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Lattice chiral fermions are synonymous to the Ginspargs@ilrelation[[JL]. Indeed, this relation
is satisfied by the overlap][f], 3], domain wdil [}, 5] and pettction [§] fermion kernel.

In a recent work we have shown that it is possible to take atiR& approach for fermions in
the presence of gauge field} [7]. This is due to an algebhpicaplicit blocking technique which
yields a Schur-complementary coarse Dirac operator. UsiS8ghur complement approximation
which is stable and regular, the scheme can be iterated fixdtepoint.

In this talk, we elaborate more on the direct RG approach drvshow to get highly
improved chiral fermions on the coarse lattice with the gadields remaining on the
fine lattice. We give numerical examples in the case of kttigCD using QCDLAB
http://phys. fshn. edu. al / qcdl ab. ht m .

The XXV International Symposium on Lattice Field Theory
July 30-4 August 2007
Regensburg, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&iymmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:borici@fshn.edu.al

A Schur Complement Approach to Chiral Fermions Artan Borigi

1. Renormalisation group transformations as partial Gaussian integrals

A renormalisation group (RG) transformation for quadratic actions, as ieiséise of lattice
fermions, is a simple Gaussian integration,

detD e WSt 7 e—(‘l_/b—(;g)Dbb(Wb—B(P)—aD(O , (1.1)
o
whereD and Sy, are Dirac operators on the fine and coarse lattiDgg,is a coarse lattice kernel,
B, B are blocking operators, and, by evaluating the right hand side, onghcanthat

D=D + B_DbbB, Sb = Dpp— DbbBlj_lB_Dbb . (1.2)

The difficulty with fermion RG transformations in lattice gauge theories is relatdktepecial
properties of the blocking kerneBandB. They should be such that the coarse oper&gf,and
its approximationS,y, satisfy:

1. gauge covariange
2. stability? , i.e. inheritance of the fine lattice operator properties;
3. regularity, i.e. ||l — §, || < 1, or inheritance of the infrared mode physics.

These properties are important ingredients of a valid RG scheme that deerdied to the fixed
point. Indeed, non-covariant blocking prescriptions fail to presémeecovariance of the original
operator. Stability ensures the conservation of algebraic propertiethardcality of the fermion
theory, whereas regularity is essential for the preservation of the low lyindes of the Dirac
operator.

Finding such kernels by direct search is a daunting task. For free fesmibis task can be
simplified a lot as is shown by the authors of classically perfect actj$ns [6].

Our approach simply requires that the coarse lattice operator is the Sehmmlement of a
block UL-decomposition of the fine lattice operat@f [7]. In this way, gaugeadance of the
coarse operator is guaranteed, wherBaB are derived rather then defined. If we partition the
Dirac operator as a 2x2 block operator,

D— Dob Der ’ (1.3)
Drb Drr
its block UL decomposition yields,
lbb DorDrrt) [(Sop O -1
D= = Dpp— DpiD,, D 1.4
( o I, Dy Dy )’ Sb = Dpb— DDy "Drp (1.4)

Syp being the Schur complement. In addition, this approach allows us to formulatersitaitality
and regularity properties as in other applicatidis [8].

1The notions of stability and regularity used here do not necessarilyspmmel to those of the mathematical litera-
ture.
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But how can we bridge between a block UL-decomposition and an RG dranafion? This
is easily done if we notice that the Schur complement appears in the left ilindfghe partial
Gaussian integration with respect to theomponents of the fermion field, i.e.

detD,, e ®Shm — e #bo _ e ®Dboh—®Dbr ¢ —@Dro @ —@Drr @t (1.5)

@“@ @@

Therefore, there is no need to refer to the blocking kernels any momget#s, in order to complete
the formal argument, it is straightforward to show that using covariankirigckernels,

— 0
B= (0, DD B=
( » ~bb bl’>7 (DrbDE&) ’
and substituting in[(1].2) one gets the Schur complement as givgn jn (1.4)eagheomparing
equations[(1]1) and (1.5), one identifigs= @,.

2. Permutation of lattice sites

For the Schur complement to be the coarse Dirac operatoh-ttmenponents of the fermion
field should be defined on the coarse lattice. Hence, starting form a gideming, we have to
perform a permutation of lattice sites, such that the block sites are labelled firs

We use two permutation types, which yield favourable stability and regulariyepties of
the Schur complement. For ease of illustration, we will define them in the cas2-dimensional
lattice (see Figure 1):

13 14 15 16 13 14 15 16
? 10 H 12 Type I permutation 1 4 12
5 6 7 8 7 8 9 10
1 2 3 4 1 5 2 6
13 14 15 16 13 14 15 16
’ 10 H 12 Type Il permutation 6 ! 8
5 6 7 8 9 10 11 12
1 2 3 4 1 2 3 4

Figure 1. Example of a site permutation on a 4x4 lattice. Coarser lattice sites are labgleddface font.
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¢ Type | permutationSplit the lattice in 2 blocks and label those in the lower left corner as
block lattice sites.

e Type Il permutationSplit the lattice in even-odd slices along the vertical direction and label
even slice lattice sites as block sites. Then, repeat the same for the hdrdicedton.

The generalisation in four dimensions is straightforward.

For each permutation type we assign matrix operators which perform romypations of the
lattice Dirac operator. Since to every row permutation there is a column permytetgoconsider
four permutation operator§}, R, Pfl, Plfl, all applied to the left oD.

3. Schur complement approximation

It is clear that the Schur complement itself is a full matrix, and hence, natipaafor the
iteration of the RG scheme. Therefore, one has to rely on some approximetitins section we
show how to construct a stable and regular Schur complement approxin@tiamon-negative
Wilson Dirac operator, i.e.

D=1-M, IM[[<1.

In order to fix the idea we consider a Type Il permutation,

_ lb—Mpp — My
DRt =
HI . ( _Mrb Ir—Mrr> ’

whereb labelseven(3-dimensional) lattice slices transverse a given direction, wheradelsodd
lattice slices transverse the same direction. Hence, the Schur complemers,will b

Sob = b — Mbp— My (Ir — My ) Myp
which is well defined if| M || < 1. Itis easy to compute the norm bounds,
[Mor|| <2, [[Mppl| = [[Mrr || <6k, [M]| <8k,

wherek is the usual hopping parameter for Wilson fermions. SiDomust be non-negative, i.e.
IIM|| <1, the condition

K< (3.1)

(el o

will be imposed. In this case we get,
1 3
[Mor|| < 2 [[Mbp|| = [[Mrr || < R (3.2)

Therefore, (I, — My;) ! can be expressed as geometric serieMinand the Schur complement
takes the form,

Sb=Ib— (Mbb+ My % My Mrb) : (3.3)
|=

Now, we are in a position to define the ordesipproximation,

k-1
T)): lp— (Mbb+Mbr Z) Myt Mrb> , k=12.... (3.4)
|=
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Theorem 3.1. The coarse Wilson Dirac operator defined on the even 3-dimensionak shica
4-dimensional lattice is stable and regular for any approximation order ¢ laopping parameter
K <1/8.

Proof. From egs. [(3]3) and (3.4) is clear that

> 3 1 1 1
Mbb+Mer)Merb S =1
& " 474134
and y
k-1 3 k
3 1 1-(3) 1 1/3
Mab+ Mpr Z)M'Mrb <S4c A oo —() . (3.5)
& 474 1-3 4 4\ 4

Therefore, ifD is a non-negative operator, th&, and §(.D'8 are also non-negative operators. This
proves the stability of the scheme.
For the regularity, consider,

~ k o
Soo =5 — My lgk M Mrp

and then )
b (85) s (80) <Mb, 3 Mm> 36)

First, consider the norm of the second term in the right hand side:

SHEEST6

<o —1
From, (3.F) we can expres(sSé'Q) as a geometric series. Hence, for the first term in the right
hand side of[(3]6) we get:

Mpy gk M, M
|=

H égk) .1
b — k
&) 119
Putting results together, we get:
i —1
lp — (Sgg) Sl| < 1.
This proves the regularity and, hence, the theorem. O

Remarks

1. In fact, the theorem proves the regularity in its weak form. The strogglae€ty,
o —1
lp— (%@) Sib

is not proven in this setting, but can be anticipated at large orkers,

<1,




A Schur Complement Approach to Chiral Fermions Artan Borigi

2. Itis easy to note that the first order approximation preserves theigppattern, an attrac-
tive approximation from the computational point of view. However, from R point of
view, this corresponds to a decimation of the odd 3-dimensional transVaitszes which
does not expand the coupling constant space. This is similar to MigdalAdHdepproxi-
mation, which does not lead to the expected criticality of the 2-dimensional isai! [9].
Therefore, one should use approximation orders1.

3. A similar theorem should hold for Type | permutations. However, numlerssailts favour
inverse Type Il permutation$][7].

The approximation can be improved further if one modifies the last term in {hension:

k—2
o =lp— (Mbb+ Mor 5 My Mrb> — Mo M (I = Nl ) ™ M, (3.7)
1=0

whereM,, is a diagonal matrix, its entries being the sunMf rows. In the multigrid terminology,
this makes the approximatiaonsistenfg]. A simple effect of this property is the inheritance of
the smallest singular value. For free fermions, the original operator isilsinfpr 8 = 1, whereas
using (3.}) at second order, the smallest singular value-ig6k + 4k? -+ 24k3) > 0. However,
using [3.) withM,, = 6kl,, the smallest singular value is-1(6k + 4k? + 24x3/(1—6k)) = 0.

4. Numerical examples

Figure 2 shows the spectrum of the Schur complement for four diffgremhutations. For
inverse permutation types and a suitable skifthe shifted Schur complement can be used as an

improved domain-wall/overlap kernel. In Figure 3 we show the spectruv(éﬁf) 1Sbb using
(B-7). All permutation types show excellent regularity properties.

In summary, the Schur complement RG approach is a very promising devitstice QCD
computations: we have shown how to get improved chiral kernels; algorittijithe scheme
yields, for the first time, a working multigrid algorithrf] [7].
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Figure 3. Spectrum of(Sé?) Syp, for various permutations in a SU(3) backgroungBat 5.4 on a & lattice.



