section 3. We sum up in Section 4.

2. Methods

We use the lattice software packageChroma[11], which we adapt to work for arbitraryNc. We
use unimproved Wilson fermions, together with the Wilson plaquette action for the gauge fields.

To set the scale, we use the string tension calculations by Lucini et al. [12]. We choose the
couplingβ � 2Nc�g2 � 2N2

c �λ , whereλ is the ’t Hooft coupling, such that the string tension in
lattice units,a�σ , is the same for eachNc. We use the valuea�σ � 0�2093: for SU�3� this
corresponds toβ � 6�0175. The values for otherNc are shown in Table 1. Adopting a value of 420
MeV for the string tension, the lattice spacing is then 0.099fm in each case. The values ofa�σ
used in the fits in [12] are very accurate [9], so the errors on our estimate of the lattice spacing are
less than 1%.

The volume of our lattices is 163 �32 in lattice units, corresponding to a spatial volume of
1�583 fm. Finite–volume effects are expected to decrease withNc, and to be zero at infiniteNc as
long as the box is larger than a critical lengthlc [13]. This means that we should obtain the correct
large–Nc limits for the masses we calculate, despite any finite–volume effects at smallNc.

We find that, as expected, the cost of updating a gauge configuration is approximately propor-
tional toN3

c , and the cost of inverting a propagator is approximately proportional toN2
c (the number

of conjugate gradient steps required for the inversion is approximately independent ofNc). For the
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Nc β
2 2.4645
3 6.0175
4 11.028
6 25.452

Table 1: Value of the couplingβ for eachNc.

relatively small values ofNc we use, the latter in fact dominates. Furthermore, we find that the
correlators become less noisy at largerNc (see below), so fewer are needed to calculate a mass to a
given precision. This reduces the total cost to� Nc. A heuristic argument supporting this observed
reduction in noise is the increase of the degrees of freedom of the statistical system∝ N2

c at fixed
volume.

We calculate local–local and local–smeared correlators onour configurations. We smear using
0 to 100 iterations of Gaussian smearing,ψ

� �x� � ψ �x� � κ ∑µ �Uµ �x�ψ �x� µ ��U†
µ �x� µ �ψ �x�

µ ��, with smearing parameterκ � 4. We smear the gauge links using 10 iterations of APE smear-
ing,U

�

µ �x� � αUµ �x�� ∑ν �Uν �x�Uµ �x� ν �U†
ν �x� µ ��U†

ν �x� ν �Uµ �x� ν �Uν �x� µ � ν ��, with
smearing parameterα � 2�5

3. Results

We search for the critical value of the hopping parameter,κc, by finding the value ofκ for
which the pion massmπ vanishes. We show a plot�amπ �2 as a function of 1�κ in Fig. 1. For
suffciently small masses the dependence is linear, as expected, and we can extrapolate to zero pion
mass. The values ofκc we obtain are shown in Table 2. It is clear that they are rapidly converging
to anNc � ∞ value.

Nc κc

2 0.15327(16)
3 0.156397(45)
4 0.158168(39)
6 0.159060(44)

Table 2: Critical hopping parameterκc for eachNc.

As mentioned above, we find that correlators become less noisy asNc increases. We illustrate
this in Fig. 2, where we compare pseudoscalar correlators onindividual gauge configurations in
SU�3� andSU�6�. The pion masses are almost identical,amπ � 0�283�5� and 0�286�3� respec-
tively, but the scatter between individual configurations,a measure of the noise, is about twice as
large inSU�3�, in agreement with the naive degrees of freedom argument above.

Since fluctuations decrease asNc increases, and we use correlators of fluctations to extract
masses, one might worry that we will be unable to calculate masses in this way in the large–Nc limit.
Fortunately this is not the case. The correlators do indeed decrease as 1�N2

c , but the fluctations in
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Figure 1:
�
amπ �2 as a function of 1

�
κ for SU

�
2� (�), SU

�
3� (�), SU

�
4� (�) andSU

�
6� (�).
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Figure 2: Point–point pseudoscalar correlators on individual gaugeconfigurations inSU
�
3� at κ �

0�1547 (�) and inSU
�
6� atκ � 0�15715 (�). SU

�
6� results have been shifted vertically for clarity.

the correlators decrease at the same rate, so the signal–to–noise ratio remains constant. For a more
detailed discussion of this issue see [9].

We have calculated the lowest Dirac eigenvalues at our lightest pion mass. We plot the distri-
butions of eigenvalues we obtain inSU�3� andSU�6� in Fig. 3. These are at similar pion masses,
amπ � 0�188�6� and 0�212�3� respectively, but we see that the distribution of eigenvalues is much
narrower inSU�6�, with no near–exceptional configurations. This suggests that it may be possi-
ble to use unimproved Wilson quarks at much lighter pion masses at largeNc than is possible for
SU�3�.
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Figure 3: Eigenvalue density for the smallest eigenvalue ofγ5D in SU
�
3� at κ � 0�1557 (red) and inSU

�
6�

at κ � 0�1581 (green).

We extract the ground state pseudoscalar and vector masses from correlators at a range of
quark masses. The lowest pion mass is approximatelymπ � 0�2a�1 � 410 MeV, corresponding
to a quark mass somewhat lighter than the strange quark mass,while the heaviest is aroundmπ �
0�6a�1 � 1220 MeV. At our lighest massesmπ �mρ

� 0�5. We show the extracted masses in Fig. 4.
We do not have exact matching of the pion masses for differentNc in all cases, so we plot the rho
masses against the squares of the pion masses — if there is noNc–dependence these should all fall
on a common curve. We see that for the entire range of quark masses, the points do indeed fall
onto the same line, the only exception beingSU�2�, for whichmρ appears to be about 10% higher
at the lowest quark masses. Finite volume effects are expected to be largest at smallNc and light
quark masses, but we would expect these to increasem2

π by a larger amount thanmρ , shifting the
SU�2� points below the line, the wrong direction to explain the observations. If the deviations are
indeed real finite–Nc effects, they are of order 10%, similar to the deviations observed for glueballs
in [9]. Assuming they are dominated by the 1�N2

c corrections, the corresponding deviations for
SU�3� should be around 4%.

4. Conclusions

We have calculated the masses of the pion and rho mesons up toSU�6�, at a cost approximately
proportional toNc. We have shown that theNc dependence of the masses is small, approximately
10% forSU�2� at small pion masses, and that there is no observable dependence at higher masses.
If these differences are dominated by the 1�N2 corrections, which seems very plausible, there will
be a difference of about 4% betweenSU�3� andSU�∞�. Thus, at least for the masses of these
mesons, quenched QCD is very close to the large–Nc limit.

The distribution of the lowest eigenvalue ofγ5D becomes much narrower asNc increases. This
suggests that it maybe be possible to use Wilson quarks at significantly lower quark masses without
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Figure 4: Rho mass against pion mass squared, forSU
�
2� (�), SU

�
3� (�), SU

�
4� (�) andSU

�
6� (�).

running into exceptional configurations. We intend to explore this possibility in future work. We
will also examine smaller volumes to check that the volume dependence does indeed decrease.

Apart from the ground state pseudoscalar and vector, we intend to also calculate the masses of
the excited states. It would also be interesting to look at other quantum numbers, in particular the
scalar mesons.

Finally we note that our calculations have been carried out at only one lattice spacing. Our re-
sults will thus be affected by lattice corrections. However, these lattice corrections will themselves
have a large–Nc limit, which will affect our results for allNc equally. Only an unlikely cancel-
lation between the continuum and lattice 1�N2

c corrections could cause us to see the very small
Nc–dependence we observe. Thus, although our values for the meson masses have yet to be extrap-
olated to the continuum limit, our conclusion that theNc–dependence is very small is unlikely to be
affected. One should of course check this by repeating the calculations at a smaller lattice spacing,
and we intend to do so in future.
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