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1. Introduction

The search for the Higgs has become a major issue in partiglsiqs as the LHC is nearing
its completion. The Standard Model (SM) cannot be consilemmplete given that the Higgs
is as-yet unobserved and it is not clear how Electroweak sstmynis broken in nature. If the
Higgs is seen, its properties could tell us about physicoheyhe Standard Model, such as the
energy scale of a more fundamental theory. The current Idwend for the Higgs mass from
direct searches is 141 GeV [1]. The Higgs mass can also be inferred indirectly bynfitthe
Standard Model to a host of Electroweak precision measumesnd he best perturbative fit gives
my = 76f§2 GeV, so the data certainly seem to prefer the Higgs to be [RlhtHowever, the global
fitting procedure, which favors a surprisingly low Higgs mdsas its own intrinsic issues, perhaps a
hint that deviations from the Standard Model are alreadggume[3]. Larger Higgs masses together
with new physics threshold effects at the TeV scale will regjuew extended analysis [4, 5] where
non-perturbative effects may come into play.

Based on the assumption that the Standard Model is only uplid some energy scale, lower
and upper bounds on the Higgs mass were established befilveuvielying on input from Elec-
troweak precision measurements. Bounds on the Higgs masskable for two reasons. Firstly,
they cut down the parameter space where one searches fonda8taModel Higgs. Secondly, if
the Higgs is found, measuring its mass and knowing the boitndast obey would indicate the
maximum energy scale up to which the Standard Model can warphenomenology, the origin
of the lower bound is thought to be the vacuum instability Toe quark loop would generate, if
the Higgs mass were too light. The upper bound in phenomgiwalbanalysis is simply calculated
by not allowing the running Higgs coupling(t) to become strong at the cutoff scalewhich
represents new physics beforét) would run into the fictitious Landau pole. These ideas on towe
and upper Higgs mass bounds have been applied to the Staviddel for almost 30 years and
have been increasingly refined.
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10 and 100 TeV, beyond which apparently new physics shoukt.en

One major goal of our lattice Higgs project is to understamel tole of vacuum instability
and the Landau pole in an exact non-perturbative settinghvihe intrinsic cutoff in the Higgs
sector is not removable and low in the TeV range. Another go#b explore the role of non-
perturbative Higgs physics from the lattice in extensiohthe perturbative SM analysis, including
the possibility of a heavy Higgs particle within the Higgaeh of the LHC.

The outline of this paper is as follows. In section 2 we wilpoe results from the large
Nk analysis of the Top-Higgs Yukawa model of a single real sdadd coupled toNg fermions.
The influence of the non-removable intrinsic cutoff (triitid on the exact renormalization group
(RG) flow is exhibited. The vacuum instability problem of timeodel is discussed on the lattice
in section 3 and compared with the traditional renormaliragroup procedure of the Standard
Model (earlier versions of this work on vacuum instabilitgve been discussed in [9] and [10]).
In section 4 we present the Wilsonian view on the renormttinagroup as applied to the vacuum
instability and Higgs lower bound problems. The first lat&mulation results on the Higgs mass
lower bound, using chiral lattice fermions in Top-Higgs ‘@wa models, are reported in section 5.

Using the higher derivative (Lee-Wick) extension of the gfigsector [11, 12, 13], we will
illustrate in section 6 how non-perturbative lattice sasdimight help to investigate heavy Higgs
particle scenarios in the 500-800 GeV Higgs mass rangeamidor future LHC physics. Con-
straints from Electroweak precision data on the heavy Hgggticle are briefly discussed.

2. Top-Higgs Yukawa model in large N limit

For pedagogical purposes, we first consider a Higgs-Yukaadelof a single real scalar field
coupled toNr massless fermions. The saddle point approximation in tiye Id- limit becomes
exact and this will allow us to demonstrate that the theoryrivgéal. We will also calculate the
flow of the renormalized couplings as a function of the enesggle to identify problems with
the vacuum instability scenario when the intrinsic cutsfinon-removable. Similar behavior is
expected at finit&lr which requires non-perturbative lattice simulations.

2.1 Renormalization scheme

Let us start with the bare Lagrangian of the Higgs-Yukawatyhen Euclidean space-time,
which is 1 1 1
2
L = STBG + 5 A0 + 5 (Fu)”+ U5 (Yudu +Yo) U, (2.2)

wherea = 1,...,Nr sums over the degenerate fermion flavors and the subscripnbtes bare
guantities. We rewrite this as

1 1 1
L = émcz,Zcpq)er zl/\ozg,cp“+ ézq, (d“(p)2+Z4,L[7a(yudu +Yor/Ze®) Y2
_ %(szrcsz)(szr 2—14(/\ +6)\)<p4+%(1+ 524) (0,0)°
+ (14 0Zy) PPyu0u? + Y3y + oy) py?, (2.2)

where we have introduced the wavefunction renormalizaémtorsZ, = 1+ 8z,, Zy = 1+ 0z
and renormalized parameters with their corresponding esterms. The connections between the
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bare and renormalized parameters are
MGZp =P+ NP,  AoZ5=A+0A, Zy\/Zgyo=Yy+ Y. (2.3)

In the limit whereNg becomes large, all Feynman diagrams with Higgs loops arpresgped rel-
ative to those with fermion loops. Hence, two of the couetens vanishpy = 0, dz, = 0, as
there are no radiative corrections to the fermion propagatdo the Higgs-fermion coupling. Let
us specify the renormalization conditions which deterntireeremaining counterterms.

In the largeNg limit, the renormalized Coleman-Weinberg effective poiril4] is

Ut = S0+ S A+ S0P + 2000~ 2Nk [+ Y@ (2.4
2 24 2 24 K

containing the tree-level contributions from the renolimed parameters and their counterterms,
and the infinite sum of all diagrams with one fermion loop andeeen number of externgl legs.
The factorNr comes from all the possible fermions which can appear initiidesloop and we use
the notationﬁ [d* — |, for loop integrals. The vacuum expectation valpie: v is whereUe
has an absolute minimum i.8/;(v) = 0. In the Higgs phase of the theory# 0. At tree-level,
this gives the relation

mz+€—15)\v2:0, (2.5)

coming from the first two terms in Equation (2.4). Our first@emalization condition is that we
want to maintain the tree-level relation in Equation (2.Xcly, giving

1 o1

The counterterms exactly cancel all the finite and infinitetdbutions of the radiative diagrams.
The same relation can also be determined by demanding thaadpole diagram is exactly can-
celled by the counterterms.

In the Higgs phase, we define the Higgs fluctuation aroundali@sp = ¢ +v. At tree-level,
the mass of the Higgs fluctuation ilék(v) is

m :szr%)\vZ:%)\vz. (2.7)
In the largeNg limit, the inverse propagator of the Higgs fluctuation is
_ 1 1
G¢$(p2) = PP+ P+ SAV 4 52y + OP + S8AVE — 3(p?)

_ YV —k.(k—p)
- NFVZ/ (K +y22)(K— p)Z+y2\2)’ (2.8)

where all Higgs-loop diagrams are suppressed relative @cstigle fermion-loop diagram. We
impose the condition that
Gyy(P* —0) = p°+mj, (2.9)

which separates into two renormalization conditions:

6mz+%5)\v2—2(p2:0):0 (2.10)
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and
dz(p?)

The renormalization condition Equation (2.10) maintaims tree-level relation in Equation (2.7)
exactly. Again, the counterterms precisely cancel all thifiand infinite radiative contributions.
We should point out that the Higgs mass defined as the zeroemtoim piece qu‘,ql, is identical

to that defined via the curvatut#(v). This is not the same as the true physical mass given by the
pole of the propagator, and these masses can be related &motieer in perturbation theory.

The renormalization conditions Equations (2.6) and (2cH)) easily be solved. Because we
wish to demonstrate triviality in this theory, we use somédigutoff in the momentum integrals
and examine what occurs as this cutoff is removed. We willausemple hard-momentum cutoff
|k| <A. Exactly the same conclusions would be reached using mh&en Pauli-Villars regular-
ization. The non-zero counterterms after the loop intégmnadre

N, YW
oe = 2m2 [2/\ Jr2(/\24—y2v2 2y2v2 ’

-
g SNV YV 1L Y
[ 2(N2+yAR) 2 2 \AN2pyAR )|
CNey? [1 <y2v2+/\2> N —5/\4—3/\2y2v2]

0zp = —— | =1
% 22 [4 n y2\2 12(A? +y2v2?)?

As we said earlier, in the largBl limit, the fermion inverse propagator receives no radativ
correction,

52— —0. (2.11)

(2.12)

Gyy(P) = PuYu + YV, (2.13)
so we identify the fermion mass as = yv (looking ahead to the Top quark), which we substitute
into all of the above equations.
2.2 Triviality

Let us first consider the reging /A < 1, where the cutoff is much larger than the physical

scale. In this limit, we get
[ NeY3 /. [A2] 5\]*

For any finite bare Yukawa coupling, the Higgs wavefunction renormalization facEy vanishes
logarithmically as the cutoff is removen /A — 0. This same logarithmic behavior, for any choice
of bare couplings, will appear in all of the renormalized jglings, leading to the triviality scenario:
a finite cutoff must be kept to maintain non-zero interadidaxplicitly, the renormalized Yukawa
coupling is

2 2 -1 271
y2:y52¢:y5[1+%<ln[%}—g>} H[%ln%} , as%eo. (2.15)
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For the renormalized Higgs coupling, we have

A:Aozg—ax\:)\ozg+3NFy4[ m —}—%In< i )]

| 2(AN2+mf) 2 /\2+m[2
W

Hzg[)\o 3N;2y4<—§—§|n”‘2>} 12[8712”]%1 , as%ﬁo. (2.16)

The slow logarithmic vanishing gfandA allows to have a relatively large separation of cutoff and
physical scales and still maintain significant interacioitlowever, the standard renormalization
procedure of removing the cutoff completely gives a nomyiatting theory. Although completely
unphysical, we can also consider the limmit/A > 1, where the cutoff is much below the physical
scale. From Equation (2.12), we see this gigds= 0, 6z, = 0, and henc&, — 1. In this limit,
the connection between bare and renormalized parametsiragy A = Ag, ¥ = Yo. This result is
not surprising: deep in the cutoff regime, we simply havelihee theory, with no separation into
renormalized parameters and their counterterms. Thisheiltelevant when we discuss whether
the vacuum can become unstable.

2.3 Renormalization group flow

The physical properties of the theory are fixed as soon as looeses a complete set of bare
parameters. As the cutoff is varied, the renormalized dagplflow in order to maintain exactly
the renormalization conditions we have imposed. Using #pi@t cutoff dependence of and
A, we can calculate this Callan-Symanzik flow. In the limiy A < 1, from Equations (2.15) and
(2.16), we have

A ooNeyg o Ney!

Nan 070 g2 AR
A1 [—8NeAY? + 48Ney?] . (2.17)
dA 1672

The samg3 functions would be obtained in the largdg limit for the runningy andA couplings
in scale dependent RG flows using e.g. dimensional regataiz, where no cutoff would ex-
plicitly appear. (Since increasingy corresponds to decreasing mass sg¢gleéhe 8 functions in
Equation (2.17) have opposite signs). It is important teeribat the two RG schemes have very
different physical meanings: Equation (2.17) describegdisponse to changing the cutoff whereas
the scale dependent RG flow compensates for the arbitraigecld the renormalization scale at
finite cutoff. When the cutoff is far above the physical sealhe finite cutoff effects are neg-
ligible and we expect to reproduce the unique cutoff-indelemit 3 functions. However, as the
cutoff is reduced andh /A increases, this cannot continue to hold indefinitely, agehermalized
couplings must eventually flow to the bare ones, as explaabede.

Let us demonstrate an explicit example of the Callan-SyikdR& flow in the presence of a
finite cutoff. In the largeNg limit, m, = yv= yoVp. The bare vev is determined by the minimum of
the bare effective potential

1 1
Uetto = 5B48 + 53A008 — 2N /k In [1+ y2g2/K?] (2.18)
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Figure 2: The exact RG flow of the renormalized couplirggndy with the full cutoff dependence. The
corresponding bare couplings akge = 0.1 andyy = 0.7. For large cutoff, the exact flow agrees with the
continuum RG flow, where the cutoff dependence is omitted. siheall cutoff, the exact RG flows to the
bare couplingd andyp, but the continuum RG misleadingly predicts thaturns negative.

Using a hard-momentum cutoff, this gives

2 2\ 2
m%+(—15)\0v3—% [%/\%%ygvgln (%‘%\%ﬂ —0. (2.19)
We express all dimensionful quantities in units of the dutef We pick some fixed values for
Ao andyp. Varying the value ofmg/A? changes the solutiowy/A of Equation (2.19) and hence
the ratiom,/A. As we said, choosing the values of the bare parameters etehpldetermines
everything in the theory. For example, to attain a very svallie ofm /A requiresmg/A? to be
tuned quite precisely. Using Equation (2.19), the critmatface, wherep/A = 0, is the transition
line m% N2
FYo
N e 0. (2.20)
Using Equations (2.3) and (2.12), all of the countertermd @mormalized parameters can be
expressed in terms dfo,yo,m(z) andvg. Solving this set of simultaneous equations is a simple
numerical exercise. We make an arbitrary cholge= 0.1,yy = 0.7 which would correspond to
the physical Higgs below its lower bound in phenomenoldgicasiderations. Varying the value
of mg/A?, we explore numerically the range 18 < m /A < 10%. The results in a limited range
are plotted in Figure 2. When the cutoff is high, the exact R/ fis exactly the same as if the
cutoff had been completely removed and follows precisetyantinuum form of Equation (2.17).
However, as the cutoff is reduced, the exact RG flow eventimtaks away from the continuum
form and reaches a plateau at the value of the bare coupling.

The continuum RG in the above example predicts th&rns negative at some energy scale
as the flow continues. This was used in the past as an indici#t the ground state of the theory
turns unstable at that scale which would determine the grsrgle of new physics necessary to
sustain a particular value of the physical Higgs mass (vacimstability bound). As shown above,
the true RG flow with the full cutoff dependence saturatedpsaind does not turn negative under
the necessanjg > 0 stability requirement of the model. This makes the phemmiogical RG
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method and the apparent vacuum instability quite suspetidarpresence of the non-removable
finite cutoff which is required by triviality of the renormaéd couplings.

The absence of vacuum instability will be demonstratedctliyén the next section using the
Higgs effective potential. In sections 4 and 5 we will propaslattice strategy to determine the
Higgs mass lower bound in the presence of an intrinsic cwtifiiout relying on the continuum
RG flow. In this new strategy even tiig > 0 condition might be relaxed by adding new irrelevant
operators, like thg“\% @° term, to keep the stability of the cutoff theory intact.

3. The effective potential and vacuum instability

First, we will present here the RG improved one-loop calibotaof the effective potential
with unstable vacuum when the cutoff is ignored. Next we sttmabsence of vacuum instability
when the cutoff is correctly enforced.

3.1 Continuum 1-loop effective potential

For the Higgs-Yukawa model witg fermions of Section 2, the 1-loop renormalized effective
potential is
Ueft = 3qu?+ N\ o*+ :—Lémz(szr ) ¢* —2N /In[1+y2cp2/k2]

T2 24 2 24 "k

+ 3 [0 4V (9)] - |2 +V"(0).
k

_1 1,4

V = Emch2+ﬂ/\(p, (3.1)

where the Higgs-loop contributions are also included nowr ¢onsistency, we impose exactly
the same renormalization conditions Equations (2.10) &bl used in Section 2, including all
the Higgs-loop radiative corrections. Becaudseanddzy, are non-zero (we no longer impose the
large Ng limit), we specify the two additional renormalization cdtiwhs. The fermion inverse
propagator is

G[u%u(p) = Py Y+ YV+ 82y Py Yy + SyV— Ze (p),

kuyu+yv

the radiative correction coming from a single Higgs-looagtam, and we require that
Gyy(P— 0) = puyu+yv (3.3)
This gives two renormalization conditions,

Ooyv—3g(p—0) =0,
d=g
d(PuYi) lpo

(3.4)

Again, the counterterms completely remove all the finite ificite parts of the radiative correc-
tions. We regulate the momentum integrals using e.g. a tmamehentum cutoff. The counterterms
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and the renormalized effective potential are calculateatt using a finite cutoff. We then take
the naive limitg/A — 0O to remove all cutoff dependence. This ignores the factdhfatite and
possibly low cutoff is required to maintaib,y £ 0 (a crucial point why the instability does not
occur in the presence of finite cutoff).

The continuum form of the 1-loop renormalized effectivegrital is given by

1 1 N 3
Uett = SmPg°+ 2 A ¢ 2 —>¢'+27%¢" + ¢*In ﬂ

16| 2 2
( e + A @?/2
1672 | 16 m?

1 m+A@?/2 3

-
+ Em,‘l. |nT—3—2A2cp4+EA cpzma}, (3.5)

1A%t 22 ¢Pnd)in

wherem, = Av?/3. Due to our choice of renormalization conditions, the @l vevv =

\/3m& /A is not shifted: one can check explicitly thidty in Equation (3.5) has its minimum
at @ = v. The largeNg limit can be recovered by omitting the Higgs-loop terms.

3.2 RG improved effective potential and vacuum instability

The stability of the ground state is determined by the bedrant Uey for large . We see
from Equation (3.5) that the dominant terms in this regime air the formA2¢*In(¢?/v?) and
—Ney*@*In(¢@? /v). The negative fermion term brings up the possibility thatvievv is unstable.
Hence stability is determined by the relative valueg ®andy*, which are related toy andm. If
the fermionic term dominates at large the minimum aw is only a local one and will decay. If we
believe that the vacuum is absolutely stable, then new degrefreedom must enter at the scale
whereUe (@) first becomes unstable. For given valuesmpfandm, this predicts the emergence of
new physics. Turning this around, let us fix and ask that no new stabilizing degrees of freedom
are needed fop < E. Then we obtain a lower boundy (E): if the Higgs is lighter than thid)es
is already unstable fap below E because the fermion term dominates even earlier.

Improved vacuum instability can be shown via the runningoraralized couplings in RG
setting. We can define a set of renormalization conditionteércontinuum, for example in tHdS
scheme, where the couplings flow with the renormalizaticrlesg. The 1-loop RG equations for
the Higgs-Yukawa model are

dy 1
IJ@ = w(?""ZNF)Y{

a i(3A2+8N AY? — 48N:YH) (3.6)
udu 162 F FY '

We can set the initial conditions(u = v) = 3mg /v? andy(u = v) = m/v. If my is sufficiently
heavy relative tany, the Yukawa coupling dominates the RG flow aiwl/du < 0. The renor-
malized Higgs coupling eventually becomes negative at spracE. If the instability occurs at
very largeg/v, large logarithmic terms lfg/v) in Ug might spoil the perturbative expansion. This
can be reduced using renormalization group improvemeng¢sam the leading large logarithms.
The dominant terms dfe at largeg then becom@ (u)@*(u). HenceA (E) = 0 indicates that the
ground state is just about to become unstable.
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3.3 The constraint effective potential on the lattice

We can calculate the exact effective potential non-pestiwbly, using lattice simulations.
This was first shown in the pure Higgs theory by Kuti and Shéj.[There is some finite lattice
spacinga on the lattice which restricts the momenfa,| < r7/a replacing the sharp momentum
cutoff used in section 2. For a Higgs-Yukawa theory wip fermions, the Euclidean lattice
partition function is

z— |:| /d(R)(X)[DEt(D[%])]NF exp(—S]), = U /d%(x) eXP(~ Sl p)

S= Y SMRE00 + 5z dod (9 + 5 ()’
(DI])xy = YuOu.xy + Yo@(X) Oy, (3.7)

where the partial derivatives are replaced by finite lattidgerences. If the integrand is positive-
definite, it can be interpreted as a probability density anddrtance sampling (i.e. Monte Carlo
integration) can be used to calculate expectation valugs,@), non-perturbatively with the exact
distribution [Det(D)]NF exp(—S). All dimensionful quantities are calculated in units of tagice
spacinga. There is a phase diagram in the bare-coupling spﬁ%(;ﬁo,yo. The Higgs phase and the
symmetric phase are separated by a second order transitieme the vewa, and the massesya
andma, vanish. Since the vev and masses are non-zero in physitg| the transition corresponds
to the continuum limi — 0. To make the cutoff\ = 11/a large, the bare couplings must be tuned
to be close to the transition line. If we calculate via sintiolas that e.gav= (a@) ~ 0.05 for some
choice of bare couplings, we can use 246 GeV to convert this into a cutoff =~ 15 TeV, as well
as determineny andm in physical units.

In a finite space-time volum@, we will use the constraint effective potential [15, 16].rEo
pure scalar field theory, this is

exp~0Ua(®)) = [ [ o5 (©- & 5 0 ) exp(-Sig). @9

The delta function enforces the constraint that the scatt § fluctuates around a fixed average
®. The constraint effective potentidl, (P) has a very physical interpretation. If the constraint is
not imposed, the probability that the system generates figtwation where the average field takes
the value®d is 1 ‘

P(®) = S exp(~QUg (@), Z= / o’ exp(— QU (). (3.9)

This is in very close analogy to the probability distributtifor the magnetization in a spin system.
The scalar expectation valwe= (@) is the value ofp for whichUq has an absolute minimum. In a
finite volume, the constraint effective potential is nomex and can have multiple local minima
[17]. The standard effective potentidky(®) is always convex, even in a finite volume, as the
Maxwell construction connects the various minima. The tffective potentials are identical in
the infinite-volume limit, lin .. Uq(®) = Uest(P), and the constraint effective potential recovers
the convexity property. In a finite volume, it is more usefuork with the constraint effective
potential, where multiple minima can be observed and thesitian between the Higgs and sym-
metric phases is clear. It is also more natural, as the pifiyatiistribution P(®) can be directly
observed in lattice simulations. For the rest of this paperdrop the subscripf®.

10
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3.4 Hybrid Monte Carlo algorithm and the effective potentia

One way to extract the effective potential from lattice siations is to generate the ensemble
of configurations, calculate the average scalar fielfibr each configuration and hence the proba-
bility distribution P(®). The effective potential is extracted by numerically fitldes(P) to P(P)
using Equation (3.9). This gives the effective potential & ® from one simulation, but with
limited accuracy. An alternative method is calculate thevdéve of the effective potential. For
the Higgs-Yukawa model withl degenerate fermions, the derivative is

Wett _ 1t 0+ LA (o~ Ney(@Wo. (FW)o = (TrDlgl D)o (3.20)

The expectation valugs..)» mean that, in the lattice simulations, the scalar field flatgs around
some fixed average vale. This method determines the effective potential with greatcuracy
than fitting the distributiorP(®), but the drawback is that a separate lattice simulation dde t
run for every value ofb. This is the method we use in our investigation of the vacuustability.

In this section we use staggered fermions [18, 19], one fla¥ovhich corresponds to four
fermion flavors in the continuum. With one staggered fermittre determinant D€D) is real
but can be negative due tpfluctuations. Then the partition function integrand is nosifive-
definite and Monte Carlo integration cannot be applied. Broeme this problem, we simulate two
staggered fermions, corresponding to eight continuum fa\as[Det(D)]? guarantees a positive-
definite density.We used staggered fermions only in the garly phase of our simulations. The
complicated taste structure of staggered fermions withdladed rooting issues and the lack of full
chiral symmetry motivated the switch to chiral overlap fewns which are used now exclusively
in our Higgs project. Staggered results for the effectiveeptial, which are used here mainly for
simplicity and pedagogy, have been replaced by simulatigtischiral overlap fermions.

Configurations are generated using the Hybrid Monte Cagoridhm [20], where a fictitious
timet and momentar(x,t) are introduced. New configurations are generated from thatens
of motion

Q(x,t) = m(x,t) ,
) 0S4 1 0S¢
axt)=— | — — = § —1 | 3.11
0=~ 5000 ~ Q2 30y, (310
where the effective actioB is given in Equation (3.7). The second ternvitk,t) is included to
enforce the constraints

é S olyt) =@, Y myt)=0. (3.12)
y y

We work with fixed lattice volumes of size& 16. The scalar field has periodic boundary condi-
tions, the fermionic field is periodic in the short directioand antiperiodic in the long direction.
We use the standard leapfrog method to solve the equatiomtdn, where the step-sizit is
adjusted to achieve acceptance rates well above 90%, ahdragectory length satisfidsAt > 1.
For each simulation, we generate at least dénfigurations and check that correlations between
the configurations are small.

The basic quantities of the theory are the bare fields andlioggp A particular choice of
bare couplings puts us somewhere in the phase diagram aphlyaical quantities are now fixed.
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A separate constrained simulation is run for each valu®gfo calculate the effective potential
derivative. The expectation values we measure on thedadtie bare ones, so the simulations give
the bare equivalent of Equation (3.10), namely

dUe 1 _ _ _
ch: = mp®o -+ 6/\0(@% — Neyo(Woo)w,,  (Polo)o, = (TH(D[@] ™)) o, (3.13)

which is converted using the relationship between the bader@normalized fields,

(0N dUest AUest
¢_f—z¢’ W“/Z"dqno' (3.14)

We measure the wave function renormalization fadipin separate unconstrained simulations.

We want to follow the behavior dfe as we approach the continuum limit, the critical surface
in the bare-coupling space. We make an arbitrary chgice 0.5 andAg = 0.1. The distance
from the continuum limit is determined by the remaining beogipling m% We obtained results
for three choicessr% =0.1,0.25 and 029. Typical non-perturbative measurements of the devigati
dUgfr/d® are shown in Figure 3. All dimensionful quantities are ini¢& units, e.ga- ®. What do
we expect to see? In the Higgs phase of the theédwyshould have a local maximum at the origin
and a local minimum for some non-zese®. If the vacuum is stable, the local minimum is in fact
an absolute one. Let us first look at the resultsmigr= 0.1, shown in Figure 3. The simulations
show thatlUgs/d® vanishes at the origin and at® ~ 2.0; these are the extrema. The derivative is
negative between these points, so the origin is indeed ariewamum. Fora- ® > 2, the derivative
is always positive and the local minimum appears to be anletesone. If the vacuum is unstable,
dUesr/d® should turn negative at large ®, for which the simulations show no evidence. In these
units, the lattice cutoff ig\ = r1/a and the ratio of cutoff to scalar expectation valué\ja/ ~ 1.5.
This is far from the continuum limit.

05— T T A0 v g e e e

— continuum PT ] r — conti nuum PT
lattice PT r lattice PT

o sinulations i F o sinulations

30 4 4

20— -

U, derivative
U derivative
ef f
@

Figure 3: The derivative of the effective potentidUes/d® for the bare couplingg, = 0.5, A9 = 0.1,mg =
0.1, for which the vev isav= 2.0351). The left side plot is a close-up of the behavior near theinrig
The circles are the results of the simulations and the cuakegiven by continuum and lattice renormalized
perturbation theory.

We vary the bare mass to get closer to the critical surfacetla@aontinuum limit for bare

massesn% = 0.25 and 0.29 respectively. The simulations show the sametafixad behavior for
Uest: the origin is a local maximum, there is an absolute minimemsbme non-zerad® and no
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Yo Ao M Z, av=(ap)  amy am

05 01 01 0987(1) 20351) 0.521(5) 0.9977(5)
0.25 0.9705(8) 0.811(1) 0.297(4) 0.3906(7)
0.29 0.9676(7) 0.4685(6) 0.248(3) 0.2230(3)

Table 1: The wave function renormalization factor, the renormaligealar expectation value and the Higgs
and Top masses, obtained from unconstrained lattice stironta The bare couplings are those used for the
lattice measurements of the effective potenitig). The estimated errors are in parentheses.

sign of an instability in the potential. The minimum occuta@ ~ 0.81 and 047 respectively, for
which A /v~ 3.9 and 6.7, pushing towards the continuum limit.

The first check of these calculations is to run separate wgt@ned simulations with the same
bare couplings, wherg, ¢(x) is allowed to fluctuate freely, and to measure independenty ).
This expectation value should be identical to the valu®avhereUg; has an absolute minimum,
as determined by the constrained simulations. In the umioned simulations, the second term
for 11(x,t) in Equation (3.11) is omitted. The results of the unconsgdisimulations are given
in Table 1. There is indeed perfect agreement between theureraents ofag) and the loca-
tion of theUes minimum obtained from the constrained simulations. Thetinoonm perturbation
theory calculation ofJe is also shown in Figure 3. We only display the lafye result: not
surprisingly, forNg = 8, the Higgs-loop contributions are negligible and can bdttesh We see
excellent agreement with the non-perturbative simulatimn® < v, as shown in the left side plot.
However, the behavior &b increases is completely different, as shown in the righg gidt. Con-
tinuum perturbation theory breaks away from the simulatesults and predicts that the vacuum
becomes unstable, withlet/d® turning negative. The exact non-perturbative calculatibaws
no indication of this.

What can we conclude from the comparison? Continuum pextiar theory works well for
® less than and even close to the lattice cutof 11/a, as shown by the very good agreement
with the exact lattice calculations. This is the most that cauld have expected. The instability is
predicted atb well above the cutoff, which is completely unphysical andevehone cannot expect
the continuum calculation to apply. The exact effectiveeptital, with the full cutoff dependence,
is absolutely stable. The standard interpretation of tetalility in the continuuntJe¢ would be to
say new physics appears at this energy scale to stabilizgahed state. But the actual cutoff of the
field theory is far below this scale, especially as we getsltsthe continuum limit. The instability
only appears when the finite cutoff effects are ignored —ehemo need for new physics. One
can ask, is it possible to arrange both the standard growate ahd the instability to occur well
below the regulator cutoff? If so, the instability would bgenuine low-energy prediction. The
answer is no in the Top-Higgs Yukawa model, if only the staddarms are included in the lattice
Lagrangian. In this case the only freedom one has is the eludithe bare couplings, and nowhere
in the coupling-space is a genuine instability seen. If bigimensional operators are included,
the Ag > 0 condition perhaps could be relaxed by adding new irreleggerators, like the’/‘\—‘;q)6
term, to keep the stability of the cutoff theory intact. Tetenario requires further investigation.

It can be shown in renormalized lattice perturbation thebgt the breakdown of continuum
perturbation theory is due solely to the finite cutoff. A fedutoff is used in the lattice momentum
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integrals for the radiative corrections and the countertenfUgs, but otherwise the procedure
is the same as in the continuum. In Figure 3 we see excellereamgent between simulations,
and lattice and continuum renormalized perturbation théor ®/v < 1. As ® increases, lattice
perturbation theonexactlytracks the non-perturbative result, showing a perfecthplst ground
state. The continuum calculation breaks down, not becallsege couplings, but because of the
neglected finite cutoff.

4. Wilsonian renormalization group and vacuum instability

Most of the original work on the consistency of quantum fi¢lddry considered only ideal-
ized theories, supposedly fundamental to describe phgsiasbitrarily high energies. Although in
the previous section on vacuum instability and the relategfy$ilower bound problem we found
a non-removable intrinsic cutoff, the analysis was basethertraditional renormalization proce-
dure. The Wilsonian viewpoint of the renormalization grquipvides a broader and more complete
perspective on the discussion.

4.1 Wilson’s running Lagrangian

In the 1970s Wilson developed a new, intuitive way of lookitghe renormalization of quan-
tum field theories based on the flow of effective Lagrangiangamerated by renormalization group
transformations [21]. This is based on the realization fiigtsics as we know it seems to be de-
scribed by effective quantum field theories, which are usafily up to the energy scalg where
new and yet unknown physics is reached. Some smooth irtniagularization is introduced (in-
herited from new UV physics) aty which in Euclidean space restricts the lengthof all four—
momenta. Physics below the cutoff scd#lg is described by a very general ‘bare’ Lagrangian
Z(No) with an infinite series of local terms, constrained only byngyetries. For any choice of
the coupling constants in the local terms of the bare Ladaamdhe Euclidean path integral of the
partition function has to be finite and well defined. The maosidamental constraint on the bare
Lagrangian is the existence and stability of the functiontgral which defines the Euclidean par-
tition function. If the viewpoint of ‘naturalness’ is adagut, all the coupling constants of the higher
dimensional operators are chosen to be of order one in uniig.dJsing Wilson’s exact renormal-
ization group we can consider smoothly lowering the regedaion scale to some valugs say, of
order the energy scale far below/\g. To keep physics unchanged, the coupling constants must
change with the regularization scale. Hence we have a rgnoineffective LagrangiacZ (A),
which flows withA and remains stable at every stage of the procedure in the séasconvergent
Euclidean path integral. Since we can use the Lagrangféng) to calculate low energy physics
at the scalde, it is not the coupling constants Ap that are important, but those at the scale
The bare couplings have to be close to a critical surfaojf/ Ao < 1 for the low energy physical
massesnyy of the theory.

An effective field theory is renormalizable if we can cal¢alall the S—matrix elements for
processes with energy scate up to small errors which vanish as powersegfAg, once we have
determined a finite number of coupling constants at somermegization scale\r ~ E. These
coupling constants are called relevant; all others aréeweat. Whatever values we choose fgy
(as long as it is large enough) and the irrelevant bare cogplj (/o) (as long as they are natural
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enough), for a particular choice of the relevant operatbA$Ag), the irrelevant operator sgt(AR)
will be of the order of some power @¢\r//\o). In other words, for any point on the submanifold
of relevant couplings af\r there is a flow towards it from a wide variety of initial Laggans
at A\, all of these being equivalent as far as the values of S—xneleiments for processes with
energies of ordeE ~ Ar are concerned. This more general aspect of renormalialislithe
concept of universality. An effective quantum theory thiseg us a much more general notion
of renormalizability than we had in conventional quantunidfibeory: the regularization need no
longer be removed, and the irrelevant bare couplings needepero.

It is useful now to adopt the Wilsonian view on the runningeefive Lagrangian to the Top-
Higgs Yukawa model we investigated in the previous section.

4.2 Top-Higgs Yukawa model, vacuum instability, and runnirg Lagrangian

Adapting the notion of the the running Wilson Lagrangiantfue Top-Higgs Yukawa model,
there are only two marginally irrelevant couplings(t) andy(t), in addition to the relevant Higgs
mass operator. It is important to note that the couplingdrforeasingt = log(Ag/A) flow from
bare Ap andyy toward their low energy renormalized values as a functionthef energy scale.
For example, in the larghlr limit and for larget values, neglecting the irrelevant couplings, the
flows are expected to look approximately the same as desdchp&quation (2.17). The Yukawa
couplingy(t) will monotonically decrease from its bare valugtowards zero, at the logarithmic
rate of Equation (2.15) for large The Higgs coupling will start from its bare valdg0) = Ao and
either it will monotonically decrease, or after some ifitiging it will turn around and continue
to decrease monotonically towards zero, at the logarithatie of Equation (2.16) for large In
the Wilsonian picture, all RG trajectories flow from the gexleeoupling constant space of cutoff
LagrangiansZ (o) Top-Higgs towards the trajectory specified by (2.15) and (2.16) witlatout
calculable corrections from irrelevant operators in thgdd limit.

In the Wilsonian view of the running Lagrangian, the cutoffpédndent Higgs mass lower
bound can be determined in the space of the bare cutoff Lg@nas.? (Ag)Top-Higgs from the
smallest allowed value of (Ag) for a fixed/\o/Ar < 1 ratio where a natural choice fow is the
weak boson magsy, or the vacuum expectation valueThis calculation is, of course, very hard to
implement operationally with a large number of bare cougdinThe important stability condition is
the only constraint (with, or without naturalness) on thacgpof cutoff Lagrangians. For example,
the choice ofAg < 0 a priori should not be excluded at the cutoff scAlg but it requires the
presence of some positive higher dimensional operatmr)\[iﬁ) JN? - @®, with /\é6> > 0, to provide
stability. Whether the Higgs mass lower bound will be neaslgsassociated with the limig — O,
or theAp < 0 region also needs to be explored remains an unresolvechtrdsting question.

In phenomenological applications an attempt is always niadanplify Wilson’s framework
of dealing with the full space of running Lagrangians. Inwakthe Ag/Ar — O limit, only the
running of the relevant and marginally irrelevant coupéing calculated and the effects of irrele-
vant operators are ignored. In addition, in the applicatibRG equations to the vacuum instability
problem, the simplified equations arft) andy(t) are running backward from thre; scale towards
the cutoff Ap. This interchange of the natural Wilsonian UV IR flow with the IR— UV inte-
gration of relevant couplings only is a nontrivial propasit because the Wilsonian RG flow is not
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known to be reversible, and to set all the irrelevant cogdito zero at the scalkkr = my would
require an unknown extension of the space of cutoff Lagemg¥’ (/\o)top-Higgs. If it €Xists at all.

In most of the phenomenological RG applications this is natodblem. We believe, however,
that the RG treatment of the vacuum instability problem neguspecial care. What corresponds to
the unstabléJe in Figure 3 is the running (t) which at some scalw, far below the cutoff scale,
turns negative as the RG is running backward, ftomlog/\o/m; towards the cutoff scale= 1.

It is a signal that higher dimensional operators must plagl@to provide a continued stability to
the theory on all scales. It is unlikely that a positiggon the cutoff scale can support this picture,
forcing the runningA (t) to turn positive again and produce an effective potentiactviwill turn
back positive again after a second minimum which might beelothan the original one where
the spontaneously broken theory was built (decay of the fedguum). It is more likely that this
scenario, if it exists at all, will require th& < 0 extension of the space of bare Lagrangians. This
is an extension which remains largely unexplored and weusteginning to investigate it.

4.3 Phenomenology from 2-loop continuum RG

Vacuum instability was first raised in [22] and it has sincerbéncreasingly refined in ap-
plication to the Standard Model [23, 24, 25, 26, 27, 28, 29,30 32, 33, 34, 8, 35, 36]. The
state-of-the-art calculation determines the effectivieptial to one-loop order, with RG improve-
ment applied up to two-loop order to the running couplings.

Results from [8] exhibit the unstable Stan-
ot L e s —— dard Model effective potential fany =

N Running Higgs coupling 52 GeV andn = 175 GeV, where the in-
T ] stability appears ap = 1 TeV. The lower
Planck scale ] bound shown in Figure 1 is also taken

from [8]. The finite width of the lower
bound is an estimate of the uncertainty of
the theoretical calculation, including the
effect of unconsidered higher-order con-
tributions. The strict lower bound for the
Higgs mass can be further refined if one
allows the ground state to be unstable,
but demands that the time required to tun-
nel away from the local minimum at=
246 GeV is longer than the lifetime of the
universe [37, 38, 39, 40, 41].

Itis clear that the current experimen-

20 25
t=log(mu/GeV)

Figure 4. The running Higgs coupling is plotted for
different choices of the Higgs mass from our numerical
solution of the five coupled 2-loop RG equations for thial limits on my bring the lower bound
A,Y, 01,00,z couplings. For inputm = 175 GeV was used into play. For example, a Higgs boson
with the experimental values of thg,g»,93 gauge cou- with a mass of 100 GeV should indicate a
plings. The 1-loop matching of the couplings and the stagyreakdown of the Standard Model around
ing scale of the RG was chosemmat. 50 TeV. However, a Higgs mass in the
range 160 — 180 GeV apparently allows
the Standard Model to be valid all the way up to the PlanckescBhe occurrence of the vacuum
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instability mostly relies on the relative magnitudes\éfandy* while both renormalized couplings
can remain small and all three gauge couplings of the SM arleded. The perturbative RG
approach, if cutoff effects can be safely ignored, seemsetorbsolid footing. However, cutoff
effects played an important role in Top-Higgs Yukawa modetere only the Higgs coupling
and Yukawa coupling drive the dynamics. In this approximation we have shownvhatium in-
stability cannot be induced with the SM Higgs potential ia dutoff Lagrangian (the possible role
of higher dimensional operators to induce vacuum instgbiéimains unclear, as we noted earlier).
However, in the phenomenological application, all five dogs are running and it is important to
ask: for the cutoff\ at or below the Planck scaMp, should we expect Top quark induced vacuum
instability with the SM cutoff Lagrangian without addingweperators? Do we expect a qualita-
tively different picture when compared to the Top-Higgs awla model? From Figure 4 we find
that the running\ turns negative below the Planck scale for Higgs mass vatwesrithan 135 GeV
and remains negative whéfp is reached. Further lowering the Higgs mass lowers the sdadze

A turns negative. It remains unclear how these RG flows wouldfteeted by holdingdg > 0 in
the SM Higgs Lagrangian at some cutoff scAleHow some higher dimensional operators might
provide a well-defined cutoff theory for the choigg < 0 will require further investigation.

5. Higgs mass lower bound from the lattice

We would like to outline and implement the first step of a rdlatiategy to calculate the lower
Higgs mass bound as a function of the lattice momentum cufbife question about breaking
Euclidean invariance with the lattice cutoff will eventlyahave to be addressed also.

5.1 Yukawa couplings of the Top and Bottom quarks

The third, heaviest generation of quarks consists of thehi@fidedSU(2) top-bottom doublet
Q. = (ELL) and the corresponding right-hand8t)(2) singletstg, bg. The complexSU(2) doublet

Higgs field®(x) with U (1) hyperchargey =1is® = (‘;’;) where the suffixes +,0 characterize the
electric charge +1, 0 of the components. Sigceand¢® are complex, we can introduce four real
componentsp = (i"(’lpﬁﬁ) and the Higgs potential will have O(4) symmetry, with brokerstodial
O(3) symmetry, if the Yukawa couplingg andyy, defined below, are different. The Higgs potential
in the complex doublet notation has the form,

A

V() = %mzdf -+ Zl(q>T ®)% (5.1)

The Higgs field acquires a vacuum expectation value resplentir the spontaneous electroweak
symmetry breaking witi¢g,) = v and the first three components vanishing. The vacuum expec-
tation valuev can be related to the Higgs coupling constantviy /3/Amy with the relation
between the Higgs massy andm given by Equation (2.7).

Of the four Higgs components three represent Goldstonesdegsf freedom, which at finite
weak gauge coupling become the longitudinal degrees otidreeof the massive weak gauge
bosons with mase = vg/2. The fourth component corresponds to the physical Higg®io
field. We do not use the Higgs mechanism in the limit of zerokwvgauge couplings and keep
all four Higgs field components where tipe, @, @ fluctuations represent Goldstone particles with
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the symmetry breaking in they direction. In the SM Lagrangian all four Higgs components ar
treated on equal footing wher#xawa describes the interactions of tB&J(2), doublet Higgs field
with the quark fields

Liukawa= Yt - QL PR+ Yb - QL Pbr + h.c. (5.2)
®° = i1, ®* is the charge conjugate df, 1, the second Pauli matriy, y,, are the top and bottom
Yukawa couplings, respectively. When they are equal, tH) @gstodial symmetry of the Higgs
potential is preserved after symmetry breaking. For unkecmaplings, only theSU(2),. symmetry
of the Lagrangian is maintained. It is easy to write out th&a¥usa couplings in components:

o%Yukawa =W {fL(§04 - i%)tR‘FBL(i@ - q)l)tR} + (5-3)
Yo{fL (@ +ig)br+bL (i@ + @)br} + h.c.
All masses are proportional toas they are induced by spontaneous symmetry breaking.

5.2 One-component Top-Higgs Yukawa model

We have used lattice simulations to study the Higgs-Yukawdehwith a single real scalar
field coupled to the Top quark with three colors using chirggrtap fermions. This theory has
only a Higgs particle and no Goldstone bosons, and the Togkau@or indices correspond to
three degenerate fermions. We will not be able to calculamvar bound directly relevant to
phenomenology. Our purpose here is to explain in a simpledehbow this non-perturbative
calculation can be applied to a more realistic approxinmatibthe Standard Model.

The Yukawa interaction Lagrangian in Equation (5.4) hagagtforward chiral lattice im-
plementation in the overlap formulation where the chirdl-feanded and right-handed fermion
components are precisely defined. The simulation of thedfuliblet with the heavy Top and much
lighter b quark would be very difficult on the lattice with twery different mass scales fax and
m, after spontaneous symmetry breaking.

One could choose for a pilot study the degenerate gasey, which has a recent lattice
implementation [42, 43]. In this limit, there are three mess Goldstone particles contributing
to Top-Higgs dynamics. When the weak gauge couplings areduon, the massless Goldstone
modes become the longitudinal components of the massivé& geage bosons via the Higgs-
Kibble mechanism. The limitation of the four-component miogith degenerate quark doublet is
the artificially enhanced fermion feedback into Higgs dyieam

Although the degenerate model of the Top and Bottom quarkasyg to accommodate in our
Higgs lattice toolbox, we chose the single component HiggkaWa model for our pilot study
with only the Top quark included. When the weak gauge cogpliare turned on, one can choose
unitary gauge to eliminate the three Goldstone componémthis gauge, ignoring the weak gauge
coupling effects to leading order, one is left with diagofap and Bottom quark Yukawa couplings
where the b quark is decoupled in the= 0 limit. This is not a full justification for keeping the
single Higgs field only, and the price to pay is the absenceediback from the Goldstone modes
into Higgs dynamics. Since the primary purpose of the ihjplsase of our Higgs project is to
develop a comprehensive Higgs lattice toolbox and testii®us uses, the limited one-component
Higgs field dynamics will provide very useful informationh@ next logical step will be to restore
the four components of the Higgs field which requires the brlquend break the mass degeneracy
moving toward they, < y; limit.
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5.3 Phase diagram with chiral overlap fermions

Lattice Yukawa models with staggered and Wilson fermionsevetudied before [44, 45, 46].
In this work, we adopted the overlap fermion operator to @spnt the chiral Yukawa coupling
between the Top quark fermion field and the Higgs field. Altjfothis is the most demanding
choice for dynamical fermion simulations, staggered ants®¥i fermions are not suitable for our
goals. We discussed some difficulties with staggered farmin section 3. The difficulties with
Wilson fermions are worse. It turns out to be impossible tetto the critical surface of the Top-
Higgs lattice Yukawa model with Wilson fermions while keegithe Wilson doublers on the cutoff
scale. This is different from QCD applications of Wilsonrfeons.

Our massless overlap Dirac operator is definedab = 1+ yssign(Hy) with Hy, = Dy
whereD,, is the usual Wilson-Dirac matrix with a negative mass whwhef= 1 has the form

(Dw)yx = 30y — :_2L > ((1+ ViU (X=Y) ey + (1 Vu)UZ(X)‘Sx,y—u> - (5.4)
i

Using the modifiedys = y5(1 —aD) gamma matrix, we define two projection operatds, =
1(1+),P. = 1(1£ %), and chiral fermion componentgj g = gPs, Yr = P.y. The scalar
and pseudoscalar densities are giversby = ¢ Yr+ Yrgr = P(1— 5D) andP(x) = Y Yr —
Uri = Pys(1-5D)Y.
The Top-Higgs Yukawa model with overlap
15 [ ‘ ‘ R fermions is defined by the Lagrangian

12 ¢+ 1 1 1 2
7 = LB+ ot + 3 () +

9
= a
T g Y5[D+yo- w(1-3-D)]Y5, (5.5)
3T : where the bare overlap fermion fielth and
0 ‘ -’ ‘ ] the overlap Dirac operatd® were introduced
0.11 0.12 0.13 0.14 earlier. Derivatives are represented by finite
K lattice differences in Equation (5.5) and sum-

mation over a=1,2,3 for Top color is under-

Figure 5: The vacuum expectation value of the Iattic%tood The gauge link matrices are set to the
field @ is plotted in lattice spacing unitsas a function R .
unit matrix in Equation (5.4).

of the hopping parameter for fixed valueshf: 1074,
§o = 0.35 with 3 colors of the Top quark. The latice ~ TNe starting point for simulations is the
size is 12 x 24 for the plotted data. The complete phasghase diagram of the theory in the bare cou-
diagram can be mapped out by varyihgandyp to de-  pling space ofr%,)\o, andyp. The actual lo-
terminekc(Ao, o). cation of the critical surface is determined

from the conditionayy = 0 in a large set of
non-perturbative lattice simulations. This is shown inUf&y5 where the critical critical hopping
parameter for a particular choice of bare couplings is dated. The Higgs part of the lattice
Lagrangian is parametrized in the simulations as

L= =23 @)X+ 1)+ E )+ Ao(@ () — 1),
O
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with @ = /2K @, and rescaled notatiop = yov/2k for the Yukawa coupling. The odd number of
colors of the single fermion required the application of Retional Hybrid Monte Carlo (RHMC)
algorithm for chiral overlap fermion. The first new code weeleped was based on [47, 48]. This
is the code which is mostly used in our Top-Higgs-QCD siniatet. We also developed a special
FFT version of the RHMC algorithm which exploited the spéstaucture of the Yukawa coupling
in the overlap Dirac operator of the Top-Higgs model. In th€r'Feode, Fourier acceleration is
used in the evolution of the molecular dynamics trajectovidnich significantly reduced the auto-
correlation time between independent configurations. Etaild of our RHMC algorithms will be
described elsewhere.

5.4 Comparison of largeNg and Monte-Carlo results

The algorithm was thoroughly tested in the lafge expansion of the model where we sim-
ulated a sequence &= fermions, each with 3 colors, which can also be interpretedtha Top
quark with g colors. TheNr — oo limit of the vacuum expectation valueand the Top mass
m were calculated in rescaleth/Nr andyo/+/Ng variables for the finite volumes of the sim-
ulations, for fixed value ofrd. For a particular choice of the rescaled couplinggnd m are
plotted in Figure 6 as a function of/Ng. The largest number of fermions wabl3= 60 in the

0 01 02 03 04 05 0 01 02 03 04 05
1/Ny 1/Ny

Figure 6: The vacuum expectation valweof the scaled Higgs filed is plotted on the left as a function of
1/Ne for 3Ne fermion degrees of freedom. The blue dot marks thiBlFl— O limit. The right side plot
shows the Top mass as a function gk with the blue dot marking the calculatedNg — O limit. The
lattice size was 12x 24 for every simulation point.

sequence. The solid line indicates the scaled asymptolie & v andm. The finite Ng data
were numerically fitted with an added N correction term which allows numerical extrapolation
to the I/Ng — O limit with perfect agreement. For example, in thevtest of Figure 6 the fitted
curve is 125624) — 0.152(2) /Nr and the largeNg calculation gives 25557) asymptotically, in
excellent agreement with the simulations. The sequendenolations were done with bare param-
etersygy/Nr = 0.7184,Ag-Ng = 1073, andm% = 0.0637. For the same sequence, the Top quark
pole massn was fitted on the right side of Figure 6 a®9®275) — 0.1452)/Ng. The inverse
propagator mass asymptotically is 0.9025 which convergsole massn, = 0.9725 at the finite
lattice spacinga of the simulations by the formulam = In22™ in perfect agreement between

2—am’
simulations and the largi prediction. The complete agreement between the analytie e
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prediction and the Monte-Carlo results provides a veryrgjroross-check for the correctness of
our simulation algorithm and the analytic framework.

5.5 First results on Higgs mass lower bound

After thorough validation of our algorithm, we turned to @liminary determination of the
Higgs mass lower bound in the single component Top-HiggsaWekmodel. The heavy Top quark
will constrain the lightest possible Higgs for any givenaftiin the single component Top-Higgs
Yukawa model. The starting point for simulations is the ghdigram of the theory in the bare
coupling space o’ncz,,)\o andyg. For every choice of the bare parameter set, the vacuum @tjmet
valuev and the Higgs and Top masses take some values in latticd anitd. Keeping both the
cutoff and the Top mass fixed in physicadvunits, we explore all allowed bare couplings and find
the lightest Higgs the theory can sustain. Repeating tlusquiure at various distances from the
critical surface determines how the Higgs lower bound wavigth the cutoff. For the Euclidean
path integral to exist, we have to requikg > O in the model. We could also consider a more
general Higgs action where the constralgt> 0 is relaxed when positive terms Iik@ are added
in the higher-dimensional bare coupling constant spackebare Lagrangian. For now we do not
include such terms which are part of our ongoing investiyesi

Figure 7 displays our preliminary results which
100

nl]top:‘leo GeV e are not far from what is expected from the ap-
90 ’mmpzigé gg : ] plication of the renormalization group. Lattice
= 80| op + artifacts will require additional interpretation in
QI 70 t : 1 the low momentum cutoff range of the simula-
£ 60 | ; % + ] tions.
50 | ¢ §+ ] Adding the QCD gauge coupling
w0 Our algorithm and simulation code has been ex-
06 08 1 12141618 2 tended to the Top-Higgs-QCD code of three cou-
N=Tm/a [TeV] pling constants. The only change is to include

. ) . . the SU(3) matrix link variables in the Wilson op-
Figure 7: The lowest Higgs mass is plotted as a ; ) i
function of the lattice momentum cutoff for threeSrator of Equation (5.4) in our construction of

different values of the Top mass. All simulation datdhe chiral overlap operator. The numerical de-
are converted to physical units using- 246 GeV. termination of the phase diagram and the Higgs
mass lower bound in the extended model with

ALY, g3 couplings (Top-Higgs-QCD model) is part of our ongoing Higmoject.

6. Higgs mass upper bound and the heavy Higgs particle

In this section we will review earlier results on the Higgssmaipper bound from lattice
calculations and illustrate with the higher derivative €b\ick) extension how a heavy particle
might be exhibited without contradictions with Electrowgaecision data.

6.1 Higgs sector as an effective field theory

In the Wilsonian view of section 4, the Standard Model is expé to have some yet unknown
UV completion above a certain energy threshdlgl This threshold could be as high As =
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Mpianck OF as low as\g = 1 TeV. Below scale)\g the SM is described by the familiar degrees
of freedom for the known particles, including fermions aradige bosons, in addition to the four-
component Higgs field. For illustration, we will chooAg = Mpjanckfirst in the description of the
Higgs sector without gauge and Yukawa couplings. Genettétiz to the full Standard Model does
not add to the purpose of the discussion here. Lowering thaffdaoto the TeV range will be part
of the discussion. If the Higgs sector is treated as an éffetiteory, the regulator is chosen for us
as an intrinsic part of the theory. Euclidean four—-momemgasanoothly cut off when their lengths
exceed some scalg). In this way all momentum integrals are made manifestly eggent, and no
infinities are encountered. The simplest choice is an expgaleutoff function in the propagators,

2
Kn(P) =exp| 5 (6.1

which can be built into the Lagrangia#f (/\¢) for non-perturbative calculations. A mass term could

have been added { in Eq. (6.1) but we simplified the notation for this qualit@tidiscussion. The

general O(4) Higgs Lagrangian at scAlg= Mpjanckis given by

1 1 A
Liggs = édufpaaufphr éllgfpafpaJr 4—?(<Pafpa)2

Cs A6 Cg
+ 12 Op? Dcpa+M2—(<pa<pa)3+ 7 00,¢P O P + ...,  (6.2)
Planck Planck Planck

where summation is implied over= 1,2,3,4. Only a few higher dimensional operators are in-
cluded for illustration and the exponential cutoff is ingitlly understood in the functional integral
built on the Lagrangian of Eq. (6.2).

6.2 Higgs mass upper bound from the lattice

The highest allowed Higgs mass from the Lagrangian of EQ) (@as investigated before,
using lattice cutoff withcg, Ag,cg and all other higher dimensional couplings set to zero. Cor-
rections from the higher dimensional operators are expettidoe small, of the order of powers
of My /MpianckUnless the couplingss, Ag, Cg, or any of the other higher dimensional couplings are
pushed toward asymptotically large values. Itis a limitethis considered artificial and far outside
naturalness bounds.

Convincing evidence for the Higgs upper bound and its nurakrialue comes from lattice
calculations [49, 50] where the derivatives are replacefirbie lattice differences giving up Eu-
clidean invariance on the Planck scale. The advantage dattiee approach is that the fully
range can be scanned from 0ct0 This is important if the Higgs self-interaction is a maayjig
(logarithmically) irrelevant operator in the trivialitycenario. In the limit of infinite cutoff, the
largest allowed Higgs mass would be driven to zero (tritstadif the renormalized Higgs coupling),
but with the cutoff at the Planck scale we will get a definithanvanishing upper bound which is
saturated abg = o in the lattice approximation. The renormalized Higgs coupht low energy
can be defined as the rail@ = 3m¢, /v wherev = 246 GeV is the vev of the Higgs field (the fourth
component of the O(4) field), antk is a renormalized Higgs propagator mass which is related in
two-loop perturbation theory to the physical Higgs massheyrelationmy = mg[1+ 5735-A3].
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Based on non-perturbative lattice studies, we expect kealairgest Higgs mass is obtained in the
Ao — o limit. For any choice ofAg in the O(N) Higgs model we have

1
. s ) {1+ 00R . (6.3)
with B = 3(N +8) 12 andBz = —3(3N + 14) (16n2)2 The relevant choice is N=4 for the Standard
Model. The non-universal amplltudé()\o) is determined from matching to lattice calculations in
the range Zr < A/my < 100 [49, 50], leading to the upper boung = 145 GeV in theAg = o
limit, if the cutoff is at the Planck scale. In principle, thatice cutoff could be replaced by the
exponential cutoff function of the continuum theory. It iebbe required to replace the momentum
square in Eq. (6.1) by its lattice version and take the ireséatice spacing much larger thag. A
new amplitude would emerge which could change the numeralak of the upper bound without
breaking Euclidean invariance at finite cutoff. This is pautarly useful when the cutoff is brought
close to the low energy physical scale. In the discussiom@higher derivative extension of the
Higgs sector we will show how to insert a heavy continuum ffigcale in the theory which was
turned into a practical calculation before [11, 12]. Thiggests that the insertion of the exponential
cutoff scale might be feasible in practical calculationshalremains the most interesting question
for LHC physics is the lowering the cutoff from the Plancklsdato the TeV range. This will be
illustrated next in the higher derivative extension of thigd4$ sector with the scale of new physics
in the TeV range.

MR = MPIanck'C(AO) (Bl)\R) A eXp(

6.3 Higher derivative (Lee-Wick) Higgs sector

An interesting extension of the Standard Model Higgs seetas proposed earlier by the
addition of higher derivative operators using ideas oagjjndiscussed by Lee and Wick [11, 12,
51, 52]. Recently a complete Standard Model was construmesimilar principles [13]. Both
constructions eliminate fine tuning in the Higgs sector auliire ghost particles on the TeV scale
represented bgomplex pole pairsn propagators with unusual physical properties. The aisiyf
the heavy Higgs patrticle from [11, 12] will be followed in odiscussion.

In the minimal Standard Model witBU(2), x U(1)y gauge symmetry the Higgs sector is
described by a complex scalar doubdetvith quartic self-interaction as we discussed in section 5.
The Higgs potentiaV/ (dTd), as defined in Equation 5.1, 8U(2), x U (1)y invariant. It also has
a globalO(4) ~ SU(2). x SU(2)r symmetry, larger than required by tisJ(2), x U(1)y gauge
symmetry. Before the weak gauge couplings are switched mganvenient to represent the Higgs
doublet with four real componentg* which transform in the vector representationQif4).

We will include new higher derivative terms in the kinetiatpaf the O(4) Higgs Lagrangian,

cos(ZG))

Og? Og? +W 00, ¢% 00 ¢* —V (¢?¢?) , (6.4)

where summation is implied over= 1,2,3,4. Also, in this subsection and the next, we use the
Minkowski metric and a familiar, convenient form of the HigggotentialV (¢?¢?) = —%uzfpaq)aJr

A (@?@?)2. The higher derivative terms of the Lagrangian in Eq. (6.4)l¢éo complex conjugate
ghost pairs in the spectrum of the Hamilton operator. The mermconjugate pairs of energy
eigenvalues of the Hamilton operator and the related compiée pairs in the propagator of the

L= %dy o+ P —
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scalar field ghost particles are parametrized#y= Me*'®. The absolute valus! of the complex
ghost mass# will be set on the TeV scale. The Higgs Lagrangiah in Equation (6.4) describes
a finite field theory without divergences, or fine tuning. Iskaparticularly simple form with the
special choic® = 11/4 of the complex ghost phase,

Ly = %aucp M@+ = D0, 0P 00" @ —V (¢¢?) . (6.5)

2M4
The ® — 0 limit in Eq. (6.4) requires special attention. In this ltthe ghost particle becomes
real and to avoid a double real pole in the propagator witlblermatic behavior, the choic@ = 0
requires to drop th% 00, ¢? OoH ¢? derivative term in the Lagrangian,

_1' a U a_i a a_ a 3
L = 50u¢70" g7 — on DT L7 =V (¢7¢7) (6.6)
the starting point of [13].

6.4 Gauge and Yukawa couplings

Gauging the Lagrangian (6.5) remained unpublished be&#k For completeness, we present
the main results. The construction of the higher derivatly®) gauge Lagrangian mirrors Eg. (6.5)
for the special choic® = /4,

1 1
— _CF, FHv
Z8 =~ aM

with U(1) gauge fielB, andF,, = d,By — d,By,. In addition to the massless gauge vector boson,

the higher derivative term in Eq. (6.7) will insert a ghosttjmde in the spectrum of the Hamiltonian

with a complex conjugate pole pair parametrized #y= Me*®. For a general complex phage

an additional term will appear in the Lagrangian, in closalagy with the construction of Eq. (6.4).
The higher derivative Yang-Mills gauge Lagrangian for 8id(2),y weak gauge fieldl, will

follow a similar construction adding the dimension eighbgihterm,

1
Ly = —ZwaGa“" — a0 Gy DG, (6.8)
where the notatio®3, = 9, W2 — d,W2 + g fA*WEW is used with the covariant derivati@sP =
309, + gfaPWg. Higher derivative Lagrangians, similar to Eq. (6.8), wéret introduced by
Slavnov to regulate Yang-Mills theories [54].
Labeling the components of the complgk(2), Higgs-doublet field a® = (‘;E) the gauged

Higgs sector is described by the Lagrangi#gh= Ay + £ + Zhiggs With the Higgs Lagrangian

= OF, OFHY (6.7)

1
Hiiggs = (Du®)'DHD + W(DuDTDdJ)T(DuDTDCD) —V(o'o) (6.9)

where the Higgs potential i6(®T®) = — I u?dTd 4 A (d'd)? and the gauge-covariant derivative
isDy,® = (du +ido-W, + i%’BH> ®. The higher derivative term in the fermion Lagrangian will
take the form .
Zrermion=1PDW + ﬁw wzwz Y. (6.10)
Next we will briefly summarize two important features of thigher derivative Higgs sec-

tor with the ghost mass scale in the TeV range. The RG runningeoHiggs coupling freezes
asymptotically and a much heavier Higgs particle is alloweextended Higgs dynamics.
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6.5 Running Higgs coupling in the higher derivative Higgs setor

- This can be illustrated by calculating the scale de-
pendent one-looB-function within renormalized per-
turbation theory in the broken phase of the higher deriv-
ative O(N) Higgs sector [55, 56]. In addition to N-1
massless Goldstone modes, there is a massive Higgs
agerass excitation and a massive complex conjugate ghost pair
1 appearsinall N channels, as a consequence of the new
Lvevscale derivative term in the Lagrangian. On a low energy
scaleu, whent = log(u/v) is negative, thg8-function
1 is dominated by the Goldstone modes whose one-loop
t contribution is%}\ 2(t). Above the Higgs mass thresh-
-30 -20 -10 0 10 old the massive Higgs loop contribution sets in and
the B-function become%%g)\ 2(t) which is the familiar
one-loop form in the minimal mass independent sub-
traction scheme of the standard O(N) model. tAs-
creases, the complex ghost loop becomes increasingly temgaand well beyond the ghost scale
M, for t > log(M /veV), the beta-function will asymptotically vanish. The rurmicoupling con-
stantA (t) first will grow ast increases, but eventually it will freeze at some asymptatioeA ()
as shown in Fig. 8. Ghost loops in the higher derivative Higgxlel cancel the loops effects
from the low-energy SM particles in the UV region and thistiestreening’ effect opens up the
possibility for such theories to be more strongly intenagtthan the standard Higgs sector.

T T T
with onset of ghost effects —»
running coupling freezes

A(t)/A(0)
15
BON+8

Goldstone dynamic:

Figure 8: Running Higgs coupling in the
higher Higgs sector.

6.6 Scattering amplitudes

The Higgs patrticle is defined as the resonance pole in thesneh Goldstone scattering am-
plitude. The Goldstone amplitude can be calculated in tgédri derivative Higgs sector of the
O(N) Lagrangian in the large N approximation. In additidme Higgs particle can be investigated
directly in lattice simulations of the higher derivative da, just like in the standard Higgs sector.

In Figure 9 we plotted from [55, 57] the cross section as ationmf the /s center of mass
energy in ghost mass units. The location of the complex Gafgsghost pair in the scattering
amplitude of the first Riemann sheet is determined by thecehof the phase angl® = 17/4 in
the Lagrangian of Equation (6.4). The peak in the cross@ecirresponds to the complex Higgs
resonance pole on the second sheet of the scattering ad®plitu

Also plotted in Figure 9 is the scattering phase shift as atfan of \/s. The phase shift has
a sharp rise at the Higgs pole; however the cross sectiontendhape of the phase shift do not
describe a standard Breit-Wigner shape in the presenceadjttbsts and higher derivative Higgs
dynamics. Itis ‘unusual’ that the phase shift decreasebasnergy gets through the real part of
the ghost mass signaling acausal behavior in the scattarmitude. It had been argued by Lee
that this acausal behavior would only occur on microscopdales, typical of the Compton wave
length of ghosts, and it will not lead to macroscopic acaokakrvations. In the large N plots of
Figure 9, the bare parameters were tuneato= 1 TeV for the Higgs mass with the ghost threshold
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Figure 9: The Goldstone Goldstone scattering cross section and hifsés plotted against the center of
mass energy in largh-expansion for the Pauli-Villars higher derivati@éN) theory. The input vev value
isv=0.07 inM units. The peak corresponds to the Higgs resonance, whatimig = 0.28 inM units. The
scattering cross section is completely smooth across ttalsed ghost pole locations.

located at 3.6 TeV. Lattice simulations confirmed similaosgly interacting heavy Higgs physics
scenarios [55, 56].

6.7 Heavy Higgs particle and thep-parameter

We discussed in the introduction that a heavy Higgs partledyond the 200 GeV range, is
not consistent with Electroweak precision data in the pbdiive sense. Concerns were raised
earlier that the heavy Higgs particle of the higher derxatiHiggs sector will contribute to the
Electroweako-parameter beyond experimentally allowed limits [58].a8htforward application
H of perturbative loop integrals support this
concern. However, with new physics on
the TeV scale (represented by ghost par-
ticles) the loop integrals are considerably
Figure 10: Higgs contribution to electroweak vacuum pogifferent. A crude estimate can be made
larization operator. by evaluating the contribution of the vac-

uum polarization tensorgl{y,, MY to the

p-parameter,

n, ny 3, d*k T4 (K?)

p— 1|Higgs = - - 5
M\%v,tree M%.tree 4 k2<A2 (27‘[)4 (k2 + 'vl\%v,tree)(k2 + M%.tree) (kz +2H (kz))

with a sharp momentum cutoff in the TeV range and using thelieel Higgs self-energy operator
Z1 (k?). The reduction is quite large in comparison with the 1-loeptyrbative formula. Replacing
the cutoff integral by the Pauli-Villars regulator, whick appropriate for the higher derivative
theory, we get similar reduction. The effects of the nonymbiative Higgs dynamics represented
by a complicated (k?) operator would have to be determined by non-perturbatireulsitions.

If these reduction effects are not sufficient, one might nieeddd another Higgs doublet to the
extended Higgs sector in the spirit of recent suggestiofk [E exhibit a heavy Higgs particle as
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a broad resonance, with strong interaction and with acbépaparameter, remains an interesting
challenge for lattice Higgs physics and model building.
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